

Abstract—Effort estimation is crucial for the control, quality

and success of any software development project and it become
even more crucial in GSD where stakeholders are from
different background and interest and there is a huge cultural,
linguistic and temporal difference involved between them.
Software Effort estimation techniques fall under the categories
of Expert judgment, Algorithmic estimation and Machine
Learning. In this study a comparative analysis is made between
traditional effort estimation techniques and ML techniques.
Results show us that ML methods give us more accurate effort
estimation as compared to the traditional methods of effort
estimation. Moreover the comparisons of different ML
techniques are done in this paper to study that which ML
method is more suitable in which situation.

Index Terms—Global software development (GSD), artificial
intelligence (AI), machine learning (ML)

I. INTRODUCTION
Global software development is becoming a common

practice in software industry and organizations are now
shifting from traditional form of collocated development to
global software development rapidly [1,] [2]. GSD is
characterized by stakeholders from different locations having
different culture and background, collaborating by means of
information and communication technologies to develop
software systems [2], [3].

With the advent of modern technologies, specially the
internet facility, the communication and coordination
between remote sites have become a practical option and
have aided much in promoting GSD [4]. There are a number
of benefits and business reasons that motivate companies to
shift from in-house development to GSD; these reasons
include latest technologies, availability of resources and
methodologies, being closer to emerging markets, low cost
etc [5].

Effort estimation is important for successful management
and quality of software development projects. It is measured
in terms of person months and duration. Both overestimation
and underestimation of software effort may lead to risky
consequences and sometime even causes the failure of a
project. It plays an important role in judging the cost of the
project and to avoid budget overrun [10].

Software industry is a major industry contributing toward
the world economy. Because of competitive market, there is
increasing pressure on companies to deliver good quality
software within time and budget control. So software
industries need to create a balance between quality and cost.

Inaccurate estimation of effort causes a great loss to the
software industry. A survey by [11] shows that cost overruns
of 30-40 percent is very common in software industries and
accurate estimation of cost is necessary to avoid this overrun.
Effort estimation in early stages of software development has
been in the focus of software engineering research for a long
time and it has led to the development of several approaches
for effort estimation. However these methods usually focus
on collocated software development and do not specifically
consider GSD projects. GSD is getting more popularity
because of its positive impact on productivity but at the same
time it takes more development time as compared to
collocated sites. Thus cost analysis in GSD projects is more
complex as compared to collocated development.
Geographical distance between sites increases the need for
reliable effort estimation [6].

Failure rate in GSD projects is higher as compared to the
collocated projects [7], and GSD projects in particular suffer
from time and budge overrun [8, 9], this shows us that work
distribution in GSD projects should be done very carefully.
Effort estimation for GSD projects is different from
collocated one in two dimensions: Firstly, due to the temporal,
linguistic and cultural difference there is a long overhead in
GSD projects. Secondly many effort driving factors are site
specific and cannot be considered globally [12]. In many
GSD organizations development sites have different
characteristics due to which the productivity of different sites
is not the same. Therefore, we need new cost and effort
estimation model that specifically address the characteristics
of GSD projects and provide us with accurate estimation
methods [6].

Software Effort estimation techniques fall under following
three main categories:

A. Expert Judgment
In this technique an expert of software development

processes estimates software development parameters. The
accuracy of such estimates highly depends on the degree in
which a new project matches within the experience and the
ability of the expert. A recent experiment shows high degree
of inconsistency in expert judgment-based estimates of
software development effort [11], [15].

B. Algorithmic Estimation
It contains mathematical formula to relate independent

variables (such as cost drivers) to dependent variable (such as
effort, cost), such as regression models, Constructive Cost
models etc. One well known model for estimation is
COCOMO model developed by Barry Boehm [13].

C. Machine Learning
During the last two decades researchers have been focused

 Estimating Effort in Global Software Development
Projects Using Machine Learning Techniques

 Mamoona Humayun and Cui Gang

International Journal of Information and Education Technology, Vol. 2, No. 3, June 2012

208

Manuscript received March 11, 2012; revised April 13, 2012.

M. Humayun is with HIT Harbin, China (e-mail: mamoona@hit.edu.cn)

Cui Gang is with HIT, Harbin, China (e-mail: cg@hit.edu.cn)

on exploring a new approach using AI based techniques for
accurate effort estimation. This approach uses ML a sub field
of AI for estimating effort of GSD projects [11]. Commonly
used ML techniques are artificial neural networks (ANN),
case based reasoning (CBR), Rule Induction (RI), Genetic
Algorithm (GA), Classification and regression trees (CART)
and Multiple additive regression trees (MART) etc.

It is difficult to determine which technique gives more
accurate result on which dataset. However, a lot of research
has been done in Machine learning techniques of estimation
and Literature suggests that ML methods are capable of
providing adequate estimation models as compared to the
traditional models especially in GSD projects [11]-[22].

 ML algorithms offer a practical alternative to the existing
approaches to many SE issues. Fig. 1 shows the relation
between ML and Software Engineering.

Fig. 1. Relation between ml and software engineering

During last two decades Artificial Intelligence based

models are attracting researcher’s attention for the estimation
of software parameters. In 1995 [23] have compared AI
based techniques with traditional COCOMO, Function Point
Analysis and Software Lifecycle Management (SLIM) and
concluded that AI models are viable to traditional methods.
Authors of the paper [24] have concluded that AI based
models are capable of providing acceptable estimation
models. Below we will describe some commonly used
methods of ML for measuring effort and in the next section
we will compare these methods, so that this paper may help
the practitioners and researchers in the selection of suitable
effort estimation methods.

Commonly used ML methods for measuring effort in GSD
projects are as follows

D. Artificial Neural Network (ANN)
ANN is a computational or mathematical model that is

stimulated by the biological human brain. Through learning
process ANN can be configured for a specific application,
such as pattern recognition or data classification. ANNs
include the two basic components of biological neural
networks that are Neurons (nodes) and Synapses (weights).
A neuron has a set of n (number neurons in previous layer)
synapses (inputs), which are characterized by n different
weight (free parameters).

E. Feed-Forward Neural Network (FFNN)
Many neurons are used in the construction of an FFNN;

these neurons are connected with each other through specific
network architecture. The primary goal of the FFNN is to
transform the inputs into meaningful outputs. There is no self
loop or backward feed in this network [11].

F. Radial Basis Neural Network (RBNN)
There is no main difference in the network architecture of

RBNN compare to FFNN. The only difference is that the
radial basis layer of RBNN is located like Hidden layer in
FFNN architecture. Radial basis Layer contains different
type of neurons, which contains Radial Basis Function (RBF)
as an activation function [11].

G. Case-Based Reasoning (CBR)
It is a cyclic procedure that is composed of four stages:
1. Retrieval of similar cases,
2. Reuse of the retrieved cases to find a solution to the

problem,
3. Revision of the proposed solution if necessary
4. Retention of the solution to form a new case.
When a new problem arises, a possible solution can be

found by retrieving similar cases from the case repository.
The solution may be revised based upon experience of
reusing previous cases and the outcome retained to
supplement the case repository. Consequently, issues
concerning case characterization, similarity and solution
revision must be addressed prior to CBR system deployment.

H. Rule Induction (RI)
In RI general concepts can be obtained from specific

examples. To derive these general concepts many existing
examples are analyzed, and this general concept defines the
production conditions. The process of producing a set of
rules is done randomly or sometime algorithmically and the
subset of examples that are selected for this purpose are often
referred to as the training set. These rules can be tested on the
rest of the examples (the validation or test set) to assess how
well they represent the data. RI can be used for such kind of
problems where there exists a set of suitable examples. Rules
can be seen as decision trees where the leaf node contains the
predicted value or range of values. Numeric decision trees are
generated by calculating the average output for the set of
cases being considered at each node [25].

I. Regression Trees
It is a prediction model that can be used in almost every

field. It analyses the relationship between a dependent
variable and one or more independent variable to find the
best fit. It helps in understanding that how dependent variable
change its value as a result of change in independent variable.
The standard equation of regression analysis is Y= f(x) where
many kind of function can be used in f(x) such as exponential,
logarithmic and linear function etc.

J. Classification and Regression Tree Algorithm (CART)
CART is a binary decision tree algorithm that is used in

data mining problems involving classification and regression.
The CART constructs a binary decision tree by splitting a
data set in such a way that the data in the child subsets are
more unadulterated than the data in the parent set. The tree
continues to grow until a node is reached such that no
significant decrease in re-substitution estimate is possible.
This node is the terminal node.

K. Multiple additive Regression Tree (MART)
MART extends CART using boosting. Boosting is a

process that is used to increase the accuracy of any learning
algorithm by fitting a series of model with low error rate and

International Journal of Information and Education Technology, Vol. 2, No. 3, June 2012

209

then aggregate them into a model that may perform better.
MART models posses all the advantages of tree based-model
and overcome the disadvantage of inaccuracy. The main
features of MART are Selection of automatic variable subset,
Ability to handle data without pre-processing, Resistance to
outliers, handling missing values automatically, Ability to
detect dirty and partially inaccurate data, High speed and less
training requirement.

L. Genetic Algorithm (GA)
The technique of GA was developed for handling general

optimisation problems with large search apace.GA need no
prior knowledge, expertise or logic related to the problem
under study. The basic process of GA is as follows

1) Generate a set of solutions(family of chromosomes)
randomly

2) Applying GA to the fittest chromosomes to create a new
population from the previous one

3) Repeat step 2 until the required number of generation
has been produced

The best solution in the final round is taken as a best
approximation for that problem [26].

II. COMPARISON OF ML METHODS OF EFFORT ESTIMATION
The traditional approaches of effort estimation do not

address the characteristics of distributed development in
great detail, e.g. COCOMO has only one effort multiplier for
multi-site development but as this is only a single number, it
cannot reflect the inherent complexity and various overhead
drivers of global software development. The approach
selected for GSD projects should consider the characteristics
of different sites involved in GSD. Effort estimation
approaches should predict the effort with respect to the site-
specific characteristics.

In [11] Neural network approach is compared with
regression analysis for software development effort
estimation. And result of this study matches with some
existing studies [17]-[29] that neural network approach is
better than regression analysis.

In [14] models for predicting effort using neural networks
and Case Based Reasoning (CBR) are proposed. They
compared analogy based method using CBR with different
versions of FP-based Regression models and NN. The data
used consisted of 299 projects from 17 different
organizations and concluded that NN performed better than
analogy followed by regression models.

According to Gray and McDonnell, ANNs are the most
common software estimation model-building technique used
as an alternative to mean least squares regression [30].
Capability of MART in estimating software project effort has
been empirically evaluated in [15]. In this paper the
technique of MART is applied on a well-known NASA
software project dataset and its estimation accuracy was
compared with existing models. The result shows that
improved estimation accuracy is achieved by applying
MART when compared with linear regression, radial basis
function neural networks, and support vector regression
models.

In this paper three commonly uses ML methods (ANN,

CBR, RI) were compared, the dataset used for this
comparison was comprised of 81 software projects derived
from a Canadian software house in the late 1980s. ANN
technique was considered as best however the author of the
paper suggests that it may be other characteristics of these
techniques that will have an equal, if not greater, impact upon
their adoption [25].

In this paper the regression models, ANN and CBR
techniques are applied on the data of 299 projects from 17
different organizations. The results show that Regression
models do not perform very effectively in modeling the
complexities involved in software development projects.
Author claims that artificial intelligence models are capable
of providing adequate estimation models. While both ANN
and CBR provide better and somewhat accurate estimate of
software effort [24].

III. RESULTS
On the basis of above discussion it can be concluded that

ML methods provide us good effort estimation results as
compared to the traditional methods of effort estimation.
However there are many factors that impact software effort
estimates, these factors include team size, concurrency,
intensity, fragmentation, software complexity, computer
platform and different site characteristics in case of GSD. As
there are different ML techniques for predicting effort and we
cannot say that which technique is better from other rather
their performance is to a large degree dependent on the data
on which they are trained, and the extent to which suitable
project data is available will determine the extent to which
adequate effort estimation models can be developed.

REFERENCES
[1] J. Herbsleb, “Global software engineering: the future of

socio-technical coordination,” Future of software engineering
(FOSE’07), pp. 23-25, 2007.

[2] E. Conchuir, H. Holmstrom, P. Agerfalk and Brian. “Fitzgerland.
Exploring the Assumed Benefits of Global Software Development,”
ICGSE’06, pp. 159-168, 2006.

[3] A. Gabriela, “Of Deadlocks and People ware - Collaborative Work
Practices in Global Software Development. International Conference
on Global Software Engineering (ICGSE’07),” pp. 91-102, 2007.

[4] S. Bikram, C. Satish and S. Vibha, “A research agenda for
distributed software development,” International conference on
software engineering (ICSE’06), pp. 731-740, 2006.

[5] D. Damian and D. Moitra, “Global Software Development: How Far
Have We Come?” IEEE software, vol. 23, no. 5, pp.17-19, 2006.

[6] L. Ansgar, M.. Jurgen, “Estimating the Effort Overhead in Global
Software Development,” International conference on Global
Software Engineering, 2010.

[7] M. Fabriek, M. van de Brand, S. Brinkkemper, F. Harmsen, and R.
W. Helms, “Reasons for success and failure in offshore software
development projects,” European Conference on Information System,
pp. 446-457, 2008.

[8] T. Carter, Cheaper's not always better. Dr. Dobb's Journal, March 1,
available on: http://www.ddj.com/184415486 (accessed at Feb 25
2010),2006.

[9] G. Seshagiri, GSD: Not a business necessity, but a march of folly.
IEEE Software, vol. 23, no.5, pp. 63-64,2006.

[10] M. Ruchika and J. Ankita, “Software Effort Prediction using
Statistical Machine Learning Methods,” (IJACSA) International
Journal of Advanced Computer Science and Applications, vol. 2,
no.1, 2011

[11] S. Vachik and S. Dave, “vachik and Dutta. Kamlesh. Comparison of
Regression model,” Feed-forward Neural Network and Radial Basis

International Journal of Information and Education Technology, Vol. 2, No. 3, June 2012

210

Neural Network for Software Development Effort Estimation. ACM
SIGSOFT Software Engineering Notes, vol. 36, no. 5, 2011.

[12] R. Madachy, “Distributed global development parametric cost
modeling. International Conference on Software Process,”
(ICSP ’07), pp. 159-168, 2007.

[13] W. B. Boehm, Chris. A. Abts, “Winsor brown, Sunita. Chulani,”
Bradford k. Clark, Ellis. Horowitz, Ray. Madachy, Donald J. Reifer
and Bert. Steece. Software Cost Estimation with COCOMO II.
Englewood Cliffs, NJ, USA: Prentice-Hall.2007.

[14] G. R. Finnie and G. E. Witti. “AI Tools for Software Development
Effort Estimation,” International conference on Software
Engineering: Education and Practice, 1996.

[15] M. O. Elish, “Improved estimation of software project effort using
multiple additive regression trees,” Expert Systems with Applications
pp. 10774–10778, 2009.

[16] B. Baskeles, B. Turhan, and A. Bener, “Software effort estimation
using machine learning methods,” In Proc. of 22nd international
symposium on computer and information sciences, 2007.

[17] A. Heiat, “Comparison of artificial neural network and regression
models for estimating software development effort,” Information
and Software Technology,pp 911–922, 2004.

[18] E. Jun. and J. Lee, “Quasi-optimal case-selective neural network
model for software effort estimation,” Expert Systems with
Applications, pp. 1–14,2001.

[19] A. Oliveira, “Estimation of software project effort with support
vector regression,” Neurocomputing, pp.1749–1753, 2006.

[20] H. Park. and S. Baek, “An empirical validation of a neural network
model for software effort estimation,” Expert Systems with
Applications, vol. 35, no. 3, pp. 929–937, 2008.

[21] M. Shin, and A. Goel, “Empirical data modeling in software
engineering using radial basis functions,” IEEE Transactions on
Software Engineering, vol. 26, no. 6, pp. 567–576, 2000.

[22] A. Idri, A. Abran, and T. Khoshgoftaar, “Estimating software
project effort by analogy based on linguistic values,” In Proc. of 8th
IEEE symposium on software metrics, pp. 21–30, 2002.

[23] K. Srinivasan, and D. Fisher, “Machine Learning Approaches to
Estimating Software Development Effort,” IEEE Transaction on
Software Engineering, vol. 21, pp. 126-137, 1995.

[24] G. R. Finnie and G. E. Wittig, “A Comparison of Software Effort
Estimation Techniques: Using Function Points with Neural
Networks,” Case-Based Reasoning and Regression Models.
J.SYSTEMS SOFTWARE, pp.281-289, 1997.

[25] M. caroly, K. Gada, E. Le, Martin, and P. Keith, “Schofield. Chris,
Shepperd. Martin and Webster. Steve. An investigation of machine
learning based prediction systems,” The Journal of Systems and
Software, pp. 23-29, 2000.

[26] J. B. Colin and L. MartiCan, “Genetic programming improves
software effort estimation? A comparative evaluation. Information
and software technology, pp. 863-873, 2001.

[27] J. Kaur, S. Singh, K. S, Kahlon, and P. Bassi, “Neural Network-A
Novel Technique for Software Effort estimation,” International
Journal of Computer Theory and Engineering, vol. 2, no. 1. pp.
17-19, 2010.

[28] R. Bhatnagar, V. Bhattacharjee, and M. K. Ghose, “Software
Development Effort Estimation - Neural Network vs,” Regression
Modeling Approach. International Journal of Engineering Science
and Technology, vol. 2, pp.2950- 2956, 2010.

[29] P. C. Pendharkar, “Probabilistic estimation of software size and
effort,” Expert Systems with Applications, pp. 4435–4440, 2010.

[30] A. R. Gray, and S. G. MacDonnell, “A Comparison of Techniques
for Developing Predictive Models of Software Metrics,” Information
and software technology, pp. 425–437, 1997.

International Journal of Information and Education Technology, Vol. 2, No. 3, June 2012

211

