

Abstract—Nowadays, new technologies and platforms are

emerging and changing constantly, which implies a high effort
for developing of complex systems such as E-learning platform.

This situation generates different problems related to
portability, reusability, adaptability, integration and
interoperability. The Object Management Group (OMG)
proposes the Model Driven Architecture (MDA), which
improves portability of applications by allowing the same model
to be realized on multiple platforms. Such MDA defines an
architecture based on platform independent models (PIM) and
platform specific models (PSM). The component approach aims
to design and develop systems from prefabricated components,
predesigned and pretested, to be reused in other applications,
which would facilitate application’s maintenance and evolution,
would promote adaptability and configurability in order to
produce new features. In this work we present
LMSGENERATOR, a multi-target Learning management
system generator with a model-driven methodology based on
MDA approach coupled with component approach. Based on
generative programming, from user specifications (abstract
models) and the desired technologies, software bricks will be
generated and assembled to produce a complete solution
adapted to area and users’ needs. This paper focuses on the
transformation rules implemented in the LMSGENERATOR
cores .Also; it presents a case study to illustrate this proposal.

Index Terms—E-learning, learning management system

(LMS), model driven engineering (MDE), model driven
Architecture (MDA), transformation approach, XML
technologies.

I. INTRODUCTION
The major drawback of information systems is their

increasing complexity and rapid scalability. Dealing with this
situation, researchers and industries have agreed on the fact
that the solution of this problem should result in a rise of
models, and a clearer separation between business and
technology. This decision has helped to pass the models from
their contemplative phase, which was reduced to the
representation and documentation of computer systems, to a
more productive phase which envisages the use of models in
the heart of the systems development cycle. That’s why the
Model Driven Engineering (MDE) has been birth.

The Model Driven Engineering (MDE) is a recent
discipline of software engineering that promotes models in
first-class entities in software development [1]. It is the

 Manuscript received September 15, 2012; revised December 12, 2012.
The authors are with Faculty of Science Ben M’sik, Hassan II university,

Casablanca, Morocco (e-mail: dehbirac@ yahoo.fr,
taleamohamed@yahoo.fr, a.tragha@univh2m.ac.ma).

subject of great interest from the academic research teams
(IDM-Action [2]) and industrial laboratories (Compuware
[3], Softeam [4], AndroMDA [5], Xactium [6], etc…).

It is a form of generative engineering, by which all or part
of a computer application is generated from templates [7]. In
this new perspective, models occupy a prominent place
among the artifacts of systems development and in exchange
must be sufficiently precise and rich, so they can be
interpreted or transformed by machines. The process of
system development can then be seen as a sequence of
transformations [7] of partially ordered models, each
transformation taking one or more models as input and
producing one or more models as output, until executable
artifacts. However, the design and programming of complex
applications, such as E-learning platform, Faced with the
growing and changing needs of the area, has to use the
standards, and has to adopt the new practice of software
engineering: Model driven Engineering, Generative
Programming and Component Engineering.

This article introduces the basics of a new approach [8] to
program virtual learning environments. Based on generative
programming, from user specifications (abstract models) and
the desired technologies, software bricks will be generated
and then assembled to produce a complete solution adapted
to area and users’ needs. This idea is implanted at different
levels in the design and in the process of a Learning
management system generator called LMSGENERATOR.
This work shows how the model driven engineering (MDE)
in particular the OMG vision of MDE (MDA) and the
Generative programing can be combined to implement this
system.

This article is organized as follows. In section II, we define
key concepts and bases of Model-Driven Architecture.
Section III gives an overview of our approach and its
automatic implementation: LMSGENERATOR. In section
IV, a part of case study will be presented. Finally, section V
sums up the main conclusions and future works.

II. MDA
Convinced that the model has become the major paradigm

by which the software industry can lift the latch automation
development, the OMG (Object Management Group)
released in 2000 his vision of MDE: MDA (Model-Driven
Architecture) [9]. This is both a proposed architecture and a
development approach.

The basic idea of MDA is to separate the functional
specification of a system from details of its implementation
on a specific platform. For this reason, MDA defines an
architecture specification structured in several types of

A Model Driven Methodology Approach for e-Learning
Platform Development

Rachid Dehbi, IACSIT Member, Mohamed Talea, and Abderahim Tragha

International Journal of Information and Education Technology, Vol. 3, No. 1, February 2013

10DOI: 10.7763/IJIET.2013.V3.225

models [10]: Computational Independent Model (CIM),
Platform Independent Model (PIM), and Platform Specific
Model (PSM), generated from the PIM based on the PDM
(Platform Description Model). The CIM models are the
requirements of a system, its purpose is to assist in
understanding the problem and to establish a common
vocabulary for a domain. In UML, the use case diagram is a
good candidate to represent a CIM. The PIM, also known as
the analysis and design model, is an abstract model
independent from any running platform.

The PIM is designed to describe the know-how (skills,
expertise) or business knowledge of an organization. Having
isolated the business expertise in PIMs, we need either to
transform these models into other PIMs for interoperability
needs, or to produce PSM models for a specific running
platform based on PDMs to improve portability and increase
productivity. The PDM focus on modeling the platform on
which the system will be executed (component models at
different abstraction levels: PHP, EJB, .NET, etc…).
Specifically, it defines the various features of the platform
and specifies how to use them.

III. LMSGENERATOR: A MODEL-DRIVEN METHODOLOGY

A. Architecture and Functionality
LMSGENERATOR is the automatic implementation of

new learning management system programming approach.
Based on new development approach of software
engineering, it allows, from a business model repository, to
generate business components, and then proceeds by
assembling these components to generate E-learning
platforms. It proposes a multi-programming approach [8] that
merges the model-driven engineering, generative
engineering and component engineering. This compilation of
methods and techniques makes our approach more
appropriate to the evolving needs of the domain and
technology towards more classical and general approaches.

LMSGeneratoris [11] is an environment used for
integration of business components and generation of other
components from model. It aims the generation of E-learning,
executable on multiple runtime environments and
representing criteria of adaptability to different user
categories. Based on multi-layer and interconnected software
components (Fig. 1), this generator provides these users the
ability to:
 Maintains a repository of conceptual components

(business model repository) (PIM) durable, customizable,
flexible and reusable as well as an extensible repository of
platform execution model (PDM).

 Applies transformation, generation and refining rules into
models (element of business model repository) in order to
generate a business components runtime on the target
platforms, using PDM.

 Integrates existing components in its business components
repository.

 Describes and maintains models (structure) of E-learning
platform and stores them in a descriptive repository for use
as needed.

 Generates distance learning environments based on

predefined models in the platform descriptive repository or
by generating directly a new platform with the ability to
save its structure in the dedicated repository.

 Deploys the environments in target execution platforms
(on specific application servers and database servers).
LMSGenerator based on an infrastructure using a business

model repository and a technological model repository,
whose alimentation is currently the subject of our research
[12].

This infrastructure is composed of two component
categories. The first one involves in the generation process
based on model driven architecture approach and permitting,
through mechanisms of transformation or fusion, to define
and generate specific business components (brick) adapted to
the construction of a learning management system. While the
second use the art of reusable components engineering and
proceeds by assembling, adapting and refining, the generated
component to produce each time a new device for learning
adapted to the needs of training organizations.

The following figure identifies the software components
that support the two generation phases of
LMSGENERATOR which will be detailed in the following
section, in particular MDA generation phase.

Fig. 1. Lmsgenerator software architecture

B. Generating Process Based on MDA
This phase aims to build LMS business components

representing criteria of adaptability and dependent on a target
technology (target runtime). The starting point of this phase
is the elements of our business repository. This repository is
composed of business model designed to be used in the web.
For this reason we opted for models that must respect the
MVC paradigm (Model-View-Controller) [13].

This programming schema proposes the separation of the
application into three parts:
 The model, which contains the logic and the state of the

application;
 The view, which represents the user interface;
 The controller, which handles the synchronization

between view and model;
The essential point of this paradigm is to separate the

graphical objects of business objects, so they can evolve
independently and reused. It is in this sense that we proposed
in our approach a necessary and sufficient modeling process
to effectively build our business components. For this, we
used a subset of UML models to describe our business.

International Journal of Information and Education Technology, Vol. 3, No. 1, February 2013

11

Therefore our business model consists of three sub models:
 The business logic model to describe the business logic

component.
 The application logic model to structure and synchronize

between the business and the presentation of the
component.

 The presentation model to define the user interface,
regardless of the display means.
Each of these three models is structured under package

format covering the various UML diagrams of the analysis
and design stage, and using a good presentation of the
business model needs.

Once the model is presented, it undergoes a generation
process based on MDA approach supported by two software
components of LMSGENERATOR: Business Model
Transformer and Business Component Generator. Starting
from a conceptual business model(element of Business
Model Repository), we can apply a set of transformation,
derivations rules and successive enrichments to produce a
refined LMS business component(element of Refined
Business Component Repository) , ready to be used as a
fundamental building block in the construction of our
learning platform.

This generation phase consists of two basic steps. The first
step aims to generate from a business model a component
model independently of the technology expressed in XML
file format, while the second uses the XML file to generate a
business component depending on a target technology. The
first step is based on a generation process based on model
transformations adopting the transformation by
programmation approach using APIs manipulating UML
models provided in development environments.

Thus, with minimal effort, a component model
independent from technology can be quickly obtained by a
series of transformations, mergers or refinements of the three
sub models mentioned previously (Fig. 2). This
transformation by programming approach is the charge of
Business Model transformer (Fig. 1). This component model,
as close as possible to the needs of the application, specifying
the services provided and required, enter, in its turn, in a
generation process supported by Business Component
Generator (Fig. 1), adopting the transformation by template
approach. This second step is based on a set of conceptual
models for technology development defined in our
technological model repository (Fig. 1).

Starting from the description under XML file format of the
component independently of technology, Business
Component Generator identifies the XML element and
replaces its abstract description with a concretized
description and dependent technology, until obtaining
finished artifacts of the business component for a specific
platform execution and the XML file description of the
component. This XML file contains a detailed description of
the internal components of the business component (web
pages, business classes, control classes and the SQL schema).
It is also used to feed the component description repository
used at the time of platform construction. Once business
components are generated, they are refined and ready for use
by the process of LMS generation of the second phase. The
figure below, present a partial view of the generation process

based on MDA approach.

business component

Business Model

Component model
independant of technology

Technological model
repository

Business Model
Repository

Business logic

Presentation logicApplication logic

Business Model
Transformer

Business Component
Generator

Business Component
Repository

Fig. 2. Generation process based on MDA approach of lmsgenerator

IV. CASE STUDY

A. The Model Specification
In this section we have chosen as business model, a portion

of the communication model presented in [12] that would
serves as the forum model. This asynchronous
communication mean is considered as a stand-alone model
and plays at the same time an important role in E-learning
platform. After processing, we will be given a reusable
business component that can be easily integrated into any
platform. The main requirement of e-learning platforms,
which is a part of collaborative tools, is the discussion forum.
The same tool is used in web applications based on
collaborative work.

Discussion forums - or news groups - can create thematic
exchanges places where everyone can express themselves.
They can be federated or not by a moderator who is
responsible for "filtering" the questions or the answers and
also manages subjects. These forums are a continuous source
enriched by the contributions of each. They allow anyone
learning or teaching to ask a question and get the answer or
answers. Each question or answer is published by an
authenticated user for privacy concerns. The questions
belong to a particular topic and can have multiple answers.
Whereas answers are associated with one and only one
question.

B. The Modeling Process
Since the business model is the heart of our generation

process [16]. Its representation is a crucial task. For this we

International Journal of Information and Education Technology, Vol. 3, No. 1, February 2013

12

will follow the best suited approach to develop a dynamic
web application presented in [17]. At first, the needs will be
modeled using the UML use case (Fig. 3). They will be
represented by a more concrete HMI model (Human Machine
Interface) designed to react to future users. In our case we
used only create and delete operations to avoid complicating
our case study.

Fig. 3. Use case diagram of forum discusion model

In the context of object-oriented systems, the structure of

the code is defined by the software classes and their
groupings into groups called packages. So we need diagrams
representing software classes and showing the data contained
in them (called attributes), the services provided by those
classes (called operations) including the relationships
between the operations . UML proposes the class diagrams to
convey this information. The allocation of good
responsibilities to good class is one of the most delicate
problems of object-oriented design. For each service or
feature, you must decide which the class that will contain it.
We must therefore divide the integral system behavior
between design classes, and we must describe the induced
interactions using interaction diagrams. Each interaction
diagram will then represents a set of objects of different
classes working under a system execution scenario (use
cases). These diagrams also help to write the code inside the
operations, especially operations nested calls.

To present our case study model, we will use a notation
that has been proposed by I. Jacobson [18] and then
popularized by RUP [19]. The Analysis classes they advocate
are divided into three categories: Dialogues classes, controls
classes, and the entity classes. The Classes that allow
interaction between the website and its users are called
"dialogues". This is typically the screens proposed to the user:
entry forms, search results, etc. They come directly from the
analysis of the model. Those containing the kinematics of the
application will be called "controls". They make the
transition between dialogue and business classes, allowing
screens to manipulate information held by one or more
business object. Those representing business rules, are
termed "entity" They come directly from the domain model,
though they are each confirmed and complemented by a use
case.

The following diagram (Fig. 4) shows the forum detailed
design class diagram used as input to the generation process
of our approach. In this diagram the dialogue classes begins
with a << V >>, the control classes starts with a <<Ctr>> and
the business classes start with a << M >>, this notation meets
the MVC paradigm ;a paradigm that organizes our design
model into three categories of class : view category, control

International Journal of Information and Education Technology, Vol. 3, No. 1, February 2013

13

category, and entity category.

Fig. 4. Class diagram of forum discussion model

In this model, each use case is represented by a dialogue

class, a control class and a business class. For example in the

"Connect" use case, we will need the following classes:

VLoginForm, CtrLogin and Muser. The user via the

"VLoginForm" class specifies a login and password, and then

he sends the form to the "CtrLogin" class via airworthiness

links. This control class recovers the content form and uses

the "connection" method of the "Muser" business class for

verification of the login and the password. The same for all

classes of our model, each one of them collaborates for the

elaboration of a use case.

C. PIM to PIM Transformation

To convert the model in Figure 4 in a XML file, we will

use the programming transformation approach. Using the

API manipulating of UML diagrams, especially those

manipulating class diagrams, we will generate a file

describing our business model in an XML file format,

divided into four section in which we respect a meta-model

transformation target that we have developed and whose

overview is provided in figure (Fig. 5).

The root element of our XML file is the element

"BusinessComponent", this complex element has one

attribute "Name" and four sub-elements: ViewLayer,

ControleLayer, and ModelLayerDAOLAyer. ViewLayer is

the section representing the view portion of our component.

It includes all dialogue classes transformed into presentation

pages "ViewPage" regardless of the technology. These pages

contain input fields (Input), display fields or hyperlinks

(Link). The item "ControleLayer" includes control classes

transformed into control pages "ConrolePage." These control

pages communicate with business classes "BusinessClass"

contained in "ModelLAyer" to reformulate an answer

"Response" under a presentation page format. Finally, the

section "DAOLayer" represents the logical data model of our

component.

The algorithm used in this transformation is very simple:

we traverses the class diagram of our model class by class, if

the class name begins with a "V", its description will be

added in ViewLayer section as ViewPage. If the class name

International Journal of Information and Education Technology, Vol. 3, No. 1, February 2013

14

begins with a "Ctr" it is added in "ControleLayer" as

"ControlePage", and if the class name begins with an "M"; in

this case; it is a class entity that will be converted first into

business class and second into entity of a logical data model.

Without forgetting the associations between different classes

which ensure airworthiness link between all of these

elements, the portion of our transformation result is shown in

Figure (Fig. 6).

Fig. 5. Meta-model transformation target

<?xml version="1.0" encoding="utf-8" ?>

<BusinessComponent name="ForumComponent">

<ViewLayer>

<ViewPage name="ViewLoginForm" action="CtrLogin">

<Input name="Login" type="Text"></Input>

<Input name="Password" type="Text"></Input>

<Input name="Connexion" type="Button"></Input>

</ViewPage>

</ViewLayer>

<ControleLayer>

<ControlePage name="CtrLogin"BusinessClass="MUser">

<MethodeControle name="connexion">

<param name="Log" source="ViewLoginForm"></param>

<param name="Pass" source="ViewLoginForm"></param>

</MethodeControle>

<RequestViewPageName="Bienvenue"valid="OK">

</Request>

<Request ViewPageName="ErrorPage" valid="NO">

</Request>

</ControlePage>

</ControleLayer>

<ModelLayer>

<BusinessClass name="MUser">

<Atrribute name="Lastname"Type="String">

</Atrribute>

<Atrribute name="Firstname" Type="String">

</Atrribute>

<Atrribute name="Login" Type="String"></Atrribute>

<Atrribute name="Password" Type="String">

</Atrribute>

<Methode name="Connexion">

 <param name="Log" Type="String"></param>

 <param name="Pass" Type="String"></param>

 <Return type="Void"></Return>

</Methode>

</BusinessClass>

</ModelLayer>

<DAOLAyer>

<Table name="USER">

<Column name="Login" type="String"></Column>

<Column name="Password" type="String"></Column>

<Column name="Lastname" type="String"></Column>

<Column name="Firstname" type="String"></Column>

 </Table>

 </DAOLAyer>

</BusinessComponent>

Fig. 6. Partial component model under XML format

The XML file above contains a part of the description in

XML format of our business model (Fig. 4), which represents

only the authentication function. The root element of our

XML file is the "BusinessComponent" element. The value

"ForumComponent" of its "name" attribute is the name of the

final business generated component. This component will

include a presentation page named "ViewLoginForm"

containing two text boxes and a button. When you click on

the button, the form is sent to the control class specified in the

action attribute of "ViewPage". Once the form is recovered

by the control class, it is processed using the method

specified in "MethodeControle" (Connexion) of the class

specified in "BusinessClass" (Muser). Then a response is

formulated according to the result of method execution. In

this functional requirement we can associate a table of the

same description as the business class "Muser". At this table

we can add constraints at the table or column level.

D. PIM to PSM Transformation :

We uses XML file generated in the previous section to

generate a business component dependent on a target

technology. We chose the J2EE particularly MVC paradigm

to finalize our case study. This step is based on generative

engineering in which a PIM (XML file) is transformed into a

PSM. This transformation is based on the template approach.

From the specifications contained in the XML file we

generate finished artifacts. This transformation is based on

predefined technological templates stored in our

technological model repository. Here is the partial result of

this transformation.

Fig. 7. J2EE web application

The first element of our generation process is the

application component. It is a dynamic web application

respecting the MVC2 paradigm. It consists of three packages:

ViewLayer, ControlLayer, and ModelLayer. The ViewLayer

package is the presentation layer of our application. It

contains the following JSP pages: VAddQuestion.jsp,

VAddReply.jsp, VAddSubject.jsp, VDelQuestion.jsp,

VDelReply.jsp, VDelSubject.JSP, and VLoginForm.jsp

VErrorLogin.jsp. The ControleLayer package includes the

International Journal of Information and Education Technology, Vol. 3, No. 1, February 2013

15

following servlets controls: CtrAddQuestion.java,

CtrAddReply.java,CtrAddSubject.java, CtrDelQuestion.java,

CtrDelReply.java, CtrDelSubject.java, and CtrLogin.java.

These servlets control support recovery form pages and make

their treatment based on the methods of the following classes

of ModelLayer Package: MQuestion.java, MReply.java,

MSubject.java, and Muser.java.

The second element of our generation process is the script

to create database generated under SQL format with the data

description language. The object-relational mapping is done

manually via tools such as Hibernate currently being worked

on to make this process automatic.

V. CONCLUSION

Our approach facilitates the design of e-learning platforms,

through their construction by assembling components

generated from business model. It also accelerates their

development and deployment by the principle of software

reuse, as it facilitates their development by providing a clear

separation between specifying and implementing

components. The main advantage of our approach is the

consideration of future developments in technology or

domain. These developments are supported by modifying (or

creating) generators associated with the models that will

automatically propagate changes across all environments and

components products.

We presented in this work, an overview of our approach

and its implementation (LMSGENERATOR) and we focus

on the generation phase based on MDA approach. A target

meta-model was presented to facilitate understanding the

transformation rules of PIM to PIM types. Future work

would include the finalization of this generator, by defining

generation rules implemented in these cores that are

associated with PHP and .NET technologies and by feeding

the technological repository currently containing until now

only J2EE models used in our case study.

REFERENCES

[1] J. Bézivin, “Sur les principes de base de l’ingénierie des modèles,”

RTSI-L’OBJET, vol.10, no. 4, 2004, pp. 145-157.

[2] Action IDM. [Online]. Available: http://www.actionidm.org.

[3] OptimalJ - Model-driven development for Java. Electronic Source:

Compuware. [Online]. Available:

http://www.compuware.com/products/optimalj/, 2003.

[4] Softeam, Support de formation Objecteering 6/MDA, Modeler version

2.0, Janvier, 2008.

[5] AndroMDA. (2008). [Online]. Available: http://www.andromda.org/.

[6] XMF-Mosaic. Electronic Source. [Online]. Available:

http://www.xactium.com.

[7] S. Diaw, R. Lbath, and B. Coulette. State of the art of software

development based on model transformations. [Online]. Available:

http://www.tsi.revuesonline.com/article.jsp?articleId=14833

[8] R. Dehbi, M. Talea, and A.Tragha, “The generation approach of

Multi-target learning management system,” presented at the

International Conference on Education Technology and Computer,

Cape Town, South Africa, August 18-19, 2012.

[9] Soley et al., MDA (Model-Driven Architecture), White Paper, Draft 3.2,

OMG Staff Strategy Group, 27, November, 2000.

[10] X. Blanc, MDA en action : Ingénierie logicielle guidée par les modèles,

Eyrolles, 2005.

[11] R. Dehbi, M. Talea and A. Tragha, “Lmsgenerator: multi-target

learning management system generator based on Generative

Programming and Component Engineering,” presented at the IEEE

International Conference on Education and E-Learning Innovations,

Sousse, Tunisia, July 1-3, 2012.

[12] R. Dehbi, M. Talea, and A. Tragha, “The modeling elements of

LMSGENERATOR business repository,” presented at the IEEE

international Colloquium in Information Science and Technology, Fes,

Morocco, October 22-24, 2012.

[13] J. Galloway, Professional ASP.NET MVC 3, John Wiley & Sons, 2011.

[14] J. Pauli and G. Ponçon, Zend framework, Eyrolles, 2008.

[15] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices

and Design Strategies, Prentice Hall, 2003.

[16] E. Evan, Domain-Driven Design: tackling complexity in the heart of

software, Addison-wesley, 2003.

[17] P. Roques, UML2: Modéliser une application web, 4 ed. Eyrolles,

2007, vol. 1, pp. 14-21.

[18] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software

Development Process, 1 ed, Addison-Wesley, February 14, 1999.

[19] Best Practices for Software Development Teams, Rational Software

White Paper, Rational Unified Process, TP026B, Rev 11/01.

Rachid Dehbi was born in Casablanca, Morocco in

1977. In 2002 received the Graduate of Computer

Science Engineer from INSEA (Nationnal Institute of

Statistics and Applied Economics). In 2011

Ph-D-Student at Faculty of Science Ben M’sik, MITI

laboratory, Hassan II university. In 2003 Certified

Lotus professional in development of Lotus Notes and

Domino application. In 2006 IBM Certified System

Administrator Lotus Notes and Domino R6/6.5. He

worked for five years at the Ministry of Interior in which he served as

department head. In 2007 he joined office of vocational training and

promotion of work where he occupies until now the post of animator trainer

and trainer at the training complex for offshoring business and information

technologies and he is also the head of IT development pole. In 2008 he

joined the Moroccan school of engineering science where he served until

now as Oracle product trainer. He has published this year nine papers in

international conferences and journals. His work focuses on e-learning and

model driven engineering. He is an expert on developing web application

based on J2EE, PHP and .NET technologies.

Mr Rachid dehbi is an IACSIT member, a member of IEEE Moroccan

section, and organization chair of ICCMA’13 (IEEE International

Conference on Computer Medical Applications) that will be held in Sousse

(Tunisia) on the January 20-22, 2013.

Mohamed Talea was born in Casablanca, Morocco

in 1964, Professor of Higher Education at the

Faculty of Sciences Ben M’Sik, UNIVERSITY

HASSAN II MOROCCO CASABLANCA. He

obtained his PhD in collaboration with the LMP

laboratory in Poitiers University, FRANCE in 2001.

He obtained a Doctorate of High Graduate Studies

degree at the University Hassan II-Mohammedia in

1994. Actually he is the Director of Information

Treatment Laboratory. He has published twenty papers in conferences and

national and international journals. His search major field is on Systems

engineering, in security of system information.

Abderrahim Tragha was born in Casablanca,

Morocco in 1959. He received the B.S. degree in

applied mathematics from Mohammed V University,

Morocco, 1983, and Doctorate of High Graduate

Studies degree in Theories of Computer Sciences from

Mohammed V University, Morocco, 1988 and

Doctorate of state degree (or Ph D) July 2006 in

Computer sciences from Hassan II Mohammedia

University, Morocco. In 1988, he joined the faculty of

science of Ben M’sik, Hassan II Mohammedia University, Morocco where

he is currently a Professor in Department of mathematics and computer

sciences.

 He directs research and supervises thesis in Hassan II Mohammedia

University. Actually he is the Director of Information Treatment and

Modeling Laboratory. He has published twenty papers in conferences and

national and international journals. His search major field is on Systems

engineering, in security of system information and in computational

linguistic.

