
  

 

Abstract—Contemporary mathematics education attempts to 

instil within learners the conceptualization of mathematics as a 

highly organized and inter-connected set of ideas. To support 

this, a means to graphically represent this organization of ideas 

is presented which reflects the cognitive mechanisms that shape 

a learner’s understanding. This organisation of information may 

then be analysed, with the view to informing the design of 

mathematics instruction in face-to-face and/or 

computer-mediated learning environments. However, this 

analysis requires significant work to develop both theory and 

practice. 

 
Index Terms—mathematics, reflective abstraction, graphical 

representation  

 

I. INTRODUCTION 

Contemporary mathematics education promotes the 

domain of mathematics to be a highly organized structure of 

ideas, of which learners develop a rich understanding. This 

paper reports on an on-going research program that is 

developing a novel graphical language for creating graphical 

representations of this structure. The graphical 

representations reflect the cognitive processes by which 

learner‟s make sense of the domain. Included in this paper is a 

summary of the constructs of the graphical language and an 

example of its application to the domain of early-number 

mathematics. It is proposed that the graphical representations 

may inform the design of instruction. However, this requires 

significant future work to develop theory and practice related 

to the graphical representations manipulation and analysis. 

 

II. BACKGROUND 

The graphical language that has been developed in this 

on-going research program is based upon some key 

educational theories and practices which are summarised in 

the following sub-sections. 

A. Ontological Considerations 

Mathematics knowledge is characterised as a highly 

organised structure of shared ideas, including the problems 

encountered and solved using mathematics, the set of 

concepts which (when selected and applied) form the 

solutions to the encountered problems, and the set of 

representations that are used to express both the problems and 

concepts of mathematics. Contemporary mathematics 

education may be characterised as learners authentically 

constructing unique, experience-based understandings of the 

 

 

knowledge that is shared in their mathematical community. 

This involves the exploration of the connections, both within 

and between the three different types of mathematical ideas. A 

learners development of a rich understanding of the 

organisation of ideas is the goal of many approaches to 

mathematics instruction e.g., [1]. In practice however, the 

reform of mathematics education (including the advancement 

of computer-mediated learning) has been stymied and often 

criticised for inadequately focussing upon mathematics‟ 

highly structured nature [2], [3]. It is against this backdrop 

that the on-going research presented in this paper has been 

developing techniques for creating models of the upon which 

learning environments can flexibly and dynamically respond 

to the idiosyncratic needs and understandings of each learner. 

B. Epistemological Considerations 

Two key theories have informed the epistemological 

framework upon which the proposed graphical language is 

based: Piaget‟s notion of reflective abstraction and Popper‟s 

conceptualisation of knowledge.  

Piaget [4] (and as discussed by Dubinsky [5]) proposed 

reflective abstraction as the mechanism by which an 

individual makes accommodations in their conceptual schema. 

Reflective abstraction is based upon the learner looking back 

upon past experiences or actions and identifying the 

similarities and differences between these actions. From this, 

the learner abstracts ideas that organise their experiences. 

Piaget identified five specific types of reflective abstraction: 

(a) Interiorisation, involving the internalisation and then 

representation of an idea using a more de-contextualised form; 

(b) Coordination, involving the manipulation of parts to form 

a more complex whole; (c) Encapsulation, involving the 

formation of a more abstract, manipulable object that 

represents either a sub-ordinate relationship or a coalescing of 

parts; (d) Generalisation, involving the broadening of an 

idea‟s applicability; and (e) Reversal, involving the noticing 

of differences between ideas and the subsequent formation of 

inverse relationships. 

Popper [6] differentiated the in-the-head knowledge unique 

to each learner from the state-able „theories‟, or knowledge, 

of the community. These two „worlds‟ of knowledge form a 

tension: an individual‟s actions and idiosyncratic 

understanding are shaped by the knowledge shared by the 

community, which is in turn extended or refined through the 

individual‟s statement of their in-the-head knowledge. The 

differentiation of each individual learner‟s unique 

understanding from the shared knowledge of the community 

is a central organising idea of the new theory that has been 

proposed and demonstrated in this study.  

Reflective abstraction influences both the organisation of 

shared knowledge and the learner‟s unique understanding. As 

the learner reflectively abstracts and subsequently states their 
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new found theories, they will extend the shared knowledge of 

the community in ways that correspond to the particular form 

of reflective abstraction. Similarly, as the learner experiences 

the extant knowledge shared in the community, the 

organisation of that knowledge will influence their reflective 

abstraction. When designing educational experiences, the 

structure of the shared knowledge should inform the selection 

of learning activities such that the learner‟s reflective 

abstraction and subsequent deepened understanding is 

effectively scaffolded. 

C. Graphical Representations of Knowledge 

The creation of visual artefacts to express the organisation 

of ideas in some domain has been used in education for many 

years. For example, Novak and his colleagues [7] have 

proposed concept maps as a means for students to create 

descriptions of domain knowledge. A concept map is a 

hierarchical organization of ideas from the most general or 

abstract to those which are most specific. To capture the 

relationships between the concepts and thus give structure or 

organisation to the concept map, linking phrases are used 

which themselves embody further concepts related to the 

domain. To use the concept map as a mechanism to assess a 

learner‟s understanding requires the teacher to interpret both 

the concepts and the linking phrases.  

The adoption of Piaget‟s reflective abstraction as the key 

mechanism by which to explain a learner‟s conceptual growth 

has led to an alternate approach for graphically representing 

knowledge. This alternate approach does not rely upon the 

use of a second set of domain concepts to create relationships. 

Instead, reflective abstraction provides the basis of constructs 

with which to define the organisation of shared knowledge. In 

a complementary way, the alternate approach also supports 

the modelling of each learner‟s experiences with reference to 

the shared knowledge (i.e., their understanding). The 

graphical model to describe each individual could then be 

analysed to inform the design of appropriate experiences 

which are tailored to the individual‟s needs. 

 

III.  THE GRAPHICAL LANGUAGE AND ITS APPLICATION 

The graphical language proposed to model shared 

knowledge has been previously introduced in [8] and was 

more comprehensively applied to the study of early-number 

mathematics in [9]. In the following paragraphs, the graphical 

language is re-introduced using a simple example taken from 

the comprehensive study. This includes the introduction of the 

language constructs used to describe and analyse a learner‟s 

unique understanding. Then, a brief discussion of the 

comprehensive application of the language to earlynumber is 

provided, leading to the identification of future research 

activities. 

Seminal early-number literature (e.g., [10]) has classified 

worded problems in a variety of ways. The author has 

reviewed this literature in [9] and identified 22 different types 

(Type A – Type V), each of which is defined by its set of 

characterising features. An example of Type A problem is 

Connie has 5 red marbles and 8 blue marbles. How many 

marbles does she have altogether? An example of Type G 

problem is Connie had 5 marbles. Jim gave her 8 more 

marbles. How many marbles does Connie have altogether? 

These two problems share common features (both addition 

with an unknown total), but differ in that the Type G problem 

has an explicit action (Connie‟s collection of marbles was 

added to). These problems could be expressed in a variety of 

ways, including the concrete modelling using marbles to act 

out the problem, the use of iconic representations (e.g., 

counters) to similarly act out the problem, or the expression of 

the problem using a symbolic number sentence (e.g., 5 + 8 

= ?). To solve these problems, several strategies might be 

used, one of which is the count-all strategy. This requires the 

person to physically count both set of objects separately, then 

put the sets together and count the resultant set. This strategy 

can only be expressed using physical models (e.g., the 

marbles or counters), since it requires objects to count. 

 
Fig. 1. Genetic decomposition of early-number. 

 

 
Fig. 2. Developmental trajectory in early-number. 

 

In the graphical language, a genetic decomposition is a 

network-like representation of shared knowledge. Fig. 1. 

presents a genetic decomposition that describes the fragment 

of shared early-number knowledge described in the previous 

paragraph. In this genetic decomposition, the rectangular 

icons identify problem knowledge objects, the ellipse icons 
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identify concept knowledge objects, and the trapezoidal icons 

identify representation knowledge objects. Joining these 

knowledge objects are lines that describe the relationships, or 

knowledge objects associations, that define the organisation 

of the knowledge. The different types of associations are 

differentiated by the type of terminator used.  

In Fig. 1. the similarities between the Type A and Type G 

problems are described using the inheritance association 

(indicated by the open triangle terminator) that spans the two 

problem objects and the more abstract Word Problem object. 

The two problems types are described in terms of their 

constituent features: the aggregation association (indicated by 

the open diamond notation) describes both Type A and Type 

G to have addition and missing-sum features, but these two 

problems differ because the Type A problem aggregates the 

static feature and the Type G problem aggregates the active 

feature. This difference is highlighted by the inversion 

association (terminated using open and closed circles) which 

shows some complementary relationship between the static 

and active features.  

Both the Type A and Type B problems can be solved using 

the count-all concept and this is indicated by the two solution 

associations (which are terminated by closed diamonds). The 

count-all strategy has two constituent parts: counting and set 

composition. This is described in the genetic decomposition 

using another aggregation association (again terminated with 

an open diamond). 

Three different types of representation object are identified: 

concrete, iconic and symbolic. Each of these is progressively 

more abstract or de-contextualised, which is described using 

two formalisation associations (each terminated by open 

arrowheads which point along the path of 

de-contextualisation). The expression association (terminated 

by closed arrowheads pointing from representation to 

problem or concept) is used to describe which problems or 

concepts can be described using the representations. In this 

case, word problems can be represented using the concrete, 

iconic and symbolic representations (requiring three instances 

of expression association) and the count-all concept can be 

expressed using only concrete or iconic representations 

(requiring two instances of expression association). 

A learner‟s understanding of the shared knowledge is based 

upon their experience. To describe their experience, and thus 

infer their understanding, the graphical language defines the 

image construct. This construct is used to describe a single 

experience in which a problem is solved using one or more 

concepts, and in which various representations are used to 

express problem and concept(s). A sequence of images (i.e., a 

sequence of experiences) can be overlaid upon a genetic 

decomposition to form what is termed in the language as a 

developmental trajectory. Such a developmental trajectory, 

showing two images, is presented in Fig. 2. The first image in 

the developmental trajectory (labelled Activity 1) describes a 

Type A problem (expressed concretely) being solved using 

the count-all strategy (also expressed concretely). The second 

image in the developmental trajectory (labelled Activity 2) 

also describes the Type A problem being solved using the 

count-all strategy, but in this image both the problem and the 

solution strategy are expressed iconically. Thus, this 

developmental trajectory describes a learner successfully 

using the count-all strategy to solve Type A problems with a 

reflective abstraction-based growth in understanding from 

highly contextualised representations to more abstract 

representations (i.e., the reflective abstraction transformation 

of interiorisation). 

The potential of the proposed language was 

comprehensively demonstrated in [9] using an iterative 

action-research based methodology. To generate the 

graphical representations, a tool flow that utilised the 

graphviz (www.graphviz.org) toolset was used to translate 

xml-based specifications of genetic decompositions and 

developmental trajectories into images (png files). In 

particular, the hierarchical genetic decomposition diagrams 

were created using the dot tool and the developmental 

trajectory diagrams were created using the neato tool. 

Using this tool flow, seminal literature regarding 

early-number mathematics was analysed and a set of genetic 

decompositions were created. These were then synthesised 

together to form a composite genetic decomposition which 

represents the shared knowledge of the community. Despite 

the early-number domain‟s relative simplicity, the genetic 

decompositions which were created to describe the domain 

are quite complicated and difficult to navigate: The composite 

genetic decomposition comprised of more than 100 

knowledge objects and more than 200 organising associations. 

With the composite genetic decomposition in place, 

preliminary work in mapping simple developmental 

trajectories across the early-number domain was then 

conducted to verify the usefulness of the image construct. 

Additionally, specific arrangements of knowledge objects that 

would lead to some advancement of learner understanding 

were proposed and examples of these were identified in the 

composite genetic decomposition. 

This application of the graphical language to the 

early-number domain has demonstrated the viability of the 

language and has set a foundation and direction for future 

work. 

 

IV. IMPLICATIONS FOR FUTURE WORK 

The research program‟s future work includes the 

improvement of the tool flow such that genetic 

decompositions and developmental trajectories can be more 

easily created, edited, navigated and analysed as needed, such 

that they become a useful tool to guide the design of 

mathematics instruction. 

Firstly, the toolset could be improved to better support the 

editing and navigation of genetic decompositions. For 

example, when considering some focal knowledge object it 

would be useful to only display those other knowledge objects 

that are directly associated. Similarly, mechanisms that allow 

for filtering of the displayed content (e.g., show only concepts, 

show only inheritance associations) may also be useful. This 

partial view approach could also be extended such that the 

view could change as focus objects or associations are 

selected, requiring the graphic representation to dynamically 

change as it is traversed. 

Secondly and perhaps more importantly, new or improved 

algorithms for laying out the graphic representations are 
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required. As previously noted, the dot and neato tools were 

used to create the layouts of the genetic decompositions and 

developmental trajectories. With particular regard to the 

genetic decompositions, use of the dot tool was a suitable 

starting point, since the organisation of knowledge is 

predominantly hierarchical. However, there are certain 

aspects of the knowledge associations that are not strictly 

hierarchical and so not well rendered using the dot tool. For 

example, the inversion association forces associated nodes 

onto the same level in the hierarchy, which is not necessarily 

true or desirable. Similarly, the dot layout forces all 

components of an aggregation association onto the same level 

in the hierarchy which is not always necessary to generate a 

pleasing or meaningful layout. Another limitation of the 

graphviz toolset is the single-dimension portrayed in the 

hierarchical output, whereas in fact the three types of 

knowledge objects (problems, concepts and representations) 

imply the need to render the hierarchy in three dimensions. 

This would more clearly and accurately portray the 

organisation of knowledge and the potential development of 

understanding. In a related way, use of the neato tool to 

generate the developmental trajectory images was inadequate 

because the generated developmental trajectory graphics do 

not visually describe the generally hierarchical organisation 

of knowledge. Using the dot tool to create the graphic 

incorrectly arranged the graphic because the images were 

interpreted as nodes in the hierarchy rather than being 

overlaid upon it. 

The graphical language and the theoretical framework it 

embodies have been proposed as a basis upon which to design 

mathematics instruction, both face to face and 

computer-mediated, that is more cognizant of the highly 

structured organisation of mathematics knowledge. In 

particular, the language allows for the organisation of domain 

knowledge in terms of the cognitive processes that will lead to 

the learner‟s development of deep mathematical 

understanding. The proposed enhancements will require 

significant creation of new theory and associated practice that 

will allow the user to not only create static descriptions of the 

organisation, but to analyse that structure to identify 

developmental trajectories that are of significance in relation 

to the learner‟s development of deep understanding. The 

development of computer-mediated learning that uses this 

new theory to dynamically respond to the learner is a long 

term goal. In the shorter term, a more achievable goal is to 

create an environment that allows teachers to construct and 

navigate genetic decompositions and developmental 

trajectories such that they are able to make better informed 

decisions regarding the design of classroom-based 

mathematics instruction. 

REFERENCES 

[1] A. Bell, “Principles for the design of teaching,” Educational Studies in 

Mathematics, vol. 24, no. 1, pp. 5-34, 1993. 

[2] J. McDonald, S. Yanchar, and R. Osguthorpe, “Learning from 

programmed instruction: Examining implications for modern 

instructional technology,” Educational Technology Research and 

Development, vol. 52, no. 2, pp. 84-98, 2005. 

[3] R. Nason, et al., “Changes in endorsement of an integrated learning 

system over a period of three years,” pretented at 25th Conference of 

the International Group for the Psychology of Mathematics Education, 

Utrecht, The Netherlands: PME, 2001. 

[4] J. Piaget, “Studies in reflecting abstraction,” R. Campbell Trans.,  2001, 

Sussex, England: Psychology Press. (Original work published in 1977) 

[5] E. Dubinsky, “Reflective abstraction in advanced mathematical 

thinking, in Advanced mathematical thinking,” D. Tall, Editor 1991, 

Kluwer Academic Publishers: Dordrecht/Boston/London,  pp. 95-123. 

[6] K. Popper, Three worlds, in The Tanner Lectures on Human 

Values1978. 

[7] J. Novak and A. Cañas, The theory underlying concept maps and how 

to construct and use them, Technical Report IHMC Cmap Tools, 2008, 

Florida Institute for Human and Machine Cognition Florida, CA. 

[8] D. Nutchey, “A Popperian consilience: Modelling mathematical 

knowledge and understanding,” presented at 34th Annual Conference 

of the Australasian Mathematics Education Research Group, Alice 

Springs, Australia, 2011. 

[9] D. Nutchey, “Towards a model for the description and analysis of 

mathematical knowledge and understanding,” Queensland University 

of Technology: Brisbane, Australia, 2011. 

[10] K. Fuson, “Research on whole number addition and subtraction, in 

Handbook of research on mathematics teaching and learning D. 

Grouws,” Editor 1992, Macmillan Publishing Company: New York,  

pp. 243-275. 

 

International Journal of Information and Education Technology, Vol. 2, No. 3, June 2012

284


