

Abstract—There are two ways to improve the performance

of the algorithm computing, which are general purpose of

computation and parallel computation of multi-core CPU. By

comparison and analysis, contrast the main difference between

them, we reach a conclusion that GPU is suitable for processing

large-scale data-parallel load of high-density computing but

relatively simple branching logic , however, the CPU is more

suitable for processing complex logic computation. Now, the

appearance of the CUDA makes GPU architecture more

suitable for general purpose of computation.

Cryptographic algorithm is typical compute-intensive

algorithm, this paper take the modular exponentiation of RSA

algorithms for example, through the comparison and analysis of

GPU implementation and CPU implementation, the experiment

results show: that the GPU implementation can achieve more

than 45 times speedup in comparison with multi-core CPU

implementation of RSA.

Index Terms—GPU, GPU multi-core, CUDA, RSA,

cryptographic algorithm.

I. INTRODUCTION

Traditional CPU parallel levels only allow

instruction-level parallelism, can only improve the

performance of the CPU through improving working

efficiency of processor. A simulation test of U.S. Sandia

national laboratory shows, under the traditional architecture,

due to the limitations of storage mechanism and memory

bandwidth, the processors that above 16 nuclear can't bring

performance improvements for super computer, might even

lead to efficiency dropped substantially [1]. Intel, AMD and

other manufacturers turn to focus on improving CPU

architecture, on the single chip integrate more processor core,

make CPU turn to the development direction of Multi-Core

[2].

At the same time, the GPU technology is also in constant

development. The birth and development of the GPU

technology, can be divided into Ex-GPU era, fixed function

pipeline era, programmable shader pipeline era and unified

programmable shaders era. In November 2006, the NVIDIA

company released G80-parallel-programming-model and

C-language-based development environment-CUDA

(Compute Unified Device Architecture) [3].

This article will take the architecture and parallel level as

the main line to discuss the difference between the GPU

general-purpose computing and CPU multi-core parallel.

II. RELATED WORK

A. GPU Architecture

GPU architecture in the continuous development,

choose NVIDIA Tesla GT200 architecture as a

representative to the GPU parallel levels for analysis [4].

Tesla GT200 were composed of two parts,

Scalable Streaming Array

(SPA) and the memory system, they are connected by an

on-chip interconnect network. As shown in Fig 1, the

scalable stream processor array is formed by a number of

Thread Processing Cluster(SM).

Globle Block Scheduler

SM Controller 0 SM Controller 1 SM Controller 7

SP SP
SP SP
SP SP
SP SP

24KB L1
Texture Cache

24KB L1
Texture Cache

24KB L1
Texture Cache

L2 Texture
Cache

SP SP
SP SP
SP SP
SP SP

SP SP
SP SP
SP SP
SP SP

SP SP
SP SP
SP SP
SP SP

SP SP
SP SP
SP SP
SP SP

SP SP
SP SP
SP SP
SP SP

SP SP
SP SP
SP SP
SP SP

SP SP
SP SP
SP SP
SP SP

SP SP
SP SP
SP SP
SP SP

L2 Texture
Cache

L2 Texture
Cache

L2 Texture
Cache

L2 Texture
Cache

L2 Texture
Cache

L2 Texture
Cache

L2 Texture
Cache

GDDR3
Memory

Controller

GDDR3
Memory

Controller

GDDR3
Memory

Controller

GDDR3
Memory

Controller

GDDR3
Memory

Controller

GDDR3
Memory

Controller

GDDR3
Memory

Controller

GDDR3
Memory

Controller

PCIE2.0
x16

TCP0

SPA

Fig. 1. GT200 architecture

B. Multi-Core CPU Architecture

By integrating multiple cores on one processor, the

CPU can support thread level / process level parallelism [5].

Generally, a CPU core can run only one thread / process at

the same time (Fig. 2 (b) mode), However, through threads

technology, you can support a CPU core run two

Hyper-Threading at the same time (Fig. 2 (a) mode).

Thread ThreadThread Thread

CPU
Core

CPU
Core

Cache Cache

FSB FSB

FSB

LGA755

Thread Thread

CPU
Core

CPU
Core

Cache Cache

FSB FSB

FSB

LGA755

 (a)Support hyper-threading (b)Don't support hyper-threading

Fig. 2. Schematic diagram of dual-core CPU architecture

C. The Difference between Multi-Core CPU and GPU

Due to the GPU and CPU in the design goals of different,

lead to both in architecture, parallel levels and performance

of the large difference. GPU thread is fine-grained thread in

the hardware management, while the CPU thread is

coarse-grained heavy thread in the software management;

Comparison and Analysis of GPGPU and Parallel

Computing on Multi-Core CPU

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

185

Manuscript received March 10, 2012; revised April 20, 2012.

The authors are with School of information Science and Engineering

Hunan University, China (e-mail: zhanghonghaiqin@163.com).

Hong Zhang, Da-Fang Zhang, and Xia-An Bi

Each streaming multiprocessor of GPU is seen more like a

single core of CPU, and the capacity of

single-precision floating-point processing has reached the

same period ten times as much as CPU; CPU memory

controller is usually based on three-channel or

dual-channel technology, while the GPU has several memory

control unit; GPU is suitable for processing the calculation of

high density, simple branching logic and large-scale data

parallel load. While the CPU is suitable for complex logic

operations [6].

III. PARALLEL IMPLEMENTATION OF RSA ALGORITHM

BASED ON CUDA

A. CUDA Parallel Computing Architecture

CUDA has brought a new dawn for GPU-based general

purpose computation.

In the CUDA computing architecture, the implementation

of procedures is organized in the form of grid, the smallest

unit of execution is thread, by a number of threads to form

a thread block, thread blocks execute the same program can

be composed of grid blocks. Thread in each thread block can

access the same piece of shared memory, and can proceed

synchronous operation quickly [7]. Specifically, by calling

the built-in function syncthreads() to specified

synchronization in the thread grid. Fig 3 shows the

Thread-level architecture of CUDA [8].

Kernel 1

Kernel 2

Block
(0,0)

host Device

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Grid

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(3,0)

Thread
(4,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Fig. 3. CUDA thread-level architecture

B. Parallel Implementation of RSA Algorithm Based on

CUDA

Cryptographic algorithm is typical of compute-intensive

algorithms[9]. Take RSA as an example, give the RSA

algorithm implementations on the GPU.

In the GPU implementation of RSA algorithm, y, n, s and

the intermediate results q and a, are frequently used

during the process of threads execution, so they will

be stored in shared memory, in order to reduce global

memory access, which can significantly improve

the computational performance.

Thread mapping scheme is as follows: Each

thread can independently undertake a modular

exponentiation. Each thread performs the same control

flow, by considering the allocation strategy of memory,

further optimize the algorithm performance. Thread mapping

scheme described in the following:

1) thread _index =threadId .x +(blockId .x *blockDim. x);

2) state =pt [thread _index];

3) ct [thread _index]=state.

The blockDim represents the number of CUDA thread

block in the CUDA grid, blockId represents the index

number of thread block which the current CUDA thread in,

threadId represents the index number of current thread in

current CUDA thread block, thread_index signify the index

number of the current thread in the global thread environment,

state sign signify the data block that is being handled by the

current thread.

IV. PERFORMANCE EVALUATION

A. Experiment Settings

In order to compare the performance of GPU

implementation with CPU implementation of RSA algorithm,

the experimental Settings as follows:

1) CPU:AMD Athlon 64 Processor 3800+2.4 GHz;

2) Memory: 2.0GB;

3) GPU: NVIDIA GeForce 9800 GTX+, CUDA version

is 2.1.

4) System: Windows XP sp3.

Accordance with the above implementation, complete

the GPU implementation of RSA algorithm. In the NVIDIA

GeForce 9800 GTX +, measured the throughput computing

performance of the RSA algorithm, the results shown in

Table 1.

TABLE I: MODULAR EXPONENTIATION OF LARGE INTEGER OF GPU

IMPLEMENTATION

 512bits 1024bits 2048bits

1 operation/s 0.0230 0.1122 0.4610

128 operations/s 0.0562 0.2830 1.0352

1024 operations/s 0.1232 0.6020 2.0323

2048 operations/s 0.2520 1.1800 4.2130

4096 operations/s 0.5102 2.4600 8.3010

B. Performance Comparison

When performing 1024 group of concurrent large integer

modular exponentiation operations, both GPU and CPU to

achieve the performance comparison shown in Table 2 and

Table 3.

TABLE II: MODULAR EXPONENTIATION OF LARGE INTEGER OF CPU

IMPLEMENTATION

 512bits 1024bits 2048bits

1 operation/s 1.0580 4.6002 21.667

128 operations/s 2.5852 9.7651 47.743

1024 operations/s 5.6500 24.820 94.250

2048 operations/s 11.466 49.560 202.10

4096 operations/s 24.990 103.88 398.45

TABLE III: PERFORMANCE COMPARISON OF THE CPU AND GPU

IMPLEMENTATION

 512bits 1024bits 2048bits

CPU Computing performance/s 5.6500 24.820 94.250

GPU Computing performance/s 0.1232 0.6020 2.0323

Speedup 45.8600 41.2300 47.3600

Experimental results show that in large-scale data

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

186

concurrency of the key operation in the RSA algorithm, GPU

implementation compared with the CPU implementation,

the ratio is 40 times more.

V. SUMMARIES

The ideal of general purpose computation on GPU used

mode is: with CPU to control the main process, through the

decomposition of the problem, handle the compute-intensive

tasks that need massively parallel processing on the GPU to

deal with. Compared with the CPU multi-core computing, its

advantage is that high performance price ratio, low power

dissipation, good portability, direct visualization [10]–[12].

GPU-based general-purpose computing research has played

a linking role, Academia and industry are all of great deal of

enthusiasm to the GPU-based parallel high performance

algorithm.

ACKNOWLEDGEMENTS

This work is supported by the National Science
Foundation of China under Grant No.61173167.

REFERENCES

[1] J. Gazolla and J. Delgado et al., “An Incremental Approach to Porting

Complex Scientific Applications to GPU/CUDA,” IEEE Trans. on

Neural Networks, vol. 4, pp. 570-578, July 2010.

[2] Y. Sun, Y. Tong, and Z. Wang, “CUDA based high performance

implementation of RSA algorithm,” Computer Engineering and

Applications, vol. 47, no. 2, pp. 84-87, 98. 11 Jan 2011.

[3] K. Jang and S. Han et al., “Accelerating SSL with GPUs,” ACM

SIGCOMM Computer Communication Review, vol. 41, issue 1,

January 2011.

[4] J. N. William and J. Dally, “The GPU Computing Era,” IEEE Trans.

Image Process, vol. 10, no. 5, pp. 767-782, May 2010.

[5] K. Korotaev, “Hierarchical CPU Schedulers for Multiprocessor

Systems,Fair CPU Scheduling and Processes Isolation,” IEEE Trans.

Electron Devices, vol. ED-11, pp. 34-39,Jan 2005.

[6] C. Mei, H. Jiang, and J. Jenness, “CUDA-based AES Parallelization

with Fine-Tuned GPU Memory Utilization,” IEEE Trans. on Neural

Networks, vol. 4, pp. 102-106, July 2010.

[7] C. Dai and J. Yang, “Research on Orthorectification of Remote Sensing

Images Using GPU-CPU Cooperative Processing,” IEEE Trans.

Computer Engineering, vol. 4, pp. 223-226,Apr 2011.

[8] H. Patel, “GPU Accelerated Real Time Polarimetric Image Processing

through the use of CUDA,” IEEE Trans. Applications, vol. 4, pp. 48-55,

Mar 2010.

[9] D. Hara and Y. Nakayama, “Secure and High-performance Web Server

System for Shared Hosting Servic,” IEEE Trans, IEEE Trans. Electron

Devices, vol. ED-11, pp. 156-160, Jan 2005.

[10] Q. Hou, X. Sun, and K. Zhou et al., “Memery-Scalable GPU Spatial

Hierarchy Construction,” IEEE Trans.Computer Engineering, vol. 4,

pp. 189-193, Apr 2011.

[11] F. Cui and C. Cheng et al., “Accelerated GPU Computing Technology

for Parallel Management Systems,” IEEE Trans. Image Process, vol.

10, no. 5, pp. 255-259, May 2010.

[12] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.

Phillips, “GPU Computing,” IEEE Trans. Neural Networks, vol. 5, pp.

334-339, Oct 2010.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

187

