
International Journal of Information and Education Technology, Vol. 1, No. 1, April 2011
ISSN: 2010-3689

68

Abstract—High level of reliability is needed by the backplane

bus for the Aircraft Information Management System (AIMS)
that can ensure the robust and fault tolerant communication
between its Line Replaceable Modules (LRM), which in turns
ensures the safety critical hard real time control system
operation. As the time driven protocol is more reliable than the
event driven protocols, this backplane bus needs to be
implemented with time division control protocol. For that
matter, more attention is needed to ensure the synchronization
issues between LRMs. This paper is the extension of our
previous work and addresses Table memory and Controller
implementation scheme for the Bus Interface Onit (BIU). The
aforesaid system is developed for ARINC 659 backplane bus as
an example, which controls all the BIU operations. The table
memory introduces the cabin wide harmony by providing the
same command sequence for all the LRMs. This command
sequence also includes the source and destination addresses
that avoids extra load on the backplane bus. The controller
needs to fetch the commands from the table memory, decode
them and then execute them to drive the bus for the BIU
operations including message operations and synchronization
handling. We have designed the Instruction Set Architecture
(ISA) for table commands and implemented three Finite State
Machines (FSM) for designing this controller along with some
glue logic. First FSM is meant for managing commands, second
for managing the BIU current state for synchronization needs,
and the third for controlling the BIU operations. The aforesaid
design has been modeled by using Verilog, Hardware
Descriptive Language (HDL) and implemented in Altera
Cyclone II board. Results of Modelsim and Quartus proved the
cycle accurate implementation of controller in compliance with
ARINC 659 specifications.

Keywords-Backplane bus controller;Table Memory; FPGA;

Hard Real Time control system; ARINC 659; AIMS

I. INTRODUCTION
Aircraft Information Management System (AIMS)

gathers the information from the different sensors and
process them for displaying and controlling different aspects
of flight data. These include flight management, display,
central maintenance, communication management, airplane
condition monitoring and etc [1]. AIMS consists of two
redundant cabinets implementing seven primary aircraft
functions, each cabinet has four processing modules and
four I/O modules that have to share same back plane bus [2].
The control systems for passenger aircrafts are considered to

Manuscript received March 21, 2011.
School of Computer Science and Technology Northwestern,

Polytechnical University,710072, Xi’an, China (email:
itsghayoor@yahoo.com)

be safety critical hard real time systems. These systems need
intra-cabinet communication system to share the
information among the different Line Replaceable Units
(LRU) within the cabinet. Time Triggered Protocol (TTP) is
a preferred choice for such systems over the event triggered
protocol for the aforesaid communication because the
former has known and constant bus loading, latency and
jitter, and also it supports composability [3]. As these
control systems work on 25 Hz to 100 Hz, this backplane
communication needs not to be very fast but the reliability
must be high to ensure the safety of the aircraft. In this paper,
we proposed a scheme to implement the backplane bus
controller in the FPGA for such kind of safety critical hard
real time control systems. We used ARINC 659 backplane
bus protocol as an example and implemented the controller
of its Bus Interface Unit (BIU). This protocol ensures the
safety critical requirements as it has robust portioning in
time and space, fault detection and tolerance; and the
availability of redundant buses with cross-checking
capability [4].

Moreover, the use of FPGAs has been proven for the
experimental as well as industrial purposes especially for
developing the real time systems in a single chip [5, 6]. We
used Altera’s NIOS development board, Cyclone II edition
for our implementation platform [7]. This board has been
used because it also has soft processor core NIOS, which
has to be used in our related work of Host design for the
BIU to complete our full system on chip design. It provides
a hardware platform for developing embedded systems
based on Altera Cyclone II devices with 50 MHz oscillator
and Power-on reset circuitry.

This paper represents the extension of our previous work
in [8] that includes Table Memory implementation scheme
for the referred system. Section II discusses the architecture
overview of ARINC 659 back plane bus; section III
discusses the design and implementation of Table Memory
and controller; section IV shows the test bench and the
results of Modelsim and Quartus on our proposed Verilog
model that proves the cycle accurate implementation of
controller and the Table Memory in compliance with
ARINC 659 specifications; and section V is the conclusion.

II. ARINC 659 ARCHITECTURE
The detailed architecture of ARINC 659 is explained in

[4], some important aspects are highlighted in this section
from the aforesaid reference to introduce the overall
architecture who’s Table Memory and Controller
implementation will be discussed in the later sections.

ARINC 659 transfers half duplex serial data. The use of
serial lines increases reliability by reducing the hardware. A

Table Memory and Controller Implementation
Scheme in FPGA for Hard Real Time Control

Systems
Gillani Ghayoor Abbas, Yian Zhu, Amjad Hafiz Muhammad, Ahmad Waqar and Jianfeng An

International Journal of Information and Education Technology, Vol. 1, No. 1, April 2011
ISSN: 2010-3689

69

single BIU interfaces to two buses for availability. Through
the use of cross-compared dual BIUs in each Line
replaceable module (LRM), a total of four buses provide
dual self-checking capability. Further cross-checking of the
four paths increases data availability. A block diagram
showing bus interface architecture and bus line composition
and connection is shown in Fig. 1. Robust partitioning of
time and space are provided by the Table Driven
Proportional Access (TDPA) protocol. This is controlled by
commands stored in the nonvolatile Table Memory attached
to each BIU. The clock speed of the bus is 30 MHz. Data is
transferred two bits at a time for a maximum throughput
approaching 60 Megabits per second (Mbps). Bus time is
divided into a series of windows, each window containing a
single message from 32 to 8192 bits in length or a resync
pulse (approximately five bit times). The Tables define the
length of each window and which LRMs transmit, receive,
or ignore the bus during the time assigned to the window.
The bus transfer schedule is organized into cyclic loops, or
frames, of constant length set by the sum of the individual
window lengths. In particular, the immediate source and
destination addresses for each message are contained in the
Table Memories rather than being transferred across the bus.
This saves the bus bandwidth normally consumed by
address fields. Resync pulses are transmitted periodically to
establish and maintain synchronization among all BIUs on
the backplane. The bus supports module-to-module (point-
to-point) transfers, a single module to a group of modules
(broadcast) communication, and also alternative (candidate)
modules to a group of modules. Accordingly, two types of
messages exist: Basic and Master/Shadow (M/S) Messages.
Frame Description Language (FDL) is included as a means
to compare Tables from different vendors to ensure their
compatibility.

Figure 1. ARINC 659 Architecture showing LRMs and Backplane Bus [4]

III. IMPLEMENTATION SCHEME OF TABLE MEMROY
AND CONTROLLER FOR ARINC 659 BIU

The Table Memroy and Control block of ARINC 659
BIU are shown as dark colored boxes in Fig. 2 [8]. Table
memory is for storing the table commands just like ROM.
BIU accesses 32 bit command words by providing specific
address to the table memory. BIU control block can be
regarded as an application specific instruction processor
(ASIP) that can fetch the command words from the Table
memory by generating appropriate address, decode them,
and execute them to control all the synchronization and
window operations of BIU.

Fig. 3 shows the internal design of control block [8].
Modular approach has been used to simplify the design;
which includes Table Memory Interface Unit (TMIU),
Command Decoder Unit (CDU), Command Management
Unit (CMU), Command Buffer Unit (CBU), BIU State
Management Unit (BSMU) and BIU Operations Control
Unit (BOCU). Three separate finite state machines have
been implemented to design the control block. This enables
the partitioning of control block into three subdivisions.
First state machine has been implemented in CMU. It is
responsible for controlling TMIU to fetch the command
words from table memory. It also enables the CDU to
decode the received command word. Moreover, some FDL
commands consist of two or three table memory command
words, so it is also responsible to get the full information of
these commands and convert them to comprehensive single
access commands also called Comprehensive Command
Information (CCI) in this paper. The CCIs are then stored in
the CBU that can be accessed by the BOCU in a single
system cycle.

Second state machine has been implemented in BSMU. It
controls the BIU current state with respect to
synchronization. Third state machine can be regarded as
master controller of the control block that has been
implemented in BOCU to control all the BIU operations.
The detailed design scheme is discussed as under;

A. Table Memory
Table memory is a ROM used to store the table command

sequence. The top level design is shown in Fig. 4. The
command sequence is programmed by the user according to
the backplane activity requirements. The BIU starts fetching
commands from the table memory as it gets In-sync state by
using its TMIU. The table memory has been designed for
the following features; Single port ROM to be accessed by
BIU, 8K words ROM, Word accessible 32-bit register
output, 13 bit address field required to address 8K addresses
of the respective words. As ARINC 659 supports the Entry
Resynchronous and Frame Change operations, the indirect
addressing is needed to store the real address of the jump—
next frame address or the next address in a command
sequence. As the code width is 8 bit wide so the lower 256
addresses are supported for the jump table. In this way, the
next jump address is stored within first 256 addresses of the
table memory. Therefore, the general command sequence is
mapped starting from the 257th location of the ROM till the
8192th location.

Figure 2. A portion of LRM showing BIU, Table memory, IMM, BTL and

Host

International Journal of Information and Education Technology, Vol. 1, No. 1, April 2011
ISSN: 2010-3689

70

B. ISA Design
ISA has been designed to translate the FDL commands

into the binary format that can be stored in the table memory.
All the commands necessary for the possible BIU operations
have been included as discussed in [4]. Fig. 5 shows the 32
bit instruction fields for every command. Some commands
like BOW, VER, ERU, ERV, FCU and FCV take more than
one word to store the required information.

Figure 3. Internal Design of Control Block

C. Command Management Scheme
TMIU, CDU, CBU and CMU in Fig. 3 show the

command management scheme of our controller design. The
aforesaid design units are responsible for fetching command
words from the table memory, decoding them, generating
and storing CCI in the CBU. Functionality of TMIU may be
regarded as Address Generation Unit (AGU). It generates
16-bit address for the table memory to map 64K words.

Figure 5. ISA Design for ARINC 659 FDL Commands

Address generation logic include the incremental address
for the commands like BOW, GAP, DELTA, SSYNC etc; it
also includes the jump and return for supporting JUMP,
CALL and RETURN commands—a level 8 stack has been
implemented for storing return addresses. Moreover, it
includes the indirect addressing for supporting Frame
Change (FC) and Entry Resynchronous (ER) commands.
The CDU decodes the command words that are fed by the
TMIU. The decoded information is given to CMU for
further management of commands. The decoded information
include the command type, gap value, delta value, version
value, BIU behavior in the current BOW command that may
be transmit or receive or skip, basic or M/S and etc. One
implementation problem is to keep record of previous
command words to decode the multi-word commands. For
that matter, the specific command counters and flags have
been used that are set when the first word of command is
encountered; and the command counters are incremented on
every next command word received. When the counter value
equals to the number of command words for the specific
command, the decoded information is completed and the
flags are cleared. The CBU is a FIFO designed to the depth
of 8 49-bit levels. The CMU stores the 49-bit
comprehensive command information into the CBU that can
be accessed in a single cycle by the BOCU. Therefore, we
implemented the CBU to cater dual access problems. Full
and Empty signals have been provided to let the writing and
reading units know about the status of the FIFO. Moreover,
simultaneous read and write has also been resolved in the
HDL design. A state machine has been implemented in the
CMU that is responsible for managing commands by
controlling different operations during its different states;
Get next command word state: enables TMIU to get the next
command word and also provides it information to generate
the address of next command word, Decode command word
state: enables CDU to decode the current command word,
Execute command word state: generates the comprehensive
command information (CCI), Push command words state:
writes the CCI into the CBU when it is not Full.

The need of this command management scheme arise
from the stringent requirement of executing transmit
command (may include BOW, ERU, ERV, FCU and FCV)
within two bus cycles of the last window—minimum Gap
time [4]. The aforesaid requirement needs the next
command to be fetched and decoded in one bus cycle and
executed in the second cycle to enable the transmission
within the minimum Gap time. As shown in Fig. 4, some
FDL commands that exhibit transmission on the bus are two
(ER/FC) and some are three (BOW) words in width. To
fetch a command consisting of three command words, and
decode those three words needs six system clock cycles.
Therefore, the severity of this problem depends upon the
comparative speed of system clock and the bus clock.
To overcome the abovementioned problem, three schemes
can be analyzed. First is to support comparatively high
system clock with respect to bus clock. Secondly, ISA can
be designed to support encoding of a FDL command into a
single access register. Thirdly, the command words can be
fetched and decoded in advance to the execution time, and
saved as a single cycle access entity, then BOCU may get
the comprehensive command in one bus cycle and execute
that in the next to comply with the requirement. We adopted
the third scheme because it has no hazards of additive

Figure 4. Table Memory Top Level Design

International Journal of Information and Education Technology, Vol. 1, No. 1, April 2011
ISSN: 2010-3689

71

complexity or synthesis/implementation problems as
introduced by the first two schemes.

D. BIU Synchronization Management Scheme
BIU synchronization management unit (BSMU) is shown

in Fig. 3. A state machine has been implemented in this unit
to control the current state of BIU and its transitions. Fig. 6
shows the BIU state transition requirements as described in
[4] that have been implemented in this unit. This state
machine requires four states: Initializing, out of sync, in
sync and disconnected. The states are changed on receiving
different status signals from the BOCU. These signals
include sync loss, detection of initial sync pulse or long
resync pulse, bad cabinet position and version mismatch. All
these signals are generated during the different bus
operations that include entry resynchronization and frame
change processes and the sync pulses receive operations.
Hence, this unit decides the current BIU state and assists the
BOCU unit to control BIU operations as they depend on it.

Figure 6. BIU States and their transitions [4]

E. BIU Operations Control Scheme
This is the core module of BIU controller design that is

responsible for all the bus activity and controlling other
modules within BIU for their desired operations shown in
Fig. 3 as BIU operations control unit (BOCU). It holds the
special function registers needed by BIU, executes the table
memory commands, manages the synchronization pulses
operations and provides services to the Host along with
controlling the smaller modules within control block. It also
communicates outside the control block with transceiver
block and host interface. Following is the brief description
of BOCU functionality;

Special Function Registers (SFRs) include Full
Resolution Timer Register (FRTR) that is a 43 bit wide
counter used to count every bit time of the backplane bus;
two 32-bit Version Registers contain table major version,
table minor version and cabinet position used to ensure
cabinet-wide operational consistency; two 4-bit registers for
GAP size and Delta size are used to store the current Gap
value and Delta value supported in the command table; 20-
bit Wait Limit register used as a reference to wait time for
the long resync pulse detection before generating initial sync
message. The details of these registers can be seen from [4].

A state machine has been implemented in the BOCU that
have the states named Get command state: to fetch the next
CCI from the CBU, Execute command state: to execute the
command operations, Wait for initial pulse state: for waiting
the long resync pulse before generating the initial pulse,
Initial pulse operation state: for generating the initial pulse
when the Wait limit is over, Out of sync operations state:
this includes waiting for the long resync message and

executing its receive operations to get the jump address, and
the synchronization operation.

When the BOCU encounters the constant value
commands like GAP, DELTA and VER it simply stores
their values in their respective SFRs. The BOW commands
are executed depending upon the message type—
Transmission_info. It may be Master transmit, shadow1
transmit, shadow2 transmit, shadow3 transmit, M/S skip,
Basic transmit, Basic receive and Basic skip. When BOCU
encounters the BOW command, it transmits/receives or
skips the required number of words as shown in Fig. 7.

IV.

V.

VI.

VII.

Figure 7. Flow Diagram of BOW Command Operations

When the BOCU encounters the SSYNC command it
enables the transceiver block shown in Fig. 2 to generate the
short sync pulse. Entry resync and Frame change commands
(ERU/ERV/FCU and FCV) operations have also been
implemented in this unit. These commands need the BIU
operations to receive or transmit the three word message

International Journal of Information and Education Technology, Vol. 1, No. 1, April 2011
ISSN: 2010-3689

72

along with the long resync pulse. The flow diagrams of
these commands can be seen in [4]. JUMP, CALL and
RETURN commands are managed by CMU to avoid any
delay in the back plane activity. FREE, JUMPI, CALLI and
RETI commands just need a counter to wait for the number
of bus cycles as described in the FREE command and
implicit idle respectively before proceeding to next
command execution. Moreover, the receive operations of the
long resync and initial sync messages for BIU not In sync
state have also been implemented in the BOCU. This
enables a Disconnected or Out of sync BIU to re-enter the In
sync state.

IV. EXPERIMENTAL RESULTS
Modelsim and Quartus have been used for the verification

of controller implementation. Fig. 8 shows the command
program test bench and its hex code translation—to be saved
into the table memory—for verification purposes. This
command program includes five windows that generate
basic and M/S messages. Also, FC and ER commands are
included to check the frame change and entry resync
operations. Two LRMs and backplane bus were modeled in

Verilog HDL. Each LRM contained two BIUs.
Transceiver block was also modeled to check the
functionality of controller—whole system design
explanation is beyond the scope of this paper. Fig. 9 shows
the bus activity (Modelsim simulation). From left to right is
initial sync pulse, long resync pulse, SSYNC, 4 message
windows separated by SSYNC, ERU, ERV, 5th window,
FCV and then again jump to the start of program. Fig. 10
shows the RTL view of synthesized finite state machines;
Fig. 11 shows the Table Memory implementation by using
Mega Wizard Plug-In Manager of Quartus; and Fig. 12
shows the synthesized Table Memory and Controller
implementation as generated by Quartus. We used 60 MHz
as a system clock to verify the controller design as
previously used in [8].

V. CONCLUSION
This work shows the successful implementation of

backplane bus Controller and Table Memory for ARINC
659 specifications. This implementation technique addresses
the real time problems of fetching and decoding commands,
managing synchronization mechanisms, and controlling the
bus operations. It also addresses the design of instruction set
for translating commands into binary format that can be
stored in Table Memory. The Controller and Table Memory
have been modeled in Verilog HDL and tested by using
CAD tools. These CAD tools include Quartus and
ModelSim. The results show the cycle accurate
implementation of the aforesaid design in compliance with
ARINC 659 specifications. Same technique can be used for
the implementation of other reliable backplane bus protocols
for hard real time control systems in FPGA.

ACKNOWLEDGMENT
The authors acknowledge Chinese Govt. for their

Scholarship award of Masters Degree in such a prestigious
university of china. Moreover, this research is supported by
NSFC grants (NO. 61003037) and (NO. 60736012). Finally,
special thanks to Mr. Zhang Sheng Bing, Mr. Wang Deli,
Mr. Najam and Mr. Aamir for their guidance to complete
this work.

Figure 8. Command Program Test Bench & its Hex code for Controller
Verification

REFERENCES
[1] Michael J. Morgan, “29. Boeing B-777”. The Avionics Handbook, Ed.

Cary R. Spitzer. Boca Ratonby by CRC Press LLC 2001.
[2] T. Carpenter, K. Driscoll, Hoyme and J. Carciofini “ARINC 659

scheduling: Problem definition” Real-Time Systems Symposium,
1994 Proceedings, 1052-8725/94, IEEE 1994.

[3] D.A Gwaltney and J.M. Briscoe “Comparison of communication
architectures for spacecraft modular avionics systems” NASA/TM—
2006 -214431 available at http://naca.larc.nasa.gov

[4] ARINC Specification 659 “Backplane Data bus” Aeronautical Radio,
Inc. Annapolis Maryland, December 27, 1993.

[5] Zeyad Assi Obaid, Nasri Sulaiman and M. N. Hamidon “FPGA-based
Implementation of Digital Logic Design using Altera DE2 Board”
IJCSNS International Journal of Computer Science and Network
Security, VOL.9 No.8, July 2009.

[6] A.R.M. Khan, A.P. Thakare, S.M. Gulhane “FPGA-based design of
controller for sound fetching from codec using Altera DE2 Board”
IJSER International journal of scientific and engineering research,
volume 1, issue 2, novembe-2010.

[7] NIOS Development Board, Cyclone II edition reference manual,
available at http://www.altera.com

[8] Gillani Ghayoor Abbas, Yian Zhu, Amjad Hafiz Muhammad, Ahmad
Waqar, Jianfeng An ”Backplane Bus Controller Implementation in
FPGA for Hard Real Time Control Systems” 2011 IEEE International
Conference on Information and Education Technology (ICIET)—
January, 2011.

International Journal of Information and Education Technology, Vol. 1, No. 1, April 2011
ISSN: 2010-3689

73

Figure 12. Synthesized Controller Design (RTL view, Quartus)

Figure 9. Backplane Activity Validating the Controller Design Scheme (Modelsim waveform)

Figure 10. Command Management (Left), BIU State Management (Middle) and BIU Operations Control (Right)
FSMs Implementation in Quartus

Figure 11. Table Memory Implementation in Quartus

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

