

Abstract—Tokenization is very important in natural

language processing. It can be seen as a preparation stage for

all other natural language processing tasks. In this paper we

propose a hybrid unsupervised method for Arabic tokenization

system, considered as a stand-alone problem. After getting

words from sentences by segmentation, we used the author’s

analyzer to produce all possible tokenizations for each word.

Then, written rules and statistical methods are applied to solve

the ambiguities. The output is one tokenization for each word.

The statistical method was trained using 29k words, manually

tokenized (data available from

http://www.mimuw.edu.pl\~aliwy) from Al-Watan 2004 corpus

(available from

http://sites.google.com/site/mouradabbas9/corpora). The final

accuracy was 98.83%.

Index Terms—Arabic Tokenization, Arabic segmentation,

Arabic tagging.

I. INTRODUCTION

Tokenization is the task of separating out words

(morphemes) from running text [1]. It (also sometimes

called segmentation) refers to the division of a word into

clusters of consecutive morphemes, one of which typically

corresponds to the word stem, usually including inflectional

morphemes [2]. We can use blanks (white space) to help in

this task, but there are hard cases. This definition is for

English language but for Arabic the situation is deferent. In

discussing tokenization, it is important to remember that

there is no single optimal tokenization. What is optimal for

IR may not be true for SMT. Also, what is optimal for a

specific SMT implementation may not be the same for

another [2].

Habash [2] Shows number of different levels of

tokenization schemas. It starts from Simple Tokenization

which is limited to splitting off punctuation and numbers

from words. Then Orthographic Normalization which

unified various forms of one letter. Then Decliticization

schemes that split off clitics. The last can be done according

to stem & affixial morphemes or lemmas & clitics and so on.

In my work, there is clear distinction between

segmentation and tokenization. Segmentation is related to

splitting running text into sentences (sentence segmentation),

into words (word segmentation) and the word to its

segments without regards to how this word was constructed.

On other hand, tokenization is related to getting token from

running text. But in most cases there is overlapping between

them. In other words, segmentation is related to splitting all

affixes and clitics1 but tokenization is splitting clitics only

Manuscript received May 7, 2012; revised June 10, 2012.

 H. Aliwy is with Institute of Informatics, University of Warsaw,

Warsaw, Poland (ahmed_7425@yahoo.com; aliwy@mimuw.edu.pl).
1 See section 7-1 for clitics definition.

with extra retriving the changed or the delted letters results

from the inflections. I take the segmentation process as

splitting running text into sentences (sentence segmentation),

into words (word segmentation) [1] but the tokenization as

splitting the words into morphemes.

II. THE WHOLE PRE-PROCESSING SYSTEM

The whole pre-processing for Arabic tagging system can

be consist of Tokenization and Analysing. Figure 1 shows

the whole pre-processing for tagging system. After

completing all these stages, the final results are Lemma and

Clitics with their Features. We must see that the Lemma has

ambiguous meaning in Arabic language. For solving this

ambiguity we depend on the definition written in [2]. In this

paper, I will focus on tokenization only.

Fig. 1. The whole pre-processing task for tagging process. The output is

Lemma +Clitics+ Features for each word.

III. RELATED WORK

In some works (MADA+TOKEN Habash 2009 [3],

BAMA Buckwalter 2002 [4], AMIRA Mona Diab 2009 [5],

Beesley’s Xerox Arabic Morphological Analyzer and

generator 1996&2001 [6,7], Sakhr’s Arabic Morphological

Analyzer [8], Khoja's stemmer 1999 [9] and almost

morphological Analyzers) this step of natural language

processing must be solved inclusively (partially or

completely).

Y.Benajiba(2010)[10] presents two segmentation schemes

that are morphological segmentation and Arabic TreeBank

segmentation and he shows their impact on an important

natural language processing task that is mention detection.

Experiments on Arabic TreeBank corpus show 98.1%

accuracy on morphological segmentation but not

Tokenization.

Lee 2003[11] he depends on the form of the word as

prefix*-stem-suffix*. The algorithm uses a trigram language

model to determine the most probable morpheme sequence

for a given input. The language model is initially estimated

from a small manually segmented corpus of about 110,000

words. The resulting Arabic word segmentation system

achieves around 97% exact match accuracy on a test corpus

containing 28,449 word tokens.

Tokenization as Preprocessing for Arabic Tagging System

Ahmed H. Aliwy

International Journal of Information and Education Technology, Vol. 2, No. 4, August 2012

348

The systems of Benajiba [10] and Lee [11] deal with stem

rather than lemma. According to Habash [2] stem is not a

legal Arabic word form, unlike lemma.

The most related works to our work, in case of

tokenization, are AMIRA [5] and MADA+TOKEN [3] but

they are packages and the tokenization is not separated task.

They used Support Vector Machine (SVM) but Habash [3]

used morphological analyzer with SVM. They have

accuracy on tokenization 99.12 and 99.21 respectively.

IV. WORD AND SENTENCE SEGMENTATION

A. Sentence Segmentation

It is a crucial first step in text processing. Segmentation a

text into sentences is generally based on punctuation [1]. In

Arabic language, estimating boundary of sentence is

relatively simple task approximately same as in English

language. The average number of words per sentence is

larger than the average in English word which will not affect

on segmentation process but on the parsing process. The

sentences boundaries and phrase boundaries can be

estimated according to Arabic punctuation marks which are

{ ، .{=,] [, -, "", ؟, ..., :, ., ؛,

B. Word Segmentation

It is getting words from text. The space is a good

separator for this task but it will not work with special cases

as compound words. Some compound words are written

with a space in the middle even though they are single

words. Such cases must be solved at this stage. As example

the word “إعلاَ آثبد” “IslAm |bAd” is a name of a city in

Pakistan. It means that we must have knowledge base with

similar words. With solving this problem, this stage is

relatively easy. There is another difficulty, when a few

words are attaching together without spaces (i.e. there are

not spaces between two words when the first one ends with

one of the letters “ٚ” “w”, “د” “d”, “س” “r”, “ص” “z”, “ر” “*”).

It is formally a mistake, but may happen when dealing with

non formal text. I assume this mistake does not occur in the

texts.

V. NORMALIZATION

Orthographic normalization is a basic task that

researchers working on Arabic NLP always apply with a

common goal in mind: reducing noise in the data [2]. This is

true regardless of the task: preparing parallel text for

machine translation, documents for information retrieval or

text for language modeling. Normalization can be Tatweel

removal (removing Tatweel symbol), Diacritic removal and

Letter normalization (variant forms to one form conversion).

Figure 2 show letter normalization example.

Fig. 2. An example of Arabic letter normalization 2

This normalization will help us in searching or matching

process but after this stage, the normalization process will

increase the ambiguity in tokenization process. As example

2 I used xml Buckwalter transliteration for transliterate Arabic

script.

if we normalized Ta-Marbuta (P) to Ha (h), the last will be

tokenized as pronoun. For this reason, in my work I take

normalization as temporary stage for matching, searching

and so on.

VI. ARABIC TOKENIZATION

Tokenization is a necessary and non-trivial step in natural

language processing [12]. It is closely related to the

morphological analysis but usually it has been seen as an

independent process [13].

Arabic words are often ambiguous in their morphological

analysis. This is due to Arabic’s rich system of affixation

and clitics and the omission of disambiguating short vowels

and other orthographic diacritics in standard orthography

(“undiacritized orthography”). On average, a word form in

the ATB has about 2 morphological analyses [14].

Arabic word can be in the form [Procltics] + [inflected

word] +[Enclitics]. Then, tokenization here is equivalent to

word segmentation in Chinese language where Arabic word

is as a sentence in Chinese language.

VII. ARABIC WORD FORM

The written Arabic word has special case where the letters

are attached together with high possibility of including two

categories of Part Of Speech (POS) or more. It leads to

problems in stemming and segmentation stages in NLP

application as in Tagger. Let’s take the word “ُٙٚثغ١بسر”

“wbsyArth” “and by their car”. Is it a word? How is it

constructed? In classical3 definition of a word, it is a word

but, as we can see, it has four POSs.

In this paper I will distinguish constructing of a word
from a number of POSs and the inflected word (construction
Perfect, imperfect, imperative, mood, person and so on). i.e.
we will distinguish Clitics and affixes.

Arabic clitics attach to the inflected base word (see the
next section A) in a strict order that can be represented as
follows using general class names [2]: [QST+ [CNJ+ [PRT+
[DET+ BASE +PRO]]]] 4

But in more general way, we can represent the word as:

BASE + Affixes + Clitics lemma+ morphological
features+Clitics

 Stem + affixes + Clitics Inflected word +Clitics

Some researchers didn’t differentiate between affixes and

Clitics who are taking the Arabic word generally as

(prefixes + stem + suffixes). In my work, I will focus on the

form (inflected word + Clitics) where Inflected word is

consisting of lemma and morphological features. This will

help us encoding word feature and POS without doing an

unwanted segmentation. The boundary of inflected word is

POS and word feature according to my Tagset in previous

work.

3 The word is the letters enclosed by two spaces.
4 Any sequence written in English is from left to right and the

compatible Arabic sequence is from right to left (the first in the left must

be first in right and so on) and vice versa.

International Journal of Information and Education Technology, Vol. 2, No. 4, August 2012

349

VIII. WORD CLITICS

Clitic is a unit whose status lies in between that of an

affix and a word. The phonological behaviour of clitics is

like affixes; they tend to be short and unaccented but their

syntactic behaviour is more like words, often acting as

pronouns, articles, conjunction, or verbs [1]. A clitic is a

morpheme that has the syntactic characteristics of a word

but shows evidence of being phonologically bound to

another word [2]. Clitics can be Proclitics which are

precede the word (like a prefix) or Enclitics which are

follow the word (like a suffix). Proclitics can be prefixes of

verb, noun, pronoun and particles. We can see figure 3

which list approximately all known combination of verbs

and Nouns proclitics. Each level can be one or zero occurs

except the last level must be existed (the noun or the verb).

Fig. 3. Verb and noun proclitics.

Figure 4 shows cliticization of attached pronouns 5with

particles. Selecting which is the base depends on the

priority shown in the figure by number. As example “ُٙٔافئ”

“AfInhm” “then, are that they” cliticized as “ا” “A” “are”

and “ف” “f” “then” are proclitcs, “ْإ” “In” “that” is base

and “ُ٘” “hm” “they” is Enclitics. The book [2]5 is a good

reference for other special cases in cliticization.

The particles can be combined for constructing word but

the easy way for dealing with them is by taking these

combinations as stop words.

Enclitics can be after verb or noun. The Enclitic “ٔب”

“nA” “we-our” is ambiguous and has two possible roles

(either a clitic or an inflection suffix). As example the word

 qtlnA” can be “we killed” or “he killed us” which is“ ”لزٍٕب“

affix in the first context and enclitic in the second context.

All enclitics are pronouns and therefore pronouns

themselves don’t have enclitics. Figure 5 shows all common

enclitics for nouns and verbs with their order.

This set of clitics and their order of precedence

(summarized here and described also in other papers and

books) are the base of our algorithm. Adding a few rules for

deleting unwanted combinations of clitics we can get a good

segmentation program, as we will see in the implementation

section later in this paper.

Fig. 4. Proclitics for pronoun and pronoun as enclitics according to the priority number5 of taking the base

.

Fig. 5. Enclitics for noun and verb.

IX. TOKENIZATION TECHNIQUES

Habash [16] showed that Tokenization techniques can be

simple as regular expression and/or complex as

Morphological analyses (Form-based and Functional). But

from definition of Morphological analyses [2] we can see

that regular expression is part from it. The main

classification of Tokenization is Supervised and

unsupervised. Unsupervised as (Manual analysis of text and

writing custom software [18], unsupervised Language

Model Based [11],). Supervised (Annotate the sample

corpus with boundary information and use Machine

Learning). The other classification is Language Dependent

5In Arabic language there are two types of pronouns: attached to a

word(us, me..) and separated (I,we…).

6 pages, 48-50

7 the numbers(1,2 and 3) which used in figuire 7 are the priority of

taking the base of the word. If one word from 1 exist then it is the base ,if

not, then from 2 if not then from 3. note that one of priority at least must be

exist.

(methods used for one language or class of group of

languages, there are many methods in this type) and

Language Independent (methods used for any languages).

Arabic language has middle level in segmentation

complexity; it is between English (and similar languages)

and Chinese (and similar languages), because Arabic

language has mixing features. In Arabic words are typically

separated by spaces (as in English), but it is possible that an

Arabic word is a whole sentence, like in Chinese. Therefore

we should use a hybrid method for dealing with

segmentation or split the segmentations task into two steps.

The interesting thing is that the forms of Arabic word are

known which simplify the segmentation of word when

compared to Chinese language.

X. CHALLENGES TO ARABIC TOKENIZATION

There are many challenges to Arabic Tokenization. The

Complexity of the morphology together with the under

specification of the orthography creates a high degree of

1

 ا
 ف

ٚ

,اٌٟ,اْ,ِٓ,فٟ,ػٓ,ة

,ػً,ػذا,خلا,دبشب

ٌٛلا,ٌىٓ,ٌؼً,وبْ,ػٍٟ

 ِغ,١ٌذ,

...

 ض١ّش

 3 ي

2
An, mn, fy, En, b,

xlA, HA$A, Al ,

ElY, El, EdA,

lAkn, lEl, kAn, mE,

lyt, lwlA,…

 ’
W

f l

Pronoun

1

3

2

[’][l, w, f][l, s](inflected Verb)

 ا
 ف

ٚ

 ي

 ي

 ط

 فؼً ِصشف

[’][w, f][k, l, b][Al][Noun]

 ا
 ف

ٚ

 ي

 ن

 ة

 اي اعُ

 (فؼً) [ٟٔ][ٔب,وٓ,وُ,وّب,ن,٘ٓ,٘ب,ُ٘,ّ٘ب,ٖ]

(verb)[ny][nA,kn,kmA,k,hn,hA,hm,hmA,h]

 (اعُ) [ٞ,ٔب,وٓ,وُ,وّب,ن,٘ٓ,٘ب,ُ٘,ّ٘ب,ٖ]

(Noun) [nA,kn,kmA,k,hn,hA,hm,hmA,h]

International Journal of Information and Education Technology, Vol. 2, No. 4, August 2012

350

ambiguity [80]. Some of these ambiguities can be

summarized by:

1) Orthography problems result from writing the letter

in ambiguous case as in “ٜ” “Y” and “ٞ” “y” or unification

of some forms of a letter as in “ا” “A”, “أ” “O”, “إ” “I” and

so on.

2) Encliticization of a word ending with “ح” “P”:

ُ٘+ جّؼذ jmEthm” “collect them” “ جّؼزُٙ

ُ٘+ جّؼخ jmEthm” “their Friday” ““ جّؼزُٙ

3) Encliticization of word ending with “ٜ” “Y”:

 k” “your” “ ”ن“ +”mstwY” “level“ ”ِغزٜٛ“
 ”mstwY” “your level“ ”ِغزٛان “

 nA” and “ٞ” “y” are ambiguous and can be“ ”ٔب“ (4

either Enclitics or suffixes. See section 6.1.

5) Normalization will add another ambiguity as

example normalizing “ح” “P” to “ٖ” “h” will create wrong

enclitics. As example the word “اِخ” “Amp” “Nation” after

normalization will “ِٗا” “Amh” then if we doing the

tokenization to the last, it will be “ ٖ+ اَ ” “her mother” but

the right tokenization is “اِخ” “Nation”.

6) Ambiguity results from decliticization of “ي” “l”

 .”Al” “the“ ”اي“ A” and“ ”ا“

All these and other ambiguities were solved during

tokenization stage by our system. As example the word

 HmlwnA” “they rise us” after tokenization will be“ ”دٍّٛٔب“

“ ٔب+دٍّٛا ” “HmlwA+nA” where the tokenizer adds the

removed letter result from morphological rules. The

tokenizer will do the same at the same situation. Another

example “ٟصِلائ” “zmlA}y” “my colleagues” after

tokenization will be “ ٞ+صِلاء ” “zmlAʼ+y” and so on.

Some of ambiguities in POS tagging was solved in

tokenization. As example the words “ ىزجٕبث ” “bktbnA” “by

our books” that “وزجٕب” “ktbnA” after tokenization will be

“ ٔب+وزت ” because of existing the preposition “ة” “b” “by”.

The other tokenization is “وزجٕب” “ktbnA” “we write” which

was neglected by the tokenizer because of the inflected verb

can not be appearing after preposition.

7) My approach

We use a hybrid method for tokenization which is a

combination of unsupervised method which depends on

rules for getting segments, and statistical method for solving

ambiguity. My algorithm works as follows:

Task1: As a preparation to the segmentation process, we

first compute all Verb, Noun and Pronoun Proclitics and

Enclitics storing these combinations in lists. Then, the text is

segmented into sentences and the sentences into words

according to space and Arabic punctuations as in section 4-1.

Segmenting the words into clitics & bases is done by

analyzer which produces all possible segments for each

word. After this stage every word may have many

segmentations.

Task2: Now we remove noise introduced in the first task.

We do so by deleting segmentations which produced one

letter words with proclitics and enclitics (which is

impossible in Arabic) and duplicate segmentations (which

may result from segmenting the same word treated once as a

Verb and once as a Noun). We also remove segmentations

whose inflected word is not in the dictionary (constructed

separately from many resources). However, if all produced

segmentations of a word should be removed, they are all

passed to Task3 for special treatment. Words whose

segmentations are not all removed are passed to Task4.

Task3: Because the used dictionary does not cover all

words in the language, there are many unknown words

whose segmentations are passed from Task2 and must be

processed here as out of vocabulary (OOV). These words

are manipulated by simple method which is selecting the

longest possible combinations of Proclitcs (enclitics), and

among them the minimal Proclitics (enclitics) number.

Task4: Because the system produces many segmentations

for one word, in order to get one segmentation for each

word, we select the segmentation with the least number of

segments. If this still does not produce a unique

segmentation, we use the same method as in Task3.

Task5: Using statistical estimation to improve resolving

ambiguity resulting from Task1. This Task is done in

parallel with Tasks 2, 3 and 4. This task is described below

in Section XI.

Task6: Filtering by rules to reduce error results from the

previous tasks.

For example we add the following rule for differentiating

between the word ending with normal Taa (“د” “t”) or Taa

Marbuta (“ح” “p”):

IF ((the base word has Taa AND has enclitics) AND (has
proclitic of type preposition OR the previous base is
preposition)) THEN Change Taa to Taa Marbuta.

There are many other similar rules used in this task.

XI. APPLYING STATISTICAL IMPROVEMENT

Our philosophy of using statistical support is same as

using it in POS Tagging system. If we have a sentence: w1

w2 … wn with n words. Let the set of tokenizations of word

wi in this sentence be {s1… sj}, where j is the number of

segmentation8 of this word. Now we can apply any

statistical method, used for tagging, for tokenization. For

example if we want to apply HMM for tokenization

according to this approach, we will apply the following

formula:

n

i

iiii
s

n sspswps
n 1

1,1)|()|(maxarg
,1

(1)

So S1,n is the best (maximum probability) Tokenization

sequence for sentence of n words. P(wi | si) is probability of

the ith word given the segmentation s. The segmentation

transition probabilities, P(wi | si-1), represent the probability

of a segmentation given the previous segmentation. We

must see that the number of segmentations change from

word to word, and results from an unlimited number of

segmentations, while in tagging the set of possible tags is of

bounded size.

We have two facts: in our approach, first we used

dictionary and rules for tokenization and solving ambiguities.

The second is that in a small training corpus, one seldom

finds a sequence of more than two words from the sentence

under consideration. Therefore bigrams are used, and we do

not consider n-grams for n>2. We did not use HMM in our

implementation. The Bigrams equation which we used

practically is:

International Journal of Information and Education Technology, Vol. 2, No. 4, August 2012

351

)|()|(maxarg 1

 ijji
s

i sspswps
j

(2)

P(wi | sj) is probability of ith word given jth segmentation.
P(sj | si-1)is probability of jth segmentation given previous
segmentation.

XII. RESULTS

After applying all the previously described simple

methods, we got on the following results, in which we used

Bigrams on 45 files with size of 29092 tokens: Without

statistical support the recall is 0.9877462, Precision is 0.

8617793 and F-measure is 0.920473. Without statistical

support (one choice for each word) the accuracy is 0.

9802977. With statistical support (one choice for each word)

ten-fold Cross-validate accuracy is 0.9883473. In our tests,

tokenizations “ ٘ب#اعشد# ”9 “#Asrt#hA” and “ ٘ب#اعشح# ”

“#Asrp#hA” were taken as not match (error). Also the

tokenizations “ ٘ب#ٔشا# ” “#nrA#hA” and “ ٘ب#ٔشٜ# ”

“#nrY#hA” are taken as error. In general, any change to the

ending letter of the word resulting from morphology, if it is

not compatible with the original letter, is assumed to be an

error. Practical tokenized Arabic text and its transliteration

are shown in figures 6 and 7 respectively10. Comparing with

other works, the best known tokenization results have

accuracy 99.12% - 99.2 (Diab and Habash respectively) on

data set of ATB. They did not solve following problems: in

some times they take “AL” as part from word not as clitics

leads to decreasing ambiguity between A+L and AL clitics

(i.e. increasing accuracy). In most of cases, they did not

manipulate changing the letter results from morphology

problems. i.e. the last two example in this section is not

matter in these works. Their work are data dependent

because they used statistical method only but our work is

data independent because of using written rules.

XIII. DISCUSSION

We can see that we collect more than one method for

solving ambiguity in Tokenization. We introduced very

simple and effective methods for making decisions in

tokenization. Using dictionary, written rules, selecting

longest combination of Proclitcs (enclitics) with minimum

Proclitics (enclitics) number with minimum segments

number and finally adding statistical decision making. All

these methods collectively are applied for getting high

accuracy Arabic tokenization system. My approach

inclusively solved most of ambiguities in tokenization. The

Tokenization were taken as separate task which can be

efficient tool for annotation large corpus by correcting the

wrong cases manually which leads to improving the next

stages in tagging system.

Fig.6. Sample of Arabic tokenized text

Fig. 7. Transliteration of Arabic tokenized text

ACKNOWLEDGMENTS
This paper is a part of my PhD dissertation in computer

science, concerning Arabic tagging system with a special
Tagset. I would like to thank my advisor Prof. Jerzy
Tyszkiewicz.

 8We must see that s1, …, sj are segmentations but not segments. i.e. each

one of these segmentation has one or more segments.
9
Practicaly the tokenized text has format:

proclitics#inflectedWord#enclitics. If there are more than one

proclitics\enclitics then they are separted by + symbol.
10There are 45 tokenized files freely available on my website:

http://www.mimuw.edu.pl/~aliwy

REFERENCE

[1] Daniel Jurafsky and H. James Martin, Speech and Language

Processing: An Introduction to Natural Language Processing,

Computational Linguistics, and Speech Recognition. Prentice Hall,

2000.

[2] Nizar Y. Habash, Introduction to Arabic Natural Language

Processing Synthesis Lectures on Human Language Technologies.

Morgan and Claypool Publishers 2010.

[3] Nizar Habash, “Owen rambow and Ryan Roth: MADA+TOKAN: A

toolkit for Arabic tokenization, diacritization, morphological,

disambiguation, pos tagging, stemming and lemmatization,”

Proceedings of the 2nd International Conference on Arabic Language

Resources and Tools (MEDAR), Cairo, Egypt, 2009.

[4] T. Buckwalter, “Buckwalter Arabic morphological analyzer version

1.0.” Linguistic Data Consortium, University of Pennsylvania, 2002.

#mrp# #,# w#qbl# #sntyn# #,# #ktbt# #En# Al#ErAq# #Al*y# #swf# #yEml# #ElY# #tgyyr# Al#EAlm# #,# #hl# #h*h# #klmp# #kbyrp#

w#mbAlg# #fy#hA w#rb#mA #lm# #ysEf# Al#tEbyr# #ElY# #wjh# Al#dqp# w+Al#wDwH# #mn# #An# Al#ErAq# Al#qdym# Al#kAmn# #tHt#

Al#rmAl# w+Al#ly$n# #,# #hw# #*Ak# #Al*y# #swf# #ygyr# Al#EAlm# #,# w#I*A# #ArtOynA# Al#fkrp# #fy# Al#wAqE# Al#fEly# #,# f#On#

Al#EAlm# w#mn# #xlAl# #E$rp# #|lAf# #tl# #|vAry# #,# #lm# #yjr# Al#tnqyb# #fy#hA b+Al#ErAq# #,# #swf# #ymnH# #AkAdymyAt#

Al#ArD# #frSp# #Elmyp# l#AstEAdp# w#mn# #vm# #tgyyr# #tSwrAt#hA w#mfAhym#hA #fy# #mxtlf# #qDAyA# w#$Wwn# Al#HyAp#

w+Al#tAryx# #..# #A*n# f+Al#EAlm# s#ygyr# #nfs#h #mn# #xlAl# Al#ErAq# #mvl#mA #tgyr# #Hyn# #AEAd# Al#mArksywn# Al#nZr# #fy#

#tSwrAt#hm #En# #nmT# Al#AntAj# Al#Asywy# w#fkrp# #n$wʼ# Al#TbqAt# #HAl#mA #Akt$f# Al#Ast$rAq# #mdnA# #mvl# #swmr#

w#bAbl# w#|$wr# #,# w#tHrwA# #End# #tfASyl#hA #AnZmp# #tsjyl# Al#Ebyd# w+Al#AjrAʼ# w+Al#mwZfyn# w#A$kAl# #tnZym#

Al#Eml# w#AdArp# Al#dwlp# #,# w#lw# #kAn# Al#Ast$rAq# #fy# #zmn# #mArks# w#Anjls# #qd# #twSl# #AlY# #Akt$Af# #tlk# Al#mdn#

w#dqA}q#hA Al#ywmyp# l#mA# #ktbA# #$y}A# #En# Al#ArD# Al#m$AEp# w#m$klp# Al#bzl# #All*yn# #HAlA# #dwn# #ArtqAʼ#

Al#mlkyp# Al#frdyp# w#mnEA# #mn# #qyAm# Al#SrAE# Al#Tbqy# #,# w#rb#mA #kAnt# Al#mArksyp# #gyr#hA #fy# Al#nZr# #AlY#

Al#$rq# w+Al#grb# #lw# #kAn# Al#Ast$rAq# #fy# Al#mstwY# Al#tfSyly# k#mA# #jAʼ# #bEd# #mArks# #.#

وٍّخ# #٘زٖ# #ً٘# #،# #ػبٌُ#اي# رغ١١ش# #ػٍٝ# #٠ؼًّ# #عٛف# #اٌزٞ# #ػشاق#اي# ػٓ# #وزجذ# #،# #عٕز١ٓ# #لجً#ٚ# ،# #ِشح#

لذ٠ُ#اي# ػشاق#اي# اْ# #ِٓ# #ٚضٛح#اي+ٚ# دلخ#اي# ٚجٗ# #ػٍٝ# #رؼج١ش#اي# ٠غؼف# #ٌُ#ِب #سة#٘ب ٚ#فٟ# #ِجبٌغ#ٚ# وج١شح#

فٟ# #فىشح#اي# اسرأ٠ٕب# #إرا#ٚ# ،# #ػبٌُ#اي# ٠غ١ش# #عٛف# #اٌزٞ# #ران# #٘ٛ# #،# #١ٌشٓ#اي+ٚ# سِبي#اي# رذذ# #وبِٓ#اي

٘ب #فٟ# #رٕم١ت#اي# جش٠# #ٌُ# #،# #آثبسٞ# #رً# #آلاف# #ػششح# #خلاي# #ِٓ#ٚ# ػبٌُ#اي# أْ#ف# ،# #فؼٍٟ#اي# ٚالغ#اي

٘ب #ِفب١ُ٘#٘ب ٚ#رصٛساد# #رغ١١ش# #ثُ# #ِٓ#ٚ# اعزؼبدح#ي# ػ١ٍّخ# #فشصخ# #اسض#اي# اوبد١ّ٠بد# #٠ّٕخ# #عٛف# #،# #ػشاق#اي+ة

ِب #ِثً# #ػشاق#اي# خلاي# #ِٓ#ٖ #ٔفظ# #٠غ١ش#ط# ػبٌُ#اي+ف# ارْ# #..# #ربس٠خ#اي+ٚ# د١بح#اي# شؤْٚ#ٚ# لضب٠ب# #ِخزٍف# #فٟ#

طجمبد#اي# ٔشٛء# #فىشح#ٚ# اع١ٛٞ#اي# أزبج#اي# ّٔط# #ػٓ#ُ٘ #رصٛساد# #فٟ# #ٔظش#اي# ِبسع١ْٛ#اي# اػبد# #د١ٓ# #١شرغ#

ػج١ذ#اي# رغج١ً# #أظّخ#٘ب #رفبص١ً# #ػٕذ# #رذشٚا#ٚ# ،# #آشٛس#ٚ# ثبثً#ٚ# عِٛش# #ِثً# #ِذٔب# #اعزششاق#اي# اوزشف#ِب #دبي#

ِبسوظ# #صِٓ# #ٟف# #اعزششاق#اي# وبْ# #ٌٛ#ٚ# ،# #دٌٚخ#اي# اداسح#ٚ# ػًّ#اي# رٕظ١ُ# #شىبيا#ٚ# ِٛظف١ٓ#اي+ٚ# اجشاء#اي+ٚ

ِشبػخ#اي# اسض#اي# ػٓ# #ش١ئب# #وزجب# #ِب#ي# ١ِٛ٠خ#٘ب اي#دلبئك#ٚ# ِذْ#اي# رٍه# #اوزشبف# #اٌٝ# #رٛصً# #لذ# #أجٍظ#ٚ

ِب #سة#ٚ# ،# #طجمٟ#اي# صشاع#اي# ل١بَ# #ِٓ# #ِٕؼب#ٚ# فشد٠خ#اي# ٍِى١خ#اي# اسرمبء# #دْٚ# #دبلا# #اٌٍز٠ٓ# #ثضي#اي# ِشىٍخ#ٚ

رفص١ٍٟ#اي# ِغزٜٛ#اي# فٟ# #اعزششاق#اي# وبْ# #ٌٛ# #غشة#اي+ٚ# ششق#اي# اٌٝ# #ٔظش#اي# فٟ#٘ب #غ١ش# #ِبسوغ١خ#اي# وبٔذ#

.# #ِبسوظ# #ثؼذ# #جبء# #ِب#ن

International Journal of Information and Education Technology, Vol. 2, No. 4, August 2012

352

[5] M. Diab, “Second generation tools (AMIRA 2.0): Fast and robust

tokenization, pos tagging, and base phrase chunking,” In Proceedings

of 2nd International Conference on Arabic Language Resources and

Tools (MEDAR), Cairo, Egypt, April 2009.

[6] K. Beesley, “Arabic finite-state morphological analysis and

generation,” In Proceedings of the 16th International Conference on

Computational Linguistics (COLING-96). Copenhagen,

Denmark ,1996, volume 1: 89–94.

[7] K. Beesley, “Finite-state morphological analysis and generation of

Arabic at Xerox research: status and plans in,” Proceedings of the

Arabic Language Processing: Status and Prospect, 39th Annual

Meeting of the Association for Computational Linguistics. Toulouse,

France 2001.

[8] Sakhr. Software, Arabic Morphological Analyzer. [Online]. Available:

http://www.sakhr.com.

[9] S. Khoja and R. Garside, Stemming Arabic Text, Lancaster, UK,

computing department, Lancaster university, 1999. [Online].

Available:http://www.comp.lancs.ac.uk/computing/users/khoja/stem

mer.ps.

[10] Y. Benajiba and I. Zitouni, “Arabic word segmentation for better unit

of analysis,” Proceedings of the Seventh International Conference on

Language Resources and Evaluation (LREC'10). European Language

Resources Association (ELRA), 2010.

[11] Y-S Lee, K. Papineni, S. Roukos, O. Emam, and H. Hassan,

“Language model based Arabic word segmentation,” Proceedings of

the 41st Annual Meeting of the Association for Computational

Linguistics. Sapporo, Japan 2003, 399-406.

[12] S. Bird, E. Klein, and E. Loper. Natural Language Processing with

Python. O’Reilly Media, 2009.

[13] J-P Chanod and P. Tapanainen, “A non-deterministic tokeniser for

finite-state parsing,” ECAI 96. 12th European Conference on

Artificial Intelligence, 1996.

[14] N. Habash and O. Rambow, “Arabic tokenization, part-of-speech

tagging and morphological disambiguation in one fell swoop,”

Proceedings of the 43rd Annual Meeting of the ACL. 2005: 573–580.

[15] J. Olive, C. Christianson, and J. McCary (Editors). Handbook of

Natural Language Processing and Machine Translation. DARPA

Global Autonomous Language Exploitation, 2011. Springer Book.

[16] N. Habash and F. Sadat, “Arabic preprocessing schemes for statistical

machine translation,” In the Proceedings of Human Language

Technology Conference. North American Chapter of the Association

for Computational Linguistics (HLT/NAACL), 2006.

International Journal of Information and Education Technology, Vol. 2, No. 4, August 2012

353

