
  

 

Abstract—Branch instructions have been the biggest 

contributor of reducing parallelism in pipe-lined computers. 

Branch prediction had improved the predictability of branch 

conditions. But the branch targets for indirect branches are still 

hard to predict as a single branch instruction can branch to 

different targets in case of indirect branches. Using a BTB will 

only improve performance of indirect branches that branch to 

the same target address. 

In this paper, we propose a modified indexing of BTB, that 

would allow, first, multiple entries for a single branch 

instruction to improve prediction of branches with multiple 

targets and second, use of the offset that the branch instruction 

would use as part of the index to improve the indexing of BTB. 

We achieve this by caching the values produced by most 

recently executed instructions and identifying the instruction 

that produced the offset value used by the branch instruction as 

an offset source for that branch. When the source instruction is 

executed the next time, the value produced is taken as the 

predicted offset and used along with branch instruction PC as 

an index into the BTB. Updating the BTB after the completion 

of branch instruction is also done with the same index. Using the 

predicted offset to augment the BTB index allows for better 

prediction of indirect branches. 

 
Index Terms—Branch prediction, BTB, dynamic indexing, 

indirect jump, offset prediction. 

 

I. INTRODUCTION 

Modern pipelined processors incur pipeline penalty mainly 

due to control dependencies in the program flow. Current 

high-performance super-scalar processors use branch 

prediction to speculatively execute instructions beyond an 

unresolved branch to reduce the penalty caused by branches. 

Most common types of branches are conditional or 

unconditional and direct or indirect. It had been shown that 

conditional branch direction can be predicted with high 

accuracy using various branch prediction techniques. This 

makes direct branches, which have a fixed branch target, 

conditional or unconditional easier to predict. Indirect 

branches however are hard to predict as they have multiple 

targets corresponding to a single indirect branch instruction. 

Indirect jumps are being used more frequently in object 

oriented programming languages. With increase in programs 

written in such languages, the relative frequencies of indirect 

jumps are increasing compared to direct jumps. As indirect 

branches have high misprediction rate, the increase in the 
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frequency of indirect branches, indirect branch misprediction 

penalty is becoming a sizeable fraction of overall branch 

misprediction penalty. 

In this paper we introduce a technique to dynamically 

index BTB using the predicted value of the jump target offset. 

“Dynamic BTB indexing using jump offset prediction” 

dynamically identifies an instruction that produced the value 

of the offset used by the indirect jump and marks it as the 

offset-source instruction for that branch instruction. When 

that instruction produces a new value, its output is used as the 

predicted-offset for the jump instruction and the index into 

BTB is computed by hashing the PC of jump instruction and 

the predicted-offset. 

This paper makes the following contributions: 

1) Dynamic BTB indexing using jump offset prediction: 

a low cost, correlation based indirect jump target 

address prediction mechanism with high target 

prediction accuracy. Multiple targets of a jump 

instruction are stored in the BTB at indices computed 

by hashing the PC of the jump instruction with the 

output value of the offset-source instruction. 

2) Target address prediction overriding using a second 

and more accurate target address prediction. Target 

address prediction overriding has not yet been 

proposed. Prior studies have proposed branch 

direction outcome overriding for conditional 

branches. 

3) The prediction can be implemented in an out-of-order 

processor using existing BTB with little extra 

hardware support. 

 

II. RELATED WORK 

Initial indirect jump target predictions were done using 

branch target buffer (BTB), which predicted the last target of 

the branch as the current target [1], [2]. Indirect branches 

often have multiple targets and thus a BTB based predictor, 

though simple in design, is inaccurate for predicting them. 

Further work on predicting indirect branches were divided 

into two categories: history-based and precomputation based. 

A branch history based two-level predictor is the “target 

cache” for predicting the target address of indirect jumps. It 

was based on same idea as a two-level branch direction 

predictor [3]. A target history register records the target 

addresses from recently executed indirect jump instructions. 

To predict the target of an indirect jump instruction, the fetch 

address of jump instruction and the target history register is 

used to index in the target cache to get next target address. 

Upon completion of the indirect jump, the actual target 

address is used to update the target cache entry and the target 

history register. 

Li et al. [4] proposed technique that identifies indirect 
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jump instructions that are hard-to-predict and then stores 

their targets in the BTB using a second level index. This 

technique is called rehashable BTB (R-BTB) the new index 

is computed by hashing the target history register with the 

jump instruction address. Other branches including the 

easy-to-predict indirect branches continue to index the BTB 

using the first level index, the PC value. Driesen et al. [5] [6] 

combined multiple target predictors to build a cascaded 

hybrid  predictor, which uses a simple predictor for 

easy-to-predict branches and a more complex but small 

predictor for only the hard-to-predict branches. 

Kim et al. [7] proposed VPC prediction which treated an 

indirect branch with N different targets as N conditional 

direct branch instructions and used existing conditional 

branch predictors to predict them. To predict the target of an 

indirect jump instruction, the conditional branch predictor is 

accessed for up-to a “max-targets” times, each time for 

different target of the indirect branch. This iterative access 

stops when a specific direct-target is predicted to be taken, in 

which case the indirect jump is predicted to take that target 

address, or “max-targets” limit is reached, in which case the 

processor is stalled until the indirect branch is resolved. Each 

attempt to predict a direct-target takes one cycle, which stalls 

the pipeline. This causes the performance of VPC prediction 

to degrade significantly for programs which have indirect 

branches with higher number of targets. 

Pre-computation based target prediction schemes try to 

calculate the target address ahead of the execution of branch 

instruction instead of trying to predict the target address. 

Roth et al. [8] proposed a precomputation-based prediction 

method specifically for virtual function calls. It captures the 

sequence of instructions used to generate the target addresses. 

Whenever the first instruction in the sequence is executed, 

the technique quickly executes the rest of the instructions 

using a separate parallel execution engine, which computes 

the target before the actual indirect jump instruction is 

fetched. A significant drawback in this technique is that it 

requires significant hardware for capturing the target 

generation instructions along with a fast execution engine to 

pre-compute the target ahead of time. Another drawback is 

that this technique is very specific to virtual call target 

prediction. 

Recently, Farooq et al. [9] proposed a compiler assisted 

technique for indirect branch prediction called Value Based 

BTB Indexing (VBBI), in which the compiler identifies an 

instruction(which is referred to as „hint instruction‟) whose 

output value strongly correlates with the target address taken 

by the jump instruction. Different hint values correspond to 

different target addresses of a jump instruction, and these 

targets are stored in the BTB at different indices computed by 

hashing the PC of the jump instruction with the hint value. 

Next time when the jump instruction is fetched, the BTB is 

indexed using its PC and the new hint value to get the 

predicted target address. VBBI was shown to produce better 

prediction rates than previous prediction mechanisms. 

However, it had the drawback that it required compiler 

support which causes severe overhead when it comes to 

adapting new technologies in computer architecture. To fully 

utilize the potential of the technique, all existing programs 

would have to be re-compiled with the modified compiler. 

III. DYNAMIC BTB INDEXING USING JUMP OFFSET 

PREDICTION 

A. Overview 

“Dynamic BTB indexing using jump offset prediction” 

dynamically identifies an instruction that produced the value 

of the offset used by the indirect jump and marks it as the 

offset-source instruction for that branch instruction. When 

that instruction produces a new value, its output is used as the 

predicted-offset for the jump instruction and the index into 

BTB is computed by hashing the PC of jump instruction and 

the predicted-offset. 

Augmenting the PC with the predicted-offset allows 

multiple targets to be stored in the BTB for a single branch 

instruction. For a jump instruction, different offset values 

would produce different targets and they would be stored in 

the BTB at the index computed by hashing the jump PC with 

the predicted-offset. Basis for this system comes from the 

idea that the jump target offsets would be computed usually 

just before the branch instruction is computed [7]. 

To identify the offset source instruction, we maintain a 

small map of recent values produced by instructions to their 

PCs called the Value-Cache. When the jump instruction 

executes, the actual offset value for the target address 

calculation is used to lookup the value cache. Value cache 

will provide the most recent instruction in the past that 

produced the offset value. We identify this instruction as the 

offset-source instruction for future predictions of the jump 

instruction. The BTB is updated by indexing using the hash 

of jump PC and the offset value. 

When the offset-source instruction executes next time, it 

checks the map of source instruction pc to jump pc to identify 

the jump instruction for which this is the source and then 

updates the offset source buffer with the new value it 

produces. This updates the predicted-offset value the branch 

instruction will use to predict the next indirect jump. If the 

offset source instruction and the actual offset value have a 

good correlation, this would result in very high prediction 

accuracy. 

B. Implementation Details 

We introduce three small buffers to augment the BTB for 

identifying the source-offset instruction and to maintain a 

buffer of predicted-offset values. 

1) Value cache: 

A cache of most recent values produced and the PC of the 

latest instruction that produced the value. This cache is 

updated by the instructions that produce a register output 

(like ADD, MOV etc). Lookup on this cache is done in the 

write-back stage of the indirect jump instruction. The indirect 

jump offset value is used to look-up the recent instruction 

that produced the value, this instruction is used as the 

offset-source for that jump instruction.  

2) Predicted offset buffer (POB) 

This buffer is used to store the predicted offset values 

produced by the offset source instruction. The buffer is 

indexed the jump instruction PC. This buffer is updated in the 

write back stage when the indirect jump instruction and the 

offset-source instructions complete execution. The indirect 
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jump instruction updates the buffer with the actual offset 

value that was used to generate the target. When the 

offset-source instruction completes execution, it updates this 

buffer with the value it produced. This value is used as the 

predicted-offset for the next branch instruction target 

prediction. Lookup on this buffer is done by the jump 

instruction during the fetch stage. The jump_pc is hashed 

with predicted-offset value in the buffer to form the index 

into BTB. 

3) Source jump map 

This is a small map, to store the map of source instruction 

PCs and their corresponding jump instruction PCs. This map 

is indexed by the source instruction PC and updated in the 

write-back stage of the jump instruction. The jump 

instruction identifies the source instruction using the value 

cache and updates this map so that the source instruction 

would know which entry in the POB to update when it 

executes the next time. Look-up on this buffer is done during 

the fetch stage of offset-source instruction to find the jump 

instruction PC for which it is a offset source. 

Each of the buffers are small, fast buffers and used only for 

indirect branch instructions in the instruction flow. Also, the 

buffers are accessed and modified in different stages by 

different group of instructions thus reducing the contention 

for access and improving the efficiency. 

C. Indirect Jump Instructions 

When an indirect jump instruction is executed, the 

following additional operations are performed. See Figure 1. 

In the fetch-stage, look-up in to the predicted offset buffer 

is made using the branch instruction PC to find the predicted 

offset value. If the predicted offset obtained from the buffer is 

valid, it is hashed with the jump PC to generate the index into 

the BTB for predicting the target address of the jump 

instruction. When a valid predicted offset is not found, the 

BTB indexing defaults to just using the jump PC. The 

predicted offset buffer is a small very fast buffer, with just the 

jump PC and the offset value. Thus the look-up into the 

buffer in the fetch stage will be very quick, and the target 

prediction can be done in the fetch-stage without stalling the 

pipeline. 

In the write back-stage, the actual offset value used by 

indirect jump instruction will be used to update the predicted 

offset buffer and to identify offset source instruction. First, 

the offset value is used to look-up the value cache to find the 

most recent instruction that produce the offset value. This 

instruction is the offset source and the entry is created in 

source jump map. Second, the offset value is also updated in 

predicted offset buffer to be used as the default prediction of 

offset, the next time the indirect jump instruction will be 

executed. 

Updating the offset-source instruction is not done if the 

prediction from existing source instruction resulted in a 

correct target address prediction. This is done so that the 

correct offset-source instruction is not modified by other 

instructions that produce the same value as the offset value 

during some branch execution. 

D. Offset Source Instructions 

When an offset-source instruction is executed, the 

following additional operations are performed. See Figure 2. 

In the fetch-stage, look-up in to the source jump map 

buffer is made using the source instruction PC to check if the 

instruction is actually a source instruction for some indirect 

jump instruction. This information along with the jump PC is 

captured in the pipeline buffers and passed on to the write 

back stage. Keeping the information about the source 

instructions in the source-jump map indexed by the source 

instruction PC enables a fast lookup to check for a source 

instruction when the instruction is fetched. 

 

 

Fig. 1. Execution of indirect jump instruction 

 

 

Fig. 2. Execution of offset-source and value producing instructions 

In the write back-stage, the jump PC is used to index the 

predicted offset buffer and the predicted offset value is 

updated with the value produced by offset-source instruction. 

This offset value will be used by the subsequent indirect 

jump instruction for predicting the target address. There is a 

potential contention scenario here, when more than one jump 

instruction might end-up associating with the same 

instruction as its offset source. However, this is a very 

unlikely scenario as this could happen only when indirect 

jump instructions based on same condition occur very close 

to each other. 
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E. Instructions Producing Register-Output 

Other instructions that produce a register output value are 

identified using the op-code and they update the value-cache 

using the value produced and their PC upon completion in 

write back-stage. Only instructions that produce a register 

output are considered because the offset value in an indirect 

jump instruction is a register. Filtering based on op-code to 

identify such instructions is done so that the load on the 

value-cache buffer will be as low as possible. 

 

IV. EVALUATION METHODOLOGY 

Simple-scalar processor simulator toolset which features a 

wide issue super-scalar processor is used as the simulation 

environment. The processor on which the system is built is a 

out-of-order issue, pipelined super-scalar processor. We plan 

to extend the simple-scalar simulator to implement and 

analyse our branch prediction technique. The performance 

analysis of the predictor and comparison with other 

prediction schemes will be done using the Spec2000 CPU 

benchmark suites. 

 

V. CONCLUSION 

This paper proposed and evaluated the Dynamic BTB 

indexing using jump offset prediction for predicting target 

addresses of indirect jumps. The key idea of the new scheme 

is to store multiple targets of an indirect jump in the BTB at 

different indices computed by hashing the jump PC with the 

output value of a instruction whose output strongly correlates 

with the offset used for computing the target address taken by 

the indirect jump instruction. As such, the new indexing 

scheme enables the use of existing BTB structure to predict 

the targets of an indirect jump without requiring an extra 

structure specialized for storing multiple indirect jump 

targets.  
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