
  

 
Abstract—Effort estimation is crucial for the control, quality 

and success of any software development project and it become 
even more crucial in GSD where stakeholders are from 
different background and interest and there is a huge cultural, 
linguistic and temporal difference involved between them. 
Software Effort estimation techniques fall under the categories 
of Expert judgment, Algorithmic estimation and Machine 
Learning. In this study a comparative analysis is made between 
traditional effort estimation techniques and ML techniques. 
Results show us that ML methods give us more accurate effort 
estimation as compared to the traditional methods of effort 
estimation. Moreover the comparisons of different ML 
techniques are done in this paper to study that which ML 
method is more suitable in which situation.  
 

Index Terms—Global software development (GSD), artificial 
intelligence (AI), machine learning (ML) 
 

I. INTRODUCTION 
Global software development is becoming a common 

practice in software industry and organizations are now 
shifting from traditional form of collocated development to 
global software development rapidly [1,] [2]. GSD is 
characterized by stakeholders from different locations having 
different culture and background, collaborating by means of 
information and communication technologies to develop 
software systems [2], [3]. 

With the advent of modern technologies, specially the 
internet facility, the communication and coordination 
between remote sites have become a practical option and 
have aided much in promoting GSD [4]. There are a number 
of benefits and business reasons that motivate companies to 
shift from in-house development to GSD; these reasons 
include latest technologies, availability of resources and 
methodologies, being closer to emerging markets, low cost 
etc [5]. 

Effort estimation is important for successful management 
and quality of software development projects. It is measured 
in terms of person months and duration. Both overestimation 
and underestimation of software effort may lead to risky 
consequences and sometime even causes the failure of a 
project. It plays an important role in judging the cost of the 
project and to avoid budget overrun [10]. 

Software industry is a major industry contributing toward 
the world economy. Because of competitive market, there is 
increasing pressure on companies to deliver good quality 
software within time and budget control. So software 
industries need to create a balance between quality and cost. 

 

Inaccurate estimation of effort causes a great loss to the 
software industry. A survey by [11] shows that cost overruns 
of 30-40 percent is very common in software industries and 
accurate estimation of cost is necessary to avoid this overrun. 
Effort estimation in early stages of software development has 
been in the focus of software engineering research for a long 
time and it has led to the development of several approaches 
for effort estimation. However these methods usually focus 
on collocated software development and do not specifically 
consider GSD projects.  GSD is getting more popularity 
because of its positive impact on productivity but at the same 
time it takes more development time as compared to 
collocated sites. Thus cost analysis in GSD projects is more 
complex as compared to collocated development. 
Geographical distance between sites increases the need for 
reliable effort estimation [6]. 

Failure rate in GSD projects is higher as compared to the 
collocated projects [7], and GSD projects in particular suffer 
from time and budge overrun [8, 9], this shows us that work 
distribution in GSD projects should be done very carefully. 
Effort estimation for GSD projects is different from 
collocated one in two dimensions: Firstly, due to the temporal, 
linguistic and cultural difference there is a long overhead in 
GSD projects. Secondly many effort driving factors are site 
specific and cannot be considered globally [12]. In many 
GSD organizations development sites have different 
characteristics due to which the productivity of different sites 
is not the same. Therefore, we need new cost and effort 
estimation model that specifically address the characteristics 
of GSD projects and provide us with accurate estimation 
methods [6].  

Software Effort estimation techniques fall under following 
three main categories:  

A. Expert Judgment 
In this technique an expert of software development 

processes estimates software development parameters. The 
accuracy of such estimates highly depends on the degree in 
which a new project matches within the experience and the 
ability of the expert. A recent experiment shows high degree 
of inconsistency in expert judgment-based estimates of 
software development effort [11], [15]. 

B. Algorithmic Estimation 
It contains mathematical formula to relate independent 

variables (such as cost drivers) to dependent variable (such as 
effort, cost), such as regression models, Constructive Cost 
models etc. One well known model for estimation is 
COCOMO model developed by Barry Boehm [13]. 

C. Machine Learning 
During the last two decades researchers have been focused 

  Estimating Effort in Global Software Development 
Projects Using Machine Learning Techniques 

 Mamoona Humayun and Cui Gang 

International Journal of Information and Education Technology, Vol. 2, No. 3, June 2012

208

Manuscript received March 11, 2012; revised April 13, 2012.

M. Humayun is with HIT Harbin, China (e-mail: mamoona@hit.edu.cn)

Cui Gang is with HIT, Harbin, China (e-mail: cg@hit.edu.cn)



  

on exploring a new approach using AI based techniques for 
accurate effort estimation. This approach uses ML a sub field 
of AI for estimating effort of GSD projects [11]. Commonly 
used ML techniques are artificial neural networks (ANN), 
case based reasoning (CBR), Rule Induction (RI), Genetic 
Algorithm (GA), Classification and regression trees (CART) 
and Multiple additive regression trees (MART) etc. 

It is difficult to determine which technique gives more 
accurate result on which dataset. However, a lot of research 
has been done in Machine learning techniques of estimation 
and Literature suggests that ML methods are capable of 
providing adequate estimation models as compared to the 
traditional models especially in GSD projects [11]-[22]. 

 ML algorithms offer a practical alternative to the existing 
approaches to many SE issues. Fig. 1 shows the relation 
between ML and Software Engineering. 

 

 
Fig. 1.  Relation between ml and software engineering 

 
During last two decades Artificial Intelligence based 

models are attracting researcher’s attention for the estimation 
of software parameters. In 1995 [23] have compared AI 
based techniques with traditional COCOMO, Function Point 
Analysis and Software Lifecycle Management (SLIM) and 
concluded that AI models are viable to traditional methods. 
Authors of the paper [24] have concluded that AI based 
models are capable of providing acceptable estimation 
models. Below we will describe some commonly used 
methods of ML for measuring effort and in the next section 
we will compare these methods, so that this paper may help 
the practitioners and researchers in the selection of suitable 
effort estimation methods. 

Commonly used ML methods for measuring effort in GSD 
projects are as follows 

D. Artificial Neural Network (ANN) 
ANN is a computational or mathematical model that is 

stimulated by the biological human brain. Through learning 
process ANN can be configured for a specific application, 
such as pattern recognition or data classification. ANNs 
include the two basic components of biological neural 
networks that are Neurons (nodes) and Synapses (weights). 
A neuron has a set of n (number neurons in previous layer) 
synapses (inputs), which are characterized by n different 
weight (free parameters).  

E. Feed-Forward Neural Network (FFNN) 
Many neurons are used in the construction of an FFNN; 

these neurons are connected with each other through specific 
network architecture. The primary goal of the FFNN is to 
transform the inputs into meaningful outputs. There is no self 
loop or backward feed in this network [11]. 

F. Radial Basis Neural Network (RBNN) 
There is no main difference in the network architecture of 

RBNN compare to FFNN. The only difference is that the 
radial basis layer of RBNN is located like Hidden layer in 
FFNN architecture. Radial basis Layer contains different 
type of neurons, which contains Radial Basis Function (RBF) 
as an activation function [11]. 

G. Case-Based Reasoning (CBR) 
It is a cyclic procedure that is composed of four stages:  
1. Retrieval of similar cases, 
2. Reuse of the retrieved cases to find a solution to the 

problem,  
3. Revision of the proposed solution if necessary 
4. Retention of the solution to form a new case. 
When a new problem arises, a possible solution can be 

found by retrieving similar cases from the case repository. 
The solution may be revised based upon experience of 
reusing previous cases and the outcome retained to 
supplement the case repository. Consequently, issues 
concerning case characterization, similarity and solution 
revision must be addressed prior to CBR system deployment. 

H. Rule Induction (RI) 
In RI general concepts can be obtained from specific 

examples. To derive these general concepts many existing 
examples are analyzed, and this general concept defines the 
production conditions. The process of producing a set of 
rules is done randomly or sometime algorithmically and the 
subset of examples that are selected for this purpose are often 
referred to as the training set. These rules can be tested on the 
rest of the examples (the validation or test set) to assess how 
well they represent the data. RI can be used for such kind of 
problems where there exists a set of suitable examples. Rules 
can be seen as decision trees where the leaf node contains the 
predicted value or range of values. Numeric decision trees are 
generated by calculating the average output for the set of 
cases being considered at each node [25]. 

I. Regression Trees 
It is a prediction model that can be used in almost every 

field. It analyses the relationship between a dependent 
variable and one or more independent variable to find the 
best fit. It helps in understanding that how dependent variable 
change its value as a result of change in independent variable. 
The standard equation of regression analysis is Y= f(x) where 
many kind of function can be used in f(x) such as exponential, 
logarithmic and linear function etc. 

J. Classification and Regression Tree Algorithm (CART) 
CART is a binary decision tree algorithm that is used in 

data mining problems involving classification and regression. 
The CART constructs a binary decision tree by splitting a 
data set in such a way that the data in the child subsets are 
more unadulterated than the data in the parent set. The tree 
continues to grow until a node is reached such that no 
significant decrease in re-substitution estimate is possible. 
This node is the terminal node. 

K. Multiple additive Regression Tree (MART) 
MART extends CART using boosting. Boosting is a 

process that is used to increase the accuracy of any learning 
algorithm by fitting a series of model with low error rate and 
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then aggregate them into a model that may perform better. 
MART models posses all the advantages of tree based-model 
and overcome the disadvantage of inaccuracy. The main 
features of MART are Selection of automatic variable subset, 
Ability to handle data without pre-processing, Resistance to 
outliers, handling missing values automatically, Ability to 
detect dirty and partially inaccurate data, High speed and less 
training requirement. 

L. Genetic Algorithm (GA) 
The technique of GA was developed for handling general 

optimisation problems with large search apace.GA need no 
prior knowledge, expertise or logic related to the problem 
under study. The basic process of GA is as follows 

1) Generate a set of solutions(family of chromosomes) 
randomly 

2) Applying GA to the fittest chromosomes to create a new 
population from the previous one 

3) Repeat step 2 until the required number of generation 
has been produced 

The best solution in the final round is taken as a best 
approximation for that problem [26]. 

 

II. COMPARISON OF ML METHODS OF EFFORT ESTIMATION  
The traditional approaches of effort estimation do not 

address the characteristics of distributed development in 
great detail, e.g. COCOMO has only one effort multiplier for 
multi-site development but as this is only a single number, it 
cannot reflect the inherent complexity and various overhead 
drivers of global software development. The approach 
selected for GSD projects should consider the characteristics 
of different sites involved in GSD. Effort estimation 
approaches should predict the effort with respect to the site- 
specific characteristics. 

In [11] Neural network approach is compared with 
regression analysis for software development effort 
estimation. And result of this study matches with some 
existing studies [17]-[29] that neural network approach is 
better than regression analysis. 

In [14] models for predicting effort using neural networks 
and Case Based Reasoning (CBR) are proposed. They 
compared analogy based method using CBR with different 
versions of FP-based Regression models and NN. The data 
used consisted of 299 projects from 17 different 
organizations and concluded that NN performed better than 
analogy followed by regression models. 

According to Gray and McDonnell, ANNs are the most 
common software estimation model-building technique used 
as an alternative to mean least squares regression [30]. 
Capability of MART in estimating software project effort has 
been empirically evaluated in [15]. In this paper the 
technique of MART is applied on a well-known NASA 
software project dataset and its estimation accuracy was 
compared with existing models. The result shows that 
improved estimation accuracy is achieved by applying 
MART when compared with linear regression, radial basis 
function neural networks, and support vector regression 
models. 

In this paper three commonly uses ML methods (ANN, 

CBR, RI) were compared, the dataset used for this 
comparison was comprised of 81 software projects derived 
from a Canadian software house in the late 1980s. ANN 
technique was considered as best however the author of the 
paper suggests that it may be other characteristics of these 
techniques that will have an equal, if not greater, impact upon 
their adoption [25]. 

In this paper the regression models, ANN and CBR 
techniques are applied on the data of 299 projects from 17 
different organizations. The results show that Regression 
models do not perform very effectively in modeling the 
complexities involved in software development projects. 
Author claims that artificial intelligence models are capable 
of providing adequate estimation models.  While both ANN 
and CBR provide better and somewhat accurate estimate of 
software effort [24]. 

 

III. RESULTS 
On the basis of above discussion it can be concluded that 

ML methods provide us good effort estimation results as 
compared to the traditional methods of effort estimation. 
However there are many factors that impact software effort 
estimates, these factors include team size, concurrency, 
intensity, fragmentation, software complexity, computer 
platform and different site characteristics in case of GSD.  As 
there are different ML techniques for predicting effort and we 
cannot say that which technique is better from other rather 
their performance is to a large degree dependent on the data 
on which they are trained, and the extent to which suitable 
project data is available will determine the extent to which 
adequate effort estimation models can be developed. 
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