



Abstract—These network devices in small and medium

business and home market are incomplete without supporting

voice over IP. Traditionally dedicated DSP based solutions are

used for processing the packetized voice with Quality of Service

support. However it is not cost-effective for the low-end devices

to have a DSP on board. One of the challenges in providing a

VoIP solution is extracting the same level of performance from

a Linux based PowerPC that a DSP would offer. This paper

covers the challenges in implementing VoIP framework on

Linux. This results in a “software-DSP” implementation on

Freescale’s Power PC platforms.

Index Terms—VoIP, DSP, PowerPC, speech coding, real time

patch.

I. INTRODUCTION

Voice over Internet Protocol (VoIP) is a technology for

delivery of telephony speech, facsimile and data signals over

existing data networks. VoIP is also sometimes referred as

Packet telephony and Internet telephony. A VoIP Gateway is

required to convert the media from one network type to

another.

Fig. 1. VoIP gateway

VoIP systems are implemented in three layers as follows:

A. Signaling Control Layer

 Signaling control layer controls the state of connection

between VoIP endpoints. There are standard protocols to

achieve the purpose. E.g. SIP, H.323, and MGCP etc.

B. Media Processing Layer

Media Processing Layer is responsible for conversion

between two different formats and handling of various media

events. A typical case is TDM/PSTN to IP packets

conversion and vice-versa. Some of the voice component of

this layer are G.711, G.723.1, G.729 A/B; voice activity

detect; packet loss concealment; acoustic and line echo

cancellers; DTMF detection and generation; adaptive jitter

buffer; RTP/RTCP/UDP/IP etc.

C. Media Processing Control Layer

It provides interface between Signaling control layer and

the Media Processing Layer. In a typical use case, it

interfaces with Signaling layer via function calls and it

interacts with VoIP framework via network communication.

Traditionally VoIP end-point typically has an architecture

based on a combination of a DSP and a general purpose CPU.

The computational intensive work of media processing is

performed by the DSP, and the general purpose CPU

performs the system management, signaling, call control and

network data processing. Freescale’s voice solutions are

being offered as a two processors solutions. These two

processors can be part of a single SoC offering (e.g

Freescale’s MSC7120). However, it is not cost-effective for

low-end devices to have an on-board DSP. Freescale’s

low-end QorIQ devices are capable of providing the low

channel voice solution (2-8) using a PowerPC processor

without using the DSP. This results in a software solution

implementing DSP speech codecs, voice algorithms, echo

cancellers, telephony signaling, IP call control, network

packet processing and system management on a single core

running an embedded Linux operating system. This solution

can also be based on multi-core processors (Freescale

P1020)[1], where one core can be dedicated for media

processing to achieve higher channel density.

Fig. 2. Freescale P1020E with inbuilt TDM support

The advantages of a DSP-free architecture for

VoIP-enabled end-points are very appealing; however, it

creates several development and software architecture

challenges. One of the challenges in providing a VoIP

solution is extracting the same level of performance from a

PowerPC that a DSP would offer for the underlying voice

components, which are traditionally suited to the DSP type of

architecture. This challenge become more complex when the

control and media processing functions are merged onto a

single device, care must be taken to control the overall system

priorities to address the real-time nature of the voice

VoIP DSP Functionality in Software on Linux Based

Power Pc Platform

Hemant Agrawal, Member, IACSIT

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

175

Manuscript received January 6, 2012; revised April 21, 2012. This work

was supported by the Freescale Semiconductor, India.

Hemant Agrawal is with the Freescale Semiconductor, Plot-18, Sector
16A, Noida, UP-201301, India (e-mail: hemant@freescale.com).

processing. All elements of the Power PC architecture from

best-use of the pipeline to elimination of unnecessary

instructions and parallelism must be considered if a complex

task such as VoIP is to run in real time.

Another challenge is that Linux, being a general-purpose

OS, is not designed to support applications having real-time

requirements while Voice processing requires soft real-time

guarantees. Any scheduling delay and missed dead-lines can

deteriorate the perceived quality and user experience.

In this paper we will discuss how to mitigate the challenges

in implementing a software-DSP VoIP framework on Linux

ased Freescale Power PC platforms. We will explore how

Linux and the PowerPC architecture can be leveraged to meet

the VoIP processing requirements.

II. PROCEDURE FOR PAPER SUBMISSION BUILDING THE

SOFTWARE DSP BASED VOICE PROCESSING SOLUTION

Since both network and TDM (Time Division

Multiplexing) drivers are available in Linux Kernel Space,

developing the VoIP Framework in kernel space is an

obvious choice to avoid any buffer copy and limit scheduling

issues. Once the PCM data is received on the TDM bus, the

codec encrypts it and places it in a network buffer after

applying various voice algorithms for event detection and

quality improvements. Once the packet is ready, after

packetizing it with RTP, the packet can be transmitted

without making a copy. In the reverse path, use of a carefully

designed adaptive jitter buffer addresses the key voice quality

issues that packetize the voice experience due to a number of

factors such as delay and jitter in the network. Another key

factor is the delay in processing voice due to other activities

by the CPU, etc. These issues are addressed by the careful

design and implementation of Packet Loss Compensation

(PLC), Comfort Noise Generation (CNG), careful design and

use of Jitter Buffers, Echo Cancellation (ECAN), and OS

modifications to handle Voice in real time [2].

Fig. 3. Linux based solution

A. DSP Speech Codecs and Algorithms on Linux

The VoIP framework has several components such as

voice codecs (G.711, G.729 etc), echo canceller, RFC2833,

tone detection etc. These components are computation

intensive and are traditionally suited for a DSP (Digital

Signal Processor).

PowerPC Assembly instructions do not have floating point

support, so there is a Fixed Point implementation for these

components. Initial results of running the raw “C” model of

commonly used voice codec, G.729AB, showed that it takes

close to 200MHz just to process one voice channel data. This

made it very clear to optimize these voice components for the

platform.

The following methods have been adopted for profiling

and optimization of voice algorithms.

1) Profiling – First step was to measure the raw

performance of the C-Model. Function wise profiling

helped in determining which section of the code is taking

maximum cycles.

2) Optimization of Basic Op functions - Voice algorithms

generally use a lot of basic op functions such as L_add,

L_sub, L_mult. These functions are fixed point

arithmetic functions. Since the number of calls of these

functions is generally very large, they tend to use a lot of

CPU cycles. These functions were the first target for

optimization. Highly optimized Basic OP library using

PowerPC assembly was developed. Ideally, the fixed

point algorithm should be written so as to insure that

there is no overflow. However, a few cases can occur

where the chance of overflow still remains. The code

was analysed for overflow conditions - Visual Analysis

and executing it with hundreds of test vectors. Safe

conditions were changed to a simple set of macro based

basic Ops.

3) Basic C optimization – Manual optimizations include

loop unrolling, merging multiple loops, minimizing

load/stores, etc.

4) Assembly level optimization - for CPU intensive areas

of code.

Linux has a default stack usage limitation (4K default) for

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

176

better performance. Our DSP based VoIP framework and

Codec processing was full of nested functions, easily

overshooting 4K or 8K stack sizes. We reorganized the code

to avoid too much nesting.

B. Optimization Results:

After the first round of optimization, the following results

were achieved.

TABLE I: VOICE COMPONENT OPTIMIZATION RESULTS

Module Maximum MCPS on MPC8315

Fixed point

raw C-code
First

Optimize

d Code

Target

for

Protot

ype

G.711
Encoder 5.2 1 1

Decoder 1.86 1 1

Echo Canceller 187.35 27 30

RFC2833-DTM

Detection

Encoder 30 8 10

Decoder 2.71 1.5 2

Tone

Generation
 8 1.5 3

G.729
Encoder 163.75 100* 40

Decoder 41.73 30* 10

* Current status

Note: MPC 8315 Core (e300) clock frequency is 400MHz. Frame

size is 10ms @ 8 kHz sampling frequency (MCPS =

Million Cycles Per Second).

C. System Scheduling

The Linux kernel has many processes applications running.

An application/thread can always be interrupted by higher

priority ISRs (hard and soft). Spinlock (depends on number

of cpus) can make you wait. The whole nature of Linux as an

OS is not deterministic. On the other hand, voice processing

needs to meet the hard TDM timelines. TDM is synchronous

processing, which works by using TDM interface tick.

In a typical home router system, there are three categories

of applications:

1) VoIP – CPU intensive - Real-time with latency

requirement of 5-10ms.

2) Internet Packet Forwarding – Lower than Voice – 1ms

processing requirement at higher rates.

3) Applications – such as UI – 500ms class – it should not

be CPU starved (usage are less than 5%).

We initially implemented the voice processing in the

context of a softIRQ triggered by TDM interrupt. On low

network load conditions, the system was able to support good

quality of voice. However as the network traffic increased,

the voice processing began to starve. Increase in packet loss

also caused a severe impact on voice quality.

We enabled the RT_PREEMPT patch [3], [4] in Linux

kernel, which provided:

- Almost full-preemption

- Threaded interrupts - ability to priotize interrupts like

processes

- Lower risk of over/underruns

III. TEST RESULTS

The following chart shows the test result of PESQ scores

measured by ABACUS for MPC8315 based solution.

1) 2-way G.729ab call

2) Shows PESQ (ITU-T Perceptural Quality) scores for 15

1 minute calls. Higher is better.

3) Comparisons are made against two industry-standard

products from Cisco and UTStarComm.

Fig. 4. Voice quality comparision

4) This test evaluates the overall quality of the decode path.

5) Small differences in PESQ are not perceptible.

6) PowerPC is running with IPv4 forwarding at 70% line

rate.

On further evaluation, the behavior of the system with

increasing the network traffic, it was observed that after 75%

line rate, the call does not get established due to packet loss.

TABLE II: RESULTS G.729AB VOICE QUALITY COMPARISON

Packet

Size

(in Bytes)

Line Rate

(in %)

64-Byte

Min

64-Byte

Avg

64-Byte

Max

1500 Byte

Min

1500 Byte

Avg

1500 Byte

Max

60 3.19 3.991 4.147

70 3.713 4.038 4.121 3.218 4.016 4.124

72 3.563 4.012 4.127

73 2.638 4.021 4.127

74 2.929 4.013 4.137

75 1.824 3.715 4.148

80 0 0 0 3.106 4.01 4.145

90 0 0 0 2.963 3.686 4.125

100 0 0 0 3.132 3.725 4.12

64 Byte Packet Size 1500 Byte Packets

Going forward, QoS for VoIP packet can be enabled to

give priority treatment for the VoIP traffic.

IV. CONCLUSION

In an actual implementation on Freescale’s MPC8315

processor, the solution was able to support two simultaneous

voice channel support with just 90 MCPS usages for a 2-way

call (G.711). The channel function definition included G.711

voice codecs, DTMF Detect/Generate/Relay, Echo Canceller

with a 16 ms tail, Tone handling, RTP/RTCP, Adaptive Jitter

Buffer Manager and Call Control. Considering the 400MHz

processor, the results shows that 2 calls with G.729ab can

easily be supported using less than 150MHz total once the

G.729ab optimization exercise is over. Further optimization

in voice components and Linux can be undertaken to achieve

the same in less than 100 MHz. With the QorIQ series

processor running at 800 -1200 MHz and supporting the

improved e500 core, this processing power requirement for

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

STARCOM CISCO PowerPC

P
E

S
Q

Min

Avg

Max

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

177

supporting the voice channel will decrease; resulting in better

channel density and scope to add more functionality.

REFERENCES

[1] Freescale QorIQ P1020. [Online]. Available:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P

1020.

[2] M. Felice, “Building DSP-Free VoIP End-Points,” Information

Quarterly, vol. 3, no. 4, pp. 41, 2004.

[3] X. Wang, “Solving Real-World Real-Time Scheduling Problems With

RT_PREEMPT and Deadline-Based Scheduler,” Embedded Linux

Conference 2011.

[4] Real Time Preemption in Linux. [Online].

Available:http://elinux.org/Realtime_Preemption.

Hemant Agrawal is a software architect with

Freescale Semiconductor, Noida, India. He has over

13 years of industry experience in design and

development of networking and telecommunication

systems and applications. His Primary focus and

expertise is in Networking acceleration software,

IPSEC, voice over IP, SIP, H.323, SS7, ISDN Q.931,

MGCP, MEGACO protocols. He was part of IETF ś

SIP-H.323 interworking standard development team. Hemant holds a

B.Tech. In electrical engineering from institute of technology, banaras hindu

university (IT-BHU), Varanasi, India.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

178

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P1020
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P1020
http://events.linuxfoundation.org/events/embedded-linux-conference
http://events.linuxfoundation.org/events/embedded-linux-conference

