

Abstract—Branch instructions have been the biggest

contributor of reducing parallelism in pipe-lined computers.

Branch prediction had improved the predictability of branch

conditions. But the branch targets for indirect branches are still

hard to predict as a single branch instruction can branch to

different targets in case of indirect branches. Using a BTB will

only improve performance of indirect branches that branch to

the same target address.

In this paper, we propose a modified indexing of BTB, that

would allow, first, multiple entries for a single branch

instruction to improve prediction of branches with multiple

targets and second, use of the offset that the branch instruction

would use as part of the index to improve the indexing of BTB.

We achieve this by caching the values produced by most

recently executed instructions and identifying the instruction

that produced the offset value used by the branch instruction as

an offset source for that branch. When the source instruction is

executed the next time, the value produced is taken as the

predicted offset and used along with branch instruction PC as

an index into the BTB. Updating the BTB after the completion

of branch instruction is also done with the same index. Using the

predicted offset to augment the BTB index allows for better

prediction of indirect branches.

Index Terms—Branch prediction, BTB, dynamic indexing,

indirect jump, offset prediction.

I. INTRODUCTION

Modern pipelined processors incur pipeline penalty mainly

due to control dependencies in the program flow. Current

high-performance super-scalar processors use branch

prediction to speculatively execute instructions beyond an

unresolved branch to reduce the penalty caused by branches.

Most common types of branches are conditional or

unconditional and direct or indirect. It had been shown that

conditional branch direction can be predicted with high

accuracy using various branch prediction techniques. This

makes direct branches, which have a fixed branch target,

conditional or unconditional easier to predict. Indirect

branches however are hard to predict as they have multiple

targets corresponding to a single indirect branch instruction.

Indirect jumps are being used more frequently in object

oriented programming languages. With increase in programs

written in such languages, the relative frequencies of indirect

jumps are increasing compared to direct jumps. As indirect

branches have high misprediction rate, the increase in the

Manuscript received May 12, 2012; revised July 18, 2012.

Vidhya C is with CMR Institute of Technology, Bangalore, KA 560037,

India(e-mail: mail.vidya.in@gmail.com).

Manimozhi I is with the Department of Computer Science, CMR Institute

of Technology, Bangalore, KA 560037, India (e-mail:

srimanisen@gmail.com).

Jithendranath Mungara is with the Department of Computer Science,

CMR Institute of Technology, Bangalore, KA 560037, India (e-mail:

jmungara@yahoo.com).

frequency of indirect branches, indirect branch misprediction

penalty is becoming a sizeable fraction of overall branch

misprediction penalty.

In this paper we introduce a technique to dynamically

index BTB using the predicted value of the jump target offset.

“Dynamic BTB indexing using jump offset prediction”

dynamically identifies an instruction that produced the value

of the offset used by the indirect jump and marks it as the

offset-source instruction for that branch instruction. When

that instruction produces a new value, its output is used as the

predicted-offset for the jump instruction and the index into

BTB is computed by hashing the PC of jump instruction and

the predicted-offset.

This paper makes the following contributions:

1) Dynamic BTB indexing using jump offset prediction:

a low cost, correlation based indirect jump target

address prediction mechanism with high target

prediction accuracy. Multiple targets of a jump

instruction are stored in the BTB at indices computed

by hashing the PC of the jump instruction with the

output value of the offset-source instruction.

2) Target address prediction overriding using a second

and more accurate target address prediction. Target

address prediction overriding has not yet been

proposed. Prior studies have proposed branch

direction outcome overriding for conditional

branches.

3) The prediction can be implemented in an out-of-order

processor using existing BTB with little extra

hardware support.

II. RELATED WORK

Initial indirect jump target predictions were done using

branch target buffer (BTB), which predicted the last target of

the branch as the current target [1], [2]. Indirect branches

often have multiple targets and thus a BTB based predictor,

though simple in design, is inaccurate for predicting them.

Further work on predicting indirect branches were divided

into two categories: history-based and precomputation based.

A branch history based two-level predictor is the “target

cache” for predicting the target address of indirect jumps. It

was based on same idea as a two-level branch direction

predictor [3]. A target history register records the target

addresses from recently executed indirect jump instructions.

To predict the target of an indirect jump instruction, the fetch

address of jump instruction and the target history register is

used to index in the target cache to get next target address.

Upon completion of the indirect jump, the actual target

address is used to update the target cache entry and the target

history register.

Li et al. [4] proposed technique that identifies indirect

Dynamic BTB Indexing Using Jump Offset Prediction

Vidhya C., Manimozhi I., and Jithendranath Mungara

DOI: 10.7763/IJIET.2012.V2.186

International Journal of Information and Education Technology, Vol. 2, No. 5, October 2012

486

jump instructions that are hard-to-predict and then stores

their targets in the BTB using a second level index. This

technique is called rehashable BTB (R-BTB) the new index

is computed by hashing the target history register with the

jump instruction address. Other branches including the

easy-to-predict indirect branches continue to index the BTB

using the first level index, the PC value. Driesen et al. [5] [6]

combined multiple target predictors to build a cascaded

hybrid predictor, which uses a simple predictor for

easy-to-predict branches and a more complex but small

predictor for only the hard-to-predict branches.

Kim et al. [7] proposed VPC prediction which treated an

indirect branch with N different targets as N conditional

direct branch instructions and used existing conditional

branch predictors to predict them. To predict the target of an

indirect jump instruction, the conditional branch predictor is

accessed for up-to a “max-targets” times, each time for

different target of the indirect branch. This iterative access

stops when a specific direct-target is predicted to be taken, in

which case the indirect jump is predicted to take that target

address, or “max-targets” limit is reached, in which case the

processor is stalled until the indirect branch is resolved. Each

attempt to predict a direct-target takes one cycle, which stalls

the pipeline. This causes the performance of VPC prediction

to degrade significantly for programs which have indirect

branches with higher number of targets.

Pre-computation based target prediction schemes try to

calculate the target address ahead of the execution of branch

instruction instead of trying to predict the target address.

Roth et al. [8] proposed a precomputation-based prediction

method specifically for virtual function calls. It captures the

sequence of instructions used to generate the target addresses.

Whenever the first instruction in the sequence is executed,

the technique quickly executes the rest of the instructions

using a separate parallel execution engine, which computes

the target before the actual indirect jump instruction is

fetched. A significant drawback in this technique is that it

requires significant hardware for capturing the target

generation instructions along with a fast execution engine to

pre-compute the target ahead of time. Another drawback is

that this technique is very specific to virtual call target

prediction.

Recently, Farooq et al. [9] proposed a compiler assisted

technique for indirect branch prediction called Value Based

BTB Indexing (VBBI), in which the compiler identifies an

instruction(which is referred to as „hint instruction‟) whose

output value strongly correlates with the target address taken

by the jump instruction. Different hint values correspond to

different target addresses of a jump instruction, and these

targets are stored in the BTB at different indices computed by

hashing the PC of the jump instruction with the hint value.

Next time when the jump instruction is fetched, the BTB is

indexed using its PC and the new hint value to get the

predicted target address. VBBI was shown to produce better

prediction rates than previous prediction mechanisms.

However, it had the drawback that it required compiler

support which causes severe overhead when it comes to

adapting new technologies in computer architecture. To fully

utilize the potential of the technique, all existing programs

would have to be re-compiled with the modified compiler.

III. DYNAMIC BTB INDEXING USING JUMP OFFSET

PREDICTION

A. Overview

“Dynamic BTB indexing using jump offset prediction”

dynamically identifies an instruction that produced the value

of the offset used by the indirect jump and marks it as the

offset-source instruction for that branch instruction. When

that instruction produces a new value, its output is used as the

predicted-offset for the jump instruction and the index into

BTB is computed by hashing the PC of jump instruction and

the predicted-offset.

Augmenting the PC with the predicted-offset allows

multiple targets to be stored in the BTB for a single branch

instruction. For a jump instruction, different offset values

would produce different targets and they would be stored in

the BTB at the index computed by hashing the jump PC with

the predicted-offset. Basis for this system comes from the

idea that the jump target offsets would be computed usually

just before the branch instruction is computed [7].

To identify the offset source instruction, we maintain a

small map of recent values produced by instructions to their

PCs called the Value-Cache. When the jump instruction

executes, the actual offset value for the target address

calculation is used to lookup the value cache. Value cache

will provide the most recent instruction in the past that

produced the offset value. We identify this instruction as the

offset-source instruction for future predictions of the jump

instruction. The BTB is updated by indexing using the hash

of jump PC and the offset value.

When the offset-source instruction executes next time, it

checks the map of source instruction pc to jump pc to identify

the jump instruction for which this is the source and then

updates the offset source buffer with the new value it

produces. This updates the predicted-offset value the branch

instruction will use to predict the next indirect jump. If the

offset source instruction and the actual offset value have a

good correlation, this would result in very high prediction

accuracy.

B. Implementation Details

We introduce three small buffers to augment the BTB for

identifying the source-offset instruction and to maintain a

buffer of predicted-offset values.

1) Value cache:

A cache of most recent values produced and the PC of the

latest instruction that produced the value. This cache is

updated by the instructions that produce a register output

(like ADD, MOV etc). Lookup on this cache is done in the

write-back stage of the indirect jump instruction. The indirect

jump offset value is used to look-up the recent instruction

that produced the value, this instruction is used as the

offset-source for that jump instruction.

2) Predicted offset buffer (POB)

This buffer is used to store the predicted offset values

produced by the offset source instruction. The buffer is

indexed the jump instruction PC. This buffer is updated in the

write back stage when the indirect jump instruction and the

offset-source instructions complete execution. The indirect

International Journal of Information and Education Technology, Vol. 2, No. 5, October 2012

487

jump instruction updates the buffer with the actual offset

value that was used to generate the target. When the

offset-source instruction completes execution, it updates this

buffer with the value it produced. This value is used as the

predicted-offset for the next branch instruction target

prediction. Lookup on this buffer is done by the jump

instruction during the fetch stage. The jump_pc is hashed

with predicted-offset value in the buffer to form the index

into BTB.

3) Source jump map

This is a small map, to store the map of source instruction

PCs and their corresponding jump instruction PCs. This map

is indexed by the source instruction PC and updated in the

write-back stage of the jump instruction. The jump

instruction identifies the source instruction using the value

cache and updates this map so that the source instruction

would know which entry in the POB to update when it

executes the next time. Look-up on this buffer is done during

the fetch stage of offset-source instruction to find the jump

instruction PC for which it is a offset source.

Each of the buffers are small, fast buffers and used only for

indirect branch instructions in the instruction flow. Also, the

buffers are accessed and modified in different stages by

different group of instructions thus reducing the contention

for access and improving the efficiency.

C. Indirect Jump Instructions

When an indirect jump instruction is executed, the

following additional operations are performed. See Figure 1.

In the fetch-stage, look-up in to the predicted offset buffer

is made using the branch instruction PC to find the predicted

offset value. If the predicted offset obtained from the buffer is

valid, it is hashed with the jump PC to generate the index into

the BTB for predicting the target address of the jump

instruction. When a valid predicted offset is not found, the

BTB indexing defaults to just using the jump PC. The

predicted offset buffer is a small very fast buffer, with just the

jump PC and the offset value. Thus the look-up into the

buffer in the fetch stage will be very quick, and the target

prediction can be done in the fetch-stage without stalling the

pipeline.

In the write back-stage, the actual offset value used by

indirect jump instruction will be used to update the predicted

offset buffer and to identify offset source instruction. First,

the offset value is used to look-up the value cache to find the

most recent instruction that produce the offset value. This

instruction is the offset source and the entry is created in

source jump map. Second, the offset value is also updated in

predicted offset buffer to be used as the default prediction of

offset, the next time the indirect jump instruction will be

executed.

Updating the offset-source instruction is not done if the

prediction from existing source instruction resulted in a

correct target address prediction. This is done so that the

correct offset-source instruction is not modified by other

instructions that produce the same value as the offset value

during some branch execution.

D. Offset Source Instructions

When an offset-source instruction is executed, the

following additional operations are performed. See Figure 2.

In the fetch-stage, look-up in to the source jump map

buffer is made using the source instruction PC to check if the

instruction is actually a source instruction for some indirect

jump instruction. This information along with the jump PC is

captured in the pipeline buffers and passed on to the write

back stage. Keeping the information about the source

instructions in the source-jump map indexed by the source

instruction PC enables a fast lookup to check for a source

instruction when the instruction is fetched.

Fig. 1. Execution of indirect jump instruction

Fig. 2. Execution of offset-source and value producing instructions

In the write back-stage, the jump PC is used to index the

predicted offset buffer and the predicted offset value is

updated with the value produced by offset-source instruction.

This offset value will be used by the subsequent indirect

jump instruction for predicting the target address. There is a

potential contention scenario here, when more than one jump

instruction might end-up associating with the same

instruction as its offset source. However, this is a very

unlikely scenario as this could happen only when indirect

jump instructions based on same condition occur very close

to each other.

International Journal of Information and Education Technology, Vol. 2, No. 5, October 2012

488

E. Instructions Producing Register-Output

Other instructions that produce a register output value are

identified using the op-code and they update the value-cache

using the value produced and their PC upon completion in

write back-stage. Only instructions that produce a register

output are considered because the offset value in an indirect

jump instruction is a register. Filtering based on op-code to

identify such instructions is done so that the load on the

value-cache buffer will be as low as possible.

IV. EVALUATION METHODOLOGY

Simple-scalar processor simulator toolset which features a

wide issue super-scalar processor is used as the simulation

environment. The processor on which the system is built is a

out-of-order issue, pipelined super-scalar processor. We plan

to extend the simple-scalar simulator to implement and

analyse our branch prediction technique. The performance

analysis of the predictor and comparison with other

prediction schemes will be done using the Spec2000 CPU

benchmark suites.

V. CONCLUSION

This paper proposed and evaluated the Dynamic BTB

indexing using jump offset prediction for predicting target

addresses of indirect jumps. The key idea of the new scheme

is to store multiple targets of an indirect jump in the BTB at

different indices computed by hashing the jump PC with the

output value of a instruction whose output strongly correlates

with the offset used for computing the target address taken by

the indirect jump instruction. As such, the new indexing

scheme enables the use of existing BTB structure to predict

the targets of an indirect jump without requiring an extra

structure specialized for storing multiple indirect jump

targets.

REFERENCES

[1] P. Chang, E. Hao, and Y. N. Patt, “Target prediction for indirect

jumps,” ISCA-24, pp. 274–283, 1997.

[2] J. Lee and A. Smith, “Branch prediction strategies and branch target

buffer design. Computer,” vol. 17, no.1, pp. 6–22, Jan. 1984.

[3] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch

prediction,” MICRO-24, pp. 51–61, 1991.

[4] T. Li, R. Bhargava, and L. K. John, Rehashable BTB: An adaptive

branch target buffer to improve the target predictability of java code,

2002.

[5] K. Driesen and U. H‟olzle, Multi-stage cascaded prediction, Euro-Par,

1999.

[6] K. Driesen and U. H¨olzle, “The cascaded predictor: economical and

adaptive branch target prediction,” MICRO-31, pp. 249–258, 1998.

[7] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn, “VPC

prediction: reducing the cost of indirect branches via hardware-based

dynamic devirtualization,” pp. 424–435, 2007.

[8] A. Roth, A. Moshovos, and G. S. Sohi, “Improving virtual function call

target prediction via dependence-based pre-computation,” ICS-13, pp.

356–364, 1999.

[9] M. Farooq, L. Chen, and L. K. John, “Value based BTB indexing for

indirect jump prediction,” IEEE 16th International Symposium on High

performance Computer Architecture(HPCA), 2010.

Vidhya C. is a post-graduate student at CMR Institute

of Technology under Vishveshwarya Technology

University, Bangalore. She is born and raised in

Tamilnadu. Vidhya received her B.E. degree in

Computer Science and Engineering from Anna

University, Tamilnadu in 2009. She worked as a

Lecturer in the department of computer science at

Vivekananda Institute of Technology, Tamilnadu

between 2009-2010.

International Journal of Information and Education Technology, Vol. 2, No. 5, October 2012

489

