
  

  
Abstract—In this research, the methodology of action 

research dynamics and a case study using both qualitative and 
quantitative methods was employed for the analysis of 
geographic data in an agricultural context. The geographic data 
was made up of land use profiles that were juxtaposed with 
previously captured rainfall data from fixed weather stations in 
Australia which was interpolated using ordinary krigeing to fit 
a grid surface. The resultant stochastic annual rainfall profiles 
for a selected study area within the South West Agricultural 
region of Western Australia were used to identify areas of high 
crop production. The areas within the study area were spatially 
scaled to individual shires. The rainfall was sampled for the 
years 2002, 2003, 2005 as a mix of low and high rainfall and high 
production attributes. The patterns suggested that crop 
production was closely linked to the annual rainfall for some 
shires, with location being of significance at other shires. 
 

Index Terms—GIS, spatial scaling, data mining, annual 
stochastic rainfall, crop yields. 
 

I. INTRODUCTION 
The aim of this work was to find a relationship between 

rainfall, land location (shire) and crop production and in 
order to justify agricultural land-use, and to also possibly 
predict the crop production yield at certain locations within 
the agricultural region, given the rainfall. As far back as in 
1979, Anderson singled out low rainfall as the factor behind 
most of the adversities of the agricultural sector [1].  In fact in 
the past for example, low rainfall has been attributed to be the 
cause of large drops in production yield as much as 18% in 
1983 [2]. According to Olesin and Bindi (2002) the factors of 
radiation, temperature and rainfall all affect yield to some 
degree with rainfall especially affecting the growth and 
production of the plant [3]. Variability in rainfall from year to 
year is closely intertwined with crop yields [4] and although a 
great deal of the variability of Australian rainfall may be 
related to the either the El Nino – Southern Oscillation 
(ENSO) or sea surface temperature (SST) phenomena [5], 
previous studies have shown the predictions not to be 
altogether accurate as pointed out by McBride and Nicholls 
(1983), Pittock (1984) [5, 6] as well as by Nicholls (1985) [7]. 
Furthermore, down-upscaling was not carried out in this 
research as the yield was not correlated with an oceanic index 
such as ENSO. This study however, considered the linear 
relationship between crop yield and rainfall similar to studies 
such as Challinor et.al (2003) [8] where there was an 
established physical basis such as a spatial scale upon which 
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the variables operated.  Spatial scales are important in that the 
scale related results are specific to the related group or 
agency. For example, the national scale may be used by 
governments to determine their economic strategy from food 
reserves [9], while results from smaller scale relationships, 
being used to detect food shortages and associated mitigation 
possibilities [10], and for seasonal forecasting by farmers at 
the farm level [11]. This study differs from Challinor’s in that 
it will investigate the correlations between these factors on a 
spatial scale that is somewhere between the farm level (small) 
and the whole agricultural region level (large), and that is the 
shire level (medium). This was due mainly to the availability 
of crop yield data on this level as well as the way in which the 
Western Australian system operates. In order to limit the 
analysis for the purposes of focus and scope as well as to 
highlight the relationships under rainfall and yield variability, 
three specific years were chosen. These were the years 2002 
(low rainfall), 2003 (high yield) and 2005 (high rainfall).  

 

II. RELATED WORK 
The use of observed relationships such as rainfall to 

predict crop yield has been undertaken by Parthasarathy et al  
(1992)  through an empirical model [12]. Interactions 
between input variables such as rainfall and output variables 
such as crop yield have been shown to be important [13, 14]. 
In particular, their relevance was emphasized at critical 
phenological growth stages [15]. A relational analysis such 
as this, needs to be based on a model. As such there are two 
approaches for developing models and these are the process 
based crop models (CM) for the establishment of non-linear 
relationships between weather variables and crop yield, and 
general circular models (GCM) of the coupling of the ocean 
and the atmosphere. The use of GCMs for prediction at a 
seasonal lead-time have been shown to suffer from the 
problem of simulation of too many low intensity rainfall 
instances within each grid cell [16]. As short term weather 
forecasting rather than long-term climate forecasting is 
important [8], this study is therefore more suited to the CM 
approach. Previous researchers have concluded that the 
complexity of a model can be based on the level of detail of 
the analysis [17] or it can be less detailed with only 
estimations of moisture content [18]. Other approaches have 
been the use of the normalized difference vegetative index 
(NDVI) for grouping homogeneous regions to establish the 
scale [19]. There have also been approaches to crop 
modelling using the derivation of a probability distribution 
function (PDF) for the assessment of quantifying the risks 
and benefits of making weather based decisions [3]. 
Although, according to Sivakumar (2006), notwithstanding 
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that considerable improvements in understanding and 
predicting climate variability have been made, the need to 
further develop understanding and refine tools is ever 
increasing [20], especially because the atmosphere is 
intrinsically a chaotic system. 

 

III. MATERIALS AND METHODS 
The research methodology was developed after 

experimentation with a number of software tools that 
represented an admixture of extraction, pre-processing, 
analysis, data mining and visualization of climate data 
sourced from the Department of Agriculture and Food of 
Western Australia (DAFWA). It involved both a qualitative 
(visual inspection) and a quantitative (data mining) research 
method. The data was made up of geographical land-use 
profiles, rainfall data and crop production data. The study 
area was a rectangular grid of 104328 100 hectare cells, 
stretching from Busselton in the west, to Esperance in the 
east for the South Western Agricultural region. The 
ERMapper, ARCgis and GeoMedia software packages were 
used to create the study area, and the various GIS profiles. In 
addition, all the datasets were fitted specifically to the 
extraction region of the selected study area. Each of the shires 
within the study area was made up of a number of the 100ha 
grid cells whose coordinates were matched up with the 
interpolated rainfall data.  

A. Rainfall Data and Interpolation 
Historical rainfall and climate data existed only at sparsely 

located weather stations within the study area. In order to 
overcome the limitation of a sparse rainfall dataset, a process 
of interpolation was carried out resulting in stochastic rainfall 
data points at each cell of the study area grid. The 
interpolation was carried out in the Revolution R script for 
each of the 12 months for the years 2001 to 2010 and fitted 
onto the study area grid surface. The interpolation was done 
at a high resolution of 1000m by 1000m. Uncertainty due to 
spatial elevation bias was minimal due to the weather stations 
being a homogenous group. As analysis was to be only be 
done for the years 2002 (low rainfall), 2003 (high yield) and 
2005 (high rainfall) rainfall years, only the rainfall data for 
these years were extracted. The coordinates of the extracted 
interpolated rainfall data were matched up with the 
production data for the same three selected years. 

B. Production Data 
 The production data only existed at an annual level for 

each shire within the study area. Consequently, the rainfall 
data had to be aggregated to an annual level using an R Script 
to match the annual crop yield data for the years 2002, 2003 
and 2004 only as part of the normalization process. A process 
of data reduction was performed on the full study area dataset 
by only selecting land uses reserved for cropping and cereals. 
Next, the dataset was sorted into shire order and the rainfall 
for each of the cells within each shire was scaled by the 
number of cells within each shire to produce a single line for 
the shire, average annual rainfall, and annual wheat crop 
yield for each shire. This dataset was then used for the 
subsequent analyses using rainfall and wheat yield.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
There were a number of aspects to the data handling and 

analyses. They included the pre-processing and metrics, the 
analysis of the rainfall and the analysis of the wheat yields 
which formed the macroscopic phase. In addition, there was 
the data mining (DM) analysis of the wheat crop yields which 
formed the microscopic phase.  

A. Pre-Processing and Metrics used 
The final analysis was carried out on a shire level for the 

two attributes of stochastic average annual rainfall and actual 
crop yield per shire. The 23 crop production shires were 
mapped separately in QuantumGis to visualise the size and 
location of each shire as shown in Fig. 1. The annual crop 
production data was calculated in tonnes per hectare, in order 
to account for the different shire sizes. 

The visual inspection of the graphs required a uniform 
method of evaluation. This was in the form of a baseline 
metric of classifying the shires into rainfall categories of very 
high rainfall (VHR) of over 600mm per annum, high rainfall 
(HR) of 500-600mm per annum and low rainfall (LR) of less 
than 500mm per annum. The shires were also classified as 
high yield (HY) of over 45,000 tonnes per shire and low yield 
(LY) of less than 45,000 tonnes per shire per annum based on 
the wheat yield for 2003. Accordingly, the HY shires were 
Dumbleyung, Esperance, Gnowangerup, Jerramungup, 
Katanning, Kent, Kulin, Lake Grace, Ravensthorpe and 
Wickepin. The LY shires were Boddington, Boyup Brook, 
Broomehill, Bridgetown-Greenbushes, Cranbrook, Kojonup, 
Manjimup, Narrogin, Tambellup, Wagin, West Arthur, 
Williams and Woodanilling. All the 23 shires are shown in 
Fig. 1. 

 

 
Fig. 1  QuantumGIS shires location map 

 

 
Fig. 2.  Average annual rainfall for 2002, 2003 & 2005 

B. Analysis of the Rainfall  
The analyses that followed involved a process of 

examination from macroscopic inspection to microscopic 
scrutiny. The selected three year rainfall graphs were first 
plotted in order to establish the rainfall trend across the three 
selected years of the dry 2002 year, the productive 2003 year 
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and the wet 2005 year.  The rainfall step showed the 
stochastic average annual rainfall for the three selected years 
of 2002, 2003 and 2005 in Fig. 2. These were the dry, 
productive and wet years respectively. The rainfall variation 
over the three years did reflect and confirm the overall 
classification of dry and wet years where the rainfall 
increased progressively from 2002 to 2005. The variation 
was also clearly visible across the range of the different shires 
where the VHR shires were Boddington, Boyup Brook, 
Bridgetown-Greenbushes and Manjimup with the remaining 
HR shires with a overall high rainfall of 500mm per annum 
for the three years. The average annual rainfall in the HY 
shires was generally lower than for the LY shires across the 
selected years and was recognisable in the peaks of 
Boddington, Boyup Brook, Bridgetown-Greenbushes and 
Manjimup as per Fig. 2, with the biggest variation being over 
500mm of rainfall between the shires of Manjimup and Lake 
Grace. 

C. Analysis of the Wheat crop Yields  
The analysis of the individual crop yield across the 

selected years involved examining the wheat crop yields for 
the years 2002, 2003 and 2005 as shown in Figure 3. The 
overall 2003 wheat crop yield was higher than for the year 
2005. The LY shires of Boyup Brook, Kojonup and West 
Arthur produced the highest crop yields between 4-5 
tonnes/hectare for the year 2003.  Bridgetown-Greenbushes 
had zero yield due to no areas sown, and as a consequence it 
was eliminated from the ensuing analyses. The overall wheat 
crop yield trend was higher for the year 2003 and it defied the  
increased rainfall trend from 2003 to 2005. Only the LY 
shires of Boddington and Narrogin, and the HY shire of 
Ravensthorpe matched the trend with higher 2005 wheat crop 
yields.  

D. Correlation Analysis of the Wheat Crop Yields 
The next step was the in-depth scrutiny of the microscopic 

phase which involved examining the wheat crop yield for 
patterns and prediction possibility. This was done through a 
process of aggregation of the wheat crop yields for the 
selected three years in order to determine the time sequence 
as well as for prediction of crop yields using data mining. 
Standardization was performed on the two differing scale 
attributes of rainfall and wheat in order to facilitate a 
simultaneous sequence chart plot in SPSS as shown in Fig. 4. 

The visual comparison of the graph enabled a year by year 
comparative analysis which showed the correlation between 
the average annual stochastic rainfall and the wheat yield 
across the three selected years. The overall repetitive cycle 
for the three years was visible for both the lines. It also 
displayed the increased rainfall trend from 2002 and 2003 to 
2005. In addition the crop yield across the three years was 
also mirrored, showing the increased crop yields over the 
relevant shires. Furthermore, the negative impacts on wheat 
crop yield were also demonstrated for the LY shire of 
Narrogin where the rainfall patterns were evident. The 
correlation coefficient for wheat yield and annual rainfall in 
the HY shires for the dry year 2002 was 0.49, 0.32 for the 
productive year, and 0.45 for the wet year 2005.  The 
correlation  was positive for the year 2002 and improved 

progressively for the years 2003 and 2005. The overall 
correlation coefficient for the three years taken together was 
0.75 for the HY shires. On the other hand, the correlation 
coefficient for the LY shires after the shire of Manjimup was 
excluded as an outlier, was 0.32 for the dry year 2002, -0.04 
for the productive year 2003 and 0.35 for the wet year 2005. 
The overall correlation coefficient was 0.25 for the three 
years taken together. This indicted that the overall positive 
correlation for the HY shires was better than the for the LY 
shires. It also indicated that the LY shires tended to be very 
slightly negative with a  correlation of -0.04 for the year 2003. 
This suggested that an increase in rainfall would invariably 
result in an increase in crop yield across the selected shires,  
but the increase in wheat yield diminishes as the rainfall 
increases in some shires.  

As an extension of this activity the standardised data of the 
22 wheat production shires was separated into the HY shires 
and the LY shires. These were then plotted on a graph for 
further clarification of the correlation.  

 

 
Fig. 3. Wheat crop yield for the years 2002, 2003 & 2005 

 

 
Fig. 4.  Seq. plot of the std rainfall/wheat for 02, 03 & 05 

 

 
Fig. 5a. Standardised rain/yield graph for the HY shires 
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Fig. 5b.  Standardised rain/yield graph for the LY shires  

 
Fig. 5a and Fig 5b showed the standardised wheat crop 

yield and rainfall graph for the HY and LY shires 
respectively. Most of the HY shires in Figure 5a showed a 
positive correlation between rainfall and wheat yield, thereby 
demonstrating that a decrease in rainfall generally resulted in 
a decrease in wheat yield. There were some exceptions to this 
trend such as the shires of Gnowangerup and Kent which 
showed negative correlations for the year 2002 and 2003 and 
the shire of Katanning showing a negative correlation for the 
year 2002. The shires of Esperance, Ravensthorpe and 
Dumbleyung showed negative correlations for the year 2005. 
All of these exceptions resulted in high wheat yields from 
low rainfall. With reference to the LY shires in Figure 5b, the 
shire of Manjimup was considered to be an outlier due to 
unknown delivery area tonnage and wheat yield. The two LY 
shires of Narrogin and Wagin showed positive correlations 
with low rainfall matching the low wheat crop yields. The 
shire of Tambellup and Woodanilling showed a negative 
correlation but with a high wheat crop yield from low rainfall 
especially for the years 2002 and 2003. The overall trend for 
the LY shires was a high yield from low rainfall precipation. 
These trends were evident in Fig.5b. 

E. DM analysis of the Wheat Crop Yields 
The next step in the individual scrutiny of the exercise was 

the use of regression in order to determine if the relationship 
established through correlation could be supported by a 
mechanism of predicting the wheat crop yield through the 
rainfall. This was carried out using the classification 
technique of data mining (DM) in the Waikato 
Environment for Knowledge Analysis (WEKA) 
software. The aggregated data for average annual 
rainfall and wheat crop yield for the 22 shires were used 
for this activity. The aggregated wheat crop yield and rainfall 
dataset was split up into a training set (2001, 2002, 2004, 
2006 data) and a test set (2003 & 2005 data). The exploratory 
part of the DM activity was to use the training set to 
determine the best-fit algorithm using a simple model of crop 
yield as a function of the location class and the average 
annual rainfall. All of the classification algorithms within 
WEKA were tested in this step and a short-list of six 
algorithms was selected. These algorithms were Gaussian 
Processes (GP), Multilayer Perceptron (MLP), Radial Based 
Function Network (RBF), Kstar, Sequential Minimal 
Optimisation (SMO) and Additive Regresssion (AR). All 
these algorithms use regression for predicting continous 

values in response to input values. GP is a form of regression 
where the distribution is over mean and covariance functions 
without hyper parameter tuning for the classifier function 
[22]; MLP is a feed forward multi-layer artificial neural 
network (ANN) function approximator classifier that uses the 
supervised learning technique of back propogation to classify 
instances [23]; RBF network is a neural network model 
function used for pattern classification [24]; SMO uses the 
support vector machine for its regression by quadratically 
scaling the number of training patterns [25]; the lazy Kstar 
algorithm is an instance based classifier that classifies a test 
instance based on its similarity to the training instance and 
AR is a meta classifier that seeks to enhance the performance 
of the regression based classifier [26]. Each of the algorithms 
trialled had different characteristics, correlation co-efficients 
and Root Mean Square Errors (RMSE) as shown in Table I.  

 
TABLE I: WEKA ALGORITHMS RESULTS FROM THE TRAINING DATASET 

Weka Algorithm Correl 
CoEff  

Training 

RMSE 
Training 

Set 

RMSE
Cross 
Valid 

RMSE
Test 
Set 

Gaussian Processes 0.998 0.411 0.718 1.057
MLP 0.999 0.074 0.628 0.952
RBF Network  0.754 0.549 0.619 0.794
SMOreg 1.000 0.003 0.659 0.897
Kstar 0.998 0.059 0.474 0.735
Additive Regression 0.987 0.141 0.529 0.749

 
TABLE II: WHEAT YIELD WEKA GP RESULTS MAXIMUM TEMPERATURE 

HIGH YIELD YEAR 
2003 

HIGH RAINFALL 
YEAR 2005 

Rural Shire  
HY+ LY 

 

Actual 
Yield 
ton/ha

Pred. 
Yield
ton/ha 

% 
Error 
 

Actua
l 

Yield 
ton/ha 

Pred. 
Yield
ton/h

a

% 
Error
 

Dumbleyung 2.69 2.12 21.30 2.46 2.15 12.80
Esperance 2.78 2.25 18.92 2.68 2.14 20.07
Gnowangerup 3.37 2.07 38.55 2.29 2.14 6.64
Jerramungup 2.77 2.01 27.47 2.22 2.14 3.78
Katanning 2.79 2.07 25.91 2.22 2.15 3.29
Kent 3.6 2.14 40.64 2.28 2.14 6.05
Kulin 2.37 2.33 1.77 1.92 2.14 11.25
Lake Grace 2.55 2.23 12.63 2.11 2.12 0.28
Ravensthorpe 1.96 2.42 23.37 2.54 2.13 15.98
Wickepin 2.21 2.21 0.09 1.84 2.15 17.07
Boddington 2.28 2.28 0.13 3.93 2.19 44.38
Boyup Brook 4.26 2.79 34.55 2.6 2.19 15.65
Broomehill 3.65 2.24 38.63 2.61 2.14 17.89
Cranbrook 3.73 2.12 43.14 3.38 2.15 36.39
Kojonup 4.22 2.49 41.07 2.92 2.17 25.65
Narrogin 2.33 2.33 0.13 2.22 2.19 1.44
Tambellup 3.89 2.18 44.04 2.75 2.14 22.04
Wagin 3 2.26 24.80 2.54 2.16 14.80
West Arthur 5 2.42 51.56 3.7 2.19 40.73
Williams 2.97 2.62 11.95 2.61 2.21 15.33
Woodanilling 3.8 2.38 37.26 3.19 2.20 30.97

 
GP, MLP and SMO were ruled out in the first instance due 

to the high RMSEs for the cross validation results. The GP 
algorithm had the second lowest RMSE for the predictions on 
the test data of 0.75 and a correlation co-efficient of 0.99. 
Based on these results from Table I, together with a good 
cross validation result of 0.53, the GP algorithm was selected 
and run for the prediction phase of the DM activity. The 
prediction results for years 2003 and 2005 were displayed 
side by side in Table II.  

The shires in both tables were split up into HY (unshaded) 
and LY (shaded) shires. Good predictions were considered to 
have a percentage error of less than 20%, average predictions 
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a percentage error of 21-40% and weak predictions a 
percentage error of over 40%.  Accordingly, the HY shires of 
Esperance, Kulin, Lake Grace and Wickepin all had good 
predictions. The remaining HY shires of Dumbleyung, 
Jerramungup, Katanning, Gnowangerup and Ravensthorpe 
had average predictions and Kent a weak prediction. The LY 
shires of Boddington, Narrogin and Williams had good 
predictions while Boyup Brook, Broomehill,  Wagin and 
Woodanilling had average predictions with weak predictions 
for Cranbrook, Tambellup, Kojonup and West Arthur.   

Analysis of the prediction results for 2005 in Table II were 
again used to determine the accuracy of the predictions. 
Overall there were more positive prediction errors for the 
year 2005. On the good, average and low scale, the HY shires 
of Dumbleyung, Gnowangerup, Lake Grace, Jerramungup, 
Kent, Katanning, Kulin, Ravensthorpe and Wickepin had 
good predictions whilst Esperance only had an average 
prediction. There were no weak predictions for 2005. On the 
other hand, the LY shires of Boyup Brook, Broomehill, 
Narrogin, Williams and Wagin all had good predictions, with 
average predictions for Cranbrook, Kojonup, Tambellup and 
Woodanilling, and weak predictions for Boddington and 
West Arthur. Overall, the prediction errors were better in 
2005 than in 2003 as depicted in Table II indicating the link 
to the rainfall where the wheat yield and predictions fell and 
rose slightly respectively as the rainfall increased.  
 

V. DISCUSSION 
In establishing a relationship between stochastic average 

annual rainfall and crop yield, a number of considerations 
had to be made such as: was rainfall a crucial factor in 
determining the final crop yield; whether rainfall was 
affected by the physical location in terms of elevation and 
other climatic conditions such as wind and temperature; the 
geographic and climatic scaling and resolution; the effect of 
using interpolated rainfall and the use of the shire crop yield 
in tonnes/hectare. Notwithstanding these effects and 
interactions, a pre-cursory relationship using a simple crop 
model (CM) was used where the classification entity was the 
rural shire and the average annual rainfall was used as a 
predictor. The production years of 2002, 2003 and 2005 were 
sampled as these were the years showing a considerable 
variation in both the attributes of rainfall and wheat yield. 
The selected study area had a number of intrinsic anomalies, 
such as shires within the study area that were not designated 
for cropping and cereal production land uses as well as 
outlier crop yield shires. The analysis was based on the 
earlier established metrics and on the general two stage of 
macroscopic and microscopic scrutiny. The macroscopic 
analysis involved the rainfall inspection and the individual 
wheat crop over the selected three years examinations, as part 
of an exploratory data mining (EDM) process. The simple bar 
graph visualization allowed the initial physical recognition of 
patterns and trends of wheat production as related to the 
stochastic average annual rainfall. The microscopic analysis 
involved scrutinizing the selected wheat crop yield for the 
selected years using DM. The results from the two stage 
analysis showed that there was some correlation between 
stochastic average annual rainfall and wheat yield. The 

sequence chart of the standardized rainfall and wheat yield 
was useful in showing a gradual shift in rainfall and crop 
yield across the HY shires. The results did show a high 
positive correlation between stochastic rainfall and the wheat 
yield, but there was a considerable amount of error in the 
predicted wheat yields which created uncertainty for the 
outcomes.  

 

VI. CONCLUSION 
The actual wheat yields showed considerable variation 

between the 22 selected shires which contributed to the 
uncertainty of the prediction. As a consequence, it was 
concluded that rainfall may therefore not be such a decisive 
factor for wheat yield especially for the LY shires. The use of 
the data mining classification function of GP showed that the 
correlation between the stochastic average annual rainfall 
and wheat yield was a strongly positive one and that as a 
result generally, wheat yield in the South West agricultural 
region can be expected to increase with an increase in rainfall, 
but there could be an increasing under-estimation error in 
predicting the wheat yields. The uncertainty of the prediction 
was thought to be related to the influence of other factors 
such as the total seasonal rainfall as opposed to the rainfall 
for the months separately, as well as to the sparseness related 
to the intrinsic shire yield measurement of the dataset. It is 
thought that the performance of the WEKA algorithms could 
be enhanced by increasing the sample size of the crop yields 
from the three year selection to the 10 year selection for the 
years 2001-2010. Further investigation may also be needed in 
order to investigate the other elements of climate such as 
temperature as well as soil substrate and soil moisture 
respective to the area location under scrutiny. In addition, the 
other years within the 10 year series between 2001-2010 
could be used for comparison with the three year selection of 
dry (2002), wet (2005) and productive (2003). 
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