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Abstract—The mathematical model of the mutual 

synchronization system, having star form structure and 

composed of n  
 Nn

 oscillators, is investigated. The 

mathematical model of the system is the matrix differential 

equation with delayed argument. The step responses matrix of 

the system is obtained applying the Lambert function method. 

Using obtained step responses of the system the transition 

processes are investigated. 

 
Index Terms—Synchronization system, differential 

equations, delayed arguments, Lambert function. 

 

I. INTRODUCTION 

The control systems find application in various 

engineering equipments including the networks of 

transmitting and distributing of the information. Usually 

control systems are being investigated applying their 

mathematical models. More exact analysis of systems 

demands the use of the more complicated mathematical 

models. Often the delays of the signals, transfered along the 

control system, must be included into these models. The 

delays make the investigation of the model more 

complicated. Despite the great achievements in the 

projection and implementation of control systems with 

delays, the works devoted to analytical investigation of such 

systems are important. 

 

II. FORMULATION OF THE PROBLEM 

In the presented work the dynamics of the 

multidimensional control system with delays and with star 

form structure is investigated. The mathematical model of 

this system is the matrix differential equation with delayed 

argument [1]-[4] 
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nx t x t x t x t  is the desired 

vector function, T denotes the operation of transposition,   

is a constant time delay, ( )t  is a vector valued initial 

function, ( )z t  is a free term (continuous function depending 
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on the initial conditions),   is a coefficient, 
1B  and 

2B  are 

n n  ( n N ) numerical matrices  1 2, n nB B R  , 
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(
n n

E R


  is the identity matrix, matrix 
n n

B R


  outlines 

the structure of the internal links of the system). 

As an example of a control system, described by the 

equation (1), the mutual synchronization system of the 

communication network , composed of n  oscillators and 

having star form structure, can be pointed out [3] (Fig. 1).  

 

 
Fig. 1. The scheme of internal links of the system 

 

In this case the symbol ( )ix t  in (1) stands for the phase 

of the i -th oscillator. Taking into account the system‟s 

reaction to unit jumps of the phases of oscillations of the 

oscillators, we shall investigate the transient processes in the 

synchronization system. For this purpose, firstly, we shall 

find the step responses matrix of the synchronization system. 

 

III. STEP RESPONSES MATRIX OF THE SYSTEM 

The matrix  ( ) ( )
ij

h t h t  we shall call the step responses 

matrix of the synchronization system. The entry 

 ( ) , 1,
ij

h t i j n  of this matrix is the response of the i -th 

oscillator oscillation phase to a unit jump in the j -th 

oscillator oscillation phase. We shall find the matrix ( )h t . 

  When the increment of the phase of the j -th oscillator 
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takes form of the unit jump the increment of the free term of 

the equation (1) can be expressed as follows 
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j
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Here 
( )j

I  is the matrix-column all elements of which are 

zeros except the j -th element, which is equal to 1, ( )t  is 

the Dirac delta-function. Taking this into account and using 

(1), we get the following differential equation for step 

responses  ( ) , 1,
ij

h t i j n  of the system: 
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Here  1 2( ) ( ) ( ) ... ( )
T

j j njj
h t h t h t h t is the j -th column 

of the step responses matrix ( )h t , matrices 
1B  and 

2B  are 

defined by (2) and (3), respectively. 

 Using the solution, found on the interval [0, ]  , the 

differential equation (7) on the interval  ,   can be 

presented as homogeneous matrix delay differential 

equation: 
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Here ( )
j

t is the preshape (initial) vector-function. The 

entries of the vector-function ( )
j

t  assume the following 

values: 

 

  1( ) , if ,
( ) ( )

0 , if ;

t

jij i

e t i j
t t

i j




 




   (8)  

 

here 1( )t  is the Heaviside step function. 

Applying the Lambert function method the solution of (7) 

on the interval  ,   can be expressed as follows: 
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k
W H  of 

the matrix Lambert function ( )W H  at 1
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C j  are the complex valued vectors corresponding to the 

preshape vector function ( )
j

t  (see (7) and (8)). From (9) 

follows the approximate expression for ( )
j
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Here N  is sufficiently large natural number. 

 

IV. STEP COMPARING THE LAMBERT FUNCTION METHOD 

WITH THE METHOD OF CONSEQUENT INTEGRATION (METHOD 

OF „STEPS‟) 

The solution of homogeneous matrix delay differential 

equation (7) is presented by the infinite functional series 

(see (9)), which determines the exact solution. In the real 

calculations we apply the approximate formulas (10), 

obtained from (9) with finite N  ( 2N +1 indicates the 

number of branches of the Lambert W function, which are 

used in calculations of the solution).  

We shall investigate the rate of convergence of the 

approximate solution to the exact solution with increasing 

N . For this purpose we shall apply the exact expression of 

the step response of the mutual synchronization system with 

star form structure. This expression we shall find by the 

method of consequent integration (method of “steps”) [5]. 

The solution of (1), applying the Laplace transform, we 

present as follows: 
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Here 
1 ( ) ,A pE B p E     ( ) ( ) , ( )Z p z t Z p  is the 

Laplace transform of the vector function ( )z t  (sign   links 

function with its Laplace transform), 0,1, 2,...L  . Taking 

into account (3), we write 
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Write down the step responses matrix of the system. 

Using (8), we obtain 
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The inverse Laplace transform, applied to the latter 

expression, gives 

 

  ( )

0

( )
1( ) , 0 ( 1) ;

1 !
( )ij

l l
L

t ll
ij

l

t l
B e t l t L

n l
h t   

 
 




   



 
  

   

 

 

Here  l
ij

B  is the ji -th element of the matrix 
l

B , 1( )t  is 

the Heaviside step function). 

The step response of mutual synchronization system with 

a structure of a star, computed by the method of consequent 

integration (the exact method) and by Lambert W function 

method with different values of N , are presented in the 

Fig.2. As we see from this figure, increasing N  the 

approximate solution approaches the exact solution. 
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The maximal relative errors 
max  obtained for 

 0,t    using different values of N  are presented in 

the Table 1, when 5n   , and when 15n   . As we see 

from the table for 50N   the maximal relative error is not 

greater than 0.01 (with increase of N the maximal relative 

error decreases). Dependence from n  of this relative error is 

insignificant. Such accuracy is sufficient for practical 

applications. 

TABEL I.

N  
5n   

1 3 30 50 

15n   

1 3 30 50 

max
 

0.6801 0.0805 0.0131 0.0082 0.6820 0.0850 0.0138 0.0086 

  

  

 
   (a)    (b) 

Fig. 2. Graphs of the step responses 1( )ih t
at different values of N . 

 

V. RESULTS OF CALCULATIONS  

The transients in the synchronization system were 

investigated applying derived formulas. Some results of 

calculations are presented in Fig. 3, 4 as graphs of step 

responses. 

For the calculation of the step responses we have applied 

the approximate formula (10) with 50N   (this means that 

we have used 101 branches of the Lambert W function in 

the computations). With such N  the relative error is not 

greater than 0.02 for any t  on the base of the 4-th section. 

So the graphs of the step responses, presented below, are 

sufficiently accurate (in the presented figures these graphs 

practically coincide with the exact ones). 

In Fig.3 the graphs of the step response )(22 h  are 

given for different values of product   and for different 

numbers of oscillators in the synchronization system. From 

the figure we see that the duration of transients in the 

synchronization system depends on the magnitude of the 

product  . With increase of   the duration of transients 

in the system tend to increase. With increase of n  the 

duration of transients in the system changes marginally. The 

transients get oscillatory features if 1.5  . In Fig. 4 the 

graphs of the step response )(11 h  for different values of 

n  are presented. From the figure we see that the dependence 

on n  of the step response )(11 h  is not significant. 

 

 
Fig. 4. Graphs of the step responses )(11 h . 

 

 

   
 

(a) 

 
    (b) 

Fig. 5. Graphs of the step responses hij (Kt). 
 

In Fig. 5 the reaction of the oscillations of different 

oscillators of the system to the unit jump in the phase of the 

oscillations of the first and second oscillators in the cases 

8n   are presented ( n  is the number of oscillators in the 

system). As we see from the figure, when the unit jump is 

given to the phase of the oscillations of the first (the central) 

oscillator, then the reaction of all oscillators (including the 

central) is more significant comparing them with the 

reaction in the case, when the unit jump is given to the not 

central oscillator 
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VI. CONCLUSION 

The Lambert W function method is used for computing 

step responses for the synchronization system. It is shown 

that using 101 branches of the Lambert W function 

(taking 50N  ) in calculations of step responses ( )ijh t  the 

relative error is not greater than 0.01 for any t  and 

practically does not depend on the number of oscillators in 

the system.  

The Lambert W function method has the advantage in 

comparison with a method of consequent integration 

(method of “steps”), as time of calculation of the step 

response by this method does not depend on delay size, 

whereas time of calculation of the step response by means of 

a method of consequent integration is in inverse proportion 

to the delay size. 

The method of research of dynamics, used in the 

presented work, can also be applied to other control systems, 

described by the linear matrix differential equations with 

delayed arguments and with commuting coefficient matrices.  
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