

Abstract—Aspect oriented programming is a new

programming paradigm. AOP is based on object
oriented programming. Most of the researchers target
this new paradigm towards the programming not for
testing. Testing of aspect oriented programs is an
emerging field of research as a very few research work
is going on currently on ASP.

In this paper, we investigate a new way of testing aspect
oriented programs. Here we propose a framework of
automated test data generation for evolutionary testing on
AOP. On the basis of generated data we will compare
evolutionary testing with random testing in terms of effort
reduction and improvement of test effectiveness. We will
justify our comparison with the help of empirical study on
AspectJ programs.

Index Terms—Aspect oriented programming, testing AOP,
debugging, and Search based optimization techniques.

I. INTRODUCTION

In software development life cycle, testing is important
part. The IEEE definition of testing is "the process of
exercising or evaluating a system or system component by
manual or automated means to verify that it satisfies
specified requirements or to identify differences between
expected and actual results." The quality of any software
product is checked through the testing. More than half of
budget of a software project spend on testing even though,
it is not guaranteeing the correctness of software. There has
been a high level of interest to automate the testing process
in software development. To assuring the quality of aspect
oriented projects, testing is the only process.

The process of automated software testing requires an
approach to select the test case. The main aim of testing is
to cover the programming features. Code coverage is used
to measure the extent of software code to be tested.
Structural testing involves branch and path coverage testing,
which is based on measuring the software code. Branch
coverage is widely used testing techniques and it is the basis
of several industry standards because it is not an extremely
strict coverage criterion [6, 13]. These standards are used

Manuscript received June 2, 2011.
Anuranjan Misra is working as Professor and Dean Academics at

Bhagwant Institute of Technology, Ghaziabad, India.
Raghav Mehra is working as Associate Professor, at Bhagwant Institute

of Technology, Muzaffarnagar, India.
Mayank Singh is working as Assistant Professor, Computer Science

Department, J.P. Institute of Engineering & Technology, Meerut , India.
Jugnesh Kumar is working as Assistant Professor at Manav Rachna

College of Engineering, Faridabad, India.
Shailendra Mishra is working as Professor and Head of Department of

Computer science and Engineering at kec dwarahat uttarakhand

without any concern for the programming paradigm
adopted. Manual test data generation for achieving code
coverage is expensive, error prone. Branch coverage is the
most widely used technique, so it gains a lot of attention
from the testing researchers [14, 28]. Evolutionary testing
technique has been very effective at automated test data
generation for branch coverage [19, 28].

Automated test data generation is easier for object
oriented programs than aspect oriented programs. In this
paper we investigate two testing techniques i.e.
evolutionary testing and random testing, for aspect oriented
programs. These two testing techniques are not new for
object oriented, but there is less empirical study available
for aspect oriented programs. There has been much interest
in advanced automated test data generation techniques for
procedural or object oriented programs but none of these
techniques has been applied to the AOP paradigm. Because
we don’t have sufficient previous data about this, so we are
unable to measure that how well these techniques can be
applied to AOP.

In this paper we give an empirical study for automated
test data generation for evolutionary testing. This paper
provides a framework for automated testing of aspect
oriented programs. Here we also presents a software tool
that will help to automate the process of testing aspect
oriented software and identify the ways to reducing the
effort and increasing the effectiveness of testing. Here we
also give the empirical result to show the reduction of test
inputs for evolutionary testing of aspect oriented programs.
With the help of reduction test input data, we will show the
effectiveness of evolutionary testing on AOP. This paper
also gives the comparison study of evolutionary and random
testing on the basis of automatic generated test data.
Reduction of test input is done through the removing of
irrelevant branch parameters. Slicing removes any part of
the program that cannot influence the semantics of interest
in any way. Our empirical study uses only AspectJ language
programs.

II. DIFFERENCE BETWEEN RANDOM TESTING AND
EVOLUTIONARY TESTING

Random testing is searching based software testing
technique in which test data has been chosen randomly.
Random testing helps to cover many structural targets as,
usually many sufficient input data sets exist which can be
selected to execute those structures in code [10, 14, 21].
Evolutionary testing is also a search based software testing
approach based on the theory of evolution. Theoretically it
was proven that evolutionary testing achieves better
performance. In this paper, we will prove this theoretical

Novel Approach to Automated Test Data Generation for
AOP

Anuranjan Misra, Raghav Mehra

International Journal of Information and Education Technology, Vol. 1, No. 2, June 2011

179

., Mayank Singh, Jugnesh Kumar, and Shailendra Mishra

concept with empirical study using AspectJ programs.

III. APPROACH
In this paper, we present a framework for automated

generation of test data for aspect oriented programs. This
framework is based on existing framework for object
oriented programs. The main objective of this framework is
to generate test data to achieve aspectual branch coverage
and calculate total effort. On the basis of this framework,
we implement a testing tool which integrates both random
testing and evolutionary testing. We use AspectJ programs
to implement this framework. The generated test data is
only unit tests for the base code with respect to gcaspect
code. This generated unit test data can also be used for
integration testing. Here our main concern only the
aspectual branches instead of all the branches.

In this framework, we first have AspectJ code which will
be converted into plain java code. Then we use slicing to
identify the aspectual branches only. These aspectual
branches are our main aim to test in evolutionary and
random testing of AOP. Aspectual branch includes
predicates and the methods in aspects. After finding the
relevant aspectual branches now we have to identify the
relevant parameters of the methods of the base classes.
Because in the branch all the parameters are not relevant to
test, so the irrelevant parameters are identified and removed
from the base class. With the help of this step, we reduce
the data for testing. Now the actual evolutionary testing is
performed on the relevant parameters of aspectual branches
and generates the test data. On the basis of generated test
data, the coverage of aspectual branches is calculated and
measures the effort required to generate this.

Fig. 1. Framework for automated testing of AOP

To convert code from AspectJ to Java code, AspectJ
Compiler 1.0.6 has been used. To identify aspectual
branches we use an aspect branch coverage measuring tool
“AspectMeasure” which is developed in Java. This
framework has been implemented with a software tool
which can test Java programs using random and
evolutionary testing techniques. To test each branch we use
JUnit based test suit, which generate at least one test case
for each identifies branch. Finally we measure the coverage
of aspectual branches. The effort calculations for the testing
process are output based on the testing techniques used.

For evolutionary testing, effort is calculated by in terms of
runtime and number of evaluations. For random testing it is
calculated using number of generations for random testing.
As the effort for evolutionary and random testing is
calculated using the same way, the results are directly
comparable.

A. Input domain reduction framework for evolutionary
testing

The input domain reduction techniques [17, 18] was
introduced for constraint based testing. It typically involves
simplifying constraints using various techniques and
generating random inputs for the variable with the smallest
domain. The process is repeated until the target structural
entry such as a branch has been parameters.
This framework has been implemented as an extension to
the framework proposed above. This design uses
evolutionary testing technique to test aspectual branches
where test data is reduced through the reduction of
irrelevant parameters. These reduced test inputs are used to
test the target method containing the branch.

Fig. 2. Framework for reduction of test inputs for ET of AOP

With the help of slicing the irrelevant parameters has
been identified for each aspectual branch. The occurrence of
each parameter is checked within the slice to determine its
relevancy. If a parameter name or its type does not appear
within the slice, then it is considered as an irrelevant
parameter. After slicing and finding the relevant parameters
for test, a new java code is produced for each branch where
reduced input test data is possible. Then we generate tests
for that branch and the resulting aspectual coverage and
effort in terms of number of fitness evolutions is recorded.
Original program is tested, the effort and coverage is
measures. Then slicing data is tested and measured to
compare this data with the original measured data. This
result will tell us that how much reduction is possible in
effort and improvement in coverage of branches.

IV. SLICING

Slicing is a static analysis technique that helps to create a

AspectJ Code

Identifying Irrelevant
Parameters

Use AspectMeasure tool to
test Branches with Irrelevant

Parameters

Analyze Results

Calculate Aspectual Branch
Coverage & Effort

Generate Test Suites
Identify Aspectual

Branches

Java Code

Program Slicing

AspectJ Code

Reduced test data by removing
irrelevant parameters

Perform Testing

Analyze Results

Calculate Aspectual Branch
Coverage & Effort

Generate Test Identify Aspectual
Branches

Java Code

International Journal of Information and Education Technology, Vol. 1, No. 2, June 2011

180

reduced version of a program by placing its attention on
selected area of semantics. The process removes any part of
the program that cannot influence the semantics of interest
in any way. Program slicing can be applied to the field of
software testing, measurement, debugging or used to better
understanding the internal working of a program [12, 13].

The reduced version of the program is called slice and the
semantics of interest is known as slice criterion. Based on
the slice criterion, it is possible to produce backward or
forward slices. Backward slice consists of the set of
statements that can influence the slice criterion based on
data or control flow. Forward slice contains the set of
statement that are control or data dependent on the slice
criterion, which includes any statement that can be affected
by the slice criterion. In this paper we use backward slices
of Java programs [12, 13].

V. EVOLUTIONARY TESTING

Evolutionary testing is a popular testing technique which
is based on theory of evolution. Every generation produced
by applying genetic operators to individually which imitate
the mating and transformation of natural generics. As the
generations increase, the population contains more
individuals with high evolution function. The procedure
stops when an adequate amount of fitness is has been
achieved or the maximum number of generations have been
reached. This method of testing has been found to achieve
better performance than random testing since it concentrates
the search towards finding test data with high fitness values.
[33]. Typically approximation level and local distances are
used in combination for fitness calculation of individual test
data. For branch coverage, a fitness value closer to 0 is
desired as a fitness value of “0” means that the branch has
been covered. [33]

Example: Fitness calculation for branch coverage-
Suppose, X = 10 and Y = 5.
Target Predicate: if (X=Y)
Local Distance = |X-Y| = 5
Approximation Level = 2 (Suppose)
Fitness = Local Distance + Approximation Level = 5+2 = 7.

VI. IMPLEMENTATION

Firstly Aspectj program under test is compiling using the
AspectJ compiler component. To compile the AspectJ files
we use ajc compiler. Then the AspectJ code is converted
into equivalent Java code using the code convertor
component. The resultant Java code is compiled using Java
compiler component. The branch identifier component is
used to find aspectual branches from the Java code. Based
on user preference, the program then forward the identified
branches either to test goal generator for random or
evolutionary testing or to code slicer for evolutionary
testing of aspectual branches with input domain reduction.

If the former route is choosing, then all aspectual
branches are sending to the test goal generator for testing. If

the later route is chosen, backward slicing is preformed
using the code slicer component. On each aspectual branch
and the resulting slices and previously identified branches
are passed on to the code parser component. The code
parser component identifies the branches where input
domain reduction by removing irrelevant parameters is
possible. A new version of code for each of these identified
branches is generated using the code transformer
component and the branches are then forwarded to test goal
generator for testing transformed versions of the code with
reduced parameters.

VII. EXPERIMENTAL SETUP

In the empirical study we use a suite of 10 programs
written in AspectJ to apply the proposed approach. The
following table gives the details of these programs that
showing the program name, the line of code of the complete
program, the base classes used to drive the aspects under
test together with the aspects, the number of aspectual
branches which include both branches from predicates in
aspects and methods in aspects and the number of aspectual
branches from predicates in aspects. Only the aspectual
branches from predicates are used to conduct domain
reduction in the empirical studies.

TABLE1. PROGRAMS WHICH ARE USED IN STUDY

Program Whole
Program
LOC

Test
driver
LOC

Aspectual
Branches
/Targets

Aspectual
Branches
from
Predicates

Hello 86 33 3 0
Figure 325 147 1 0
NullCheck 134 134 6 4
QuickSort 204 127 4 0
Queue 429 429 12 12
DCM 375 375 86 82
ProdLine 907 907 21 8
PushCount 137 119 1 0
LawOfDemeter 1041 185 107 107
NonNegative 116 94 5 4

In the evolution of aspectra, xie and zhao were used these
programs [43]. These programs also include one aspect
oriented design pattern implementation by hannemann and
Kiczales [16]. These AspectJ programs are the benchmarks
which include exception handling, updating and filtering. In
the empirical study we compare random testing with
evolutionary testing for aspect oriented programs. To get
the correct data, we had 20 trials. Each trail is applied on
both random and evolutionary testing techniques.

VIII. EMPIRICAL STUDY

The main goal of this empirical study is to find the
effectiveness of evolutionary testing technique with
comparison to random testing of aspect oriented programs.
Till date, random testing has been heavily used to test
aspects but for evolutionary testing we don’t have any test
data.

A. Metrics & Measures

Test adequacy criterions are used to measure how much
of the program has been testing. Aspectual branch coverage
is considered as the test adequacy criterion in this study as it

International Journal of Information and Education Technology, Vol. 1, No. 2, June 2011

181

is the industry standard for test measurement. The effort for
testing is measured using different metrics for evolutionary
and random testing. In evolutionary testing, the number of
fitness evaluations required to cover a branch is considered
as standard measurement for effort. However, random
testing uses the number of generation as the measurement
for effort. In this comparison, the number of fitness
evaluations for evolutionary testing and the number of
generations for random testing are directly comparable. The
upper bound set for number of evaluations for evolutionary
testing and the number of generations for random testing
has been set to 10,000.

The 10 subjects introduced previously have been used to
conduct experiment in the study. The experiments involves
testing aspect oriented programs using evolutionary testing
techniques to compare and analyze their result in terms of
effort taken for testing and code coverage. The table 2
presents the list of programs and their classes that was
possible to be tested. The table also states the number of
aspectual branches used as targets for testing. The aspectual
branches include branches of all predicates, as well as
pointcut branches which translate to covering AOP related
methods after weaving.

In table column 1 represents the numbering of classes.
Column 2 represents the program under test. Column 3
represents the name of classes under test. Column 4
represents the number of aspectual branches that were used
as targets for testing.

TABLE2. TEST OBJECTS CLESSES WITH ASPECTUAL BRANCHES

No Program Class Aspectual
Branches

1 Hello HelloAspetcs 3
2 Figure DisplayUpdating 1
3 NullCheck Stack6 6
4 QuickSort Stats 4
5 Queue QuesueStateAspect 12
6 DCM ClassRelationship 2
7 DCM Metrics 36
8 DCM Stack4 48
9 ProdLine CC 2
10 ProdLine Cycle 2
11 ProdLine DFS 4
12 ProdLine MSTKruskal 4
13 ProdLine MSTPrim 4
14 ProdLine Number 2
15 ProdLine Weighted 3
16 PushCount StackOrig 6
17 LawOfDemeter Percflow 31
18 LawOfDemeter Pertarget 76
19 NonNegative NonNegative 5

The result presented in the above table indicates that a
total of 19 classes were possible to be tested from all 10
programs. It is worth monitoring that tool cannot instrument
all classes that relate to abstract classes, interfaces or
contain static global variables of primitive types. The total
number of aspectual branches tested is 251. All branches
have been considered in this study regardless of whether
they were covered during the test or not.

Here we represent a graph that shows the result of effort
comparison between evolutionary and random testing. The
x-axis in the graph represents all classes that have been
testing and y-axis presents the percentage reduction in effort
achieved by evolutionary testing in comparison to random

testing.

 Fig. 3. Effort Reduction in Classes

The results in the graph indicate that 2 out of 19 classes

has an increase in effort in evolutionary testing, 5 out of 19
classes took the same effort and remaining 12 branches had
reduction in effort when compared to random testing.

Further investigation revealed the fact that the classes
which had increase in effort for testing consisted of trivial
branches. Theoretically, evolutionary testing should take
less effort for covering branches when compared to random
testing, but in the case of these two classes that was not the
case. A thorough investigation revealed that evolutionary
testing took more average effort due to random spikes in the
number of evolutions. This is possible evolutionary
algorithms have random test data generation mechanism at
the heart of it.

The blow graph presents the improvement in coverage
after using evolutionary and random testing technique on
the 10 programs under test. The x-axis represents each
program and the y-axis represents the improvement in
branch coverage as a result of using evolutionary testing.
The improvement in coverage is calculated using the
following formula-

Coverage Improvement = Evolutionary Testing Coverage –
Random Testing Coverage

Fig. 4. Coverage Improvement in Tested Programs

From the graph it is observed that 4 out of 10 programs
achieved the same branch coverage with evolutionary and
random testing. The remaining 6 programs obtained better
branch coverage with evolutionary testing. An interesting
observation is also made when the results of branch
coverage improvement and effort reduction are compared. It
is seen that all 5 programs which had an improvement in
branch coverage also has a reduction in effort using
evolutionary testing.

So we can conclude this study is that Evolutionary testing
does not only achieve better branch coverage than random

International Journal of Information and Education Technology, Vol. 1, No. 2, June 2011

182

testing, it also does it with less effort. This study provides
evidence that evolutionary testing is a better technique for
testing aspect oriented programs in comparison to random
testing.

IX. THREATS TO VALIDITY

The threat to external validity primarily includes the
degree to which the subject programs and testing techniques
under study are representative of true practice. The AspectJ
benchmarks are collected from the web and reused
benchmarks used in the literature in testing and analyzing
aspect oriented programming. Another threat is that the
random testing test data has not been generated by us. We
have used previously tested data by the researchers, so the
validity of random testing data is under doubt.

A potential source of bias exists of a relatively large
number of test subjects and branches were not used in the
experiments. Another source of bias can be the result of not
using a wide variety of programs. These threats were
overcome by using as many test subjects as possible
obtained form a variety of source. For the experiment
concerning domain reduction, all test subjects which was
possible to be tested have been used.

X. RELATED WORK

Quite a few approaches have been proposed for testing
aspect oriented programs, which includes model checking,
data flow and state based testing [4, 6].

There exists neither previous approach to optimization of
test data generation nor empirical result on advanced test
data generation (beyond random testing) for AOP. This
current lack of AOP test automation progress and the
associated empirical paucity poses barriers to increased
uptake and practical application of AOP techniques [9].

In 2002, model checking was first presented by G.
Denaro and M.Monga, to verify various aspect properties
appropriate for formal verification. Later a similar approach
based on three valued model was proposed by H. Li, S.
krishnamurthi and K. Fisler, which verified the features and
interections as a result of weaving aspect oriented programs
[2, 6].

State based testing approach for aspect oriented programs
where introduced in 2005 by D. Xu, W. Xu and K. Nygard.
This involved using aspectual state model to record the
effects of aspects on the state models of classes [4].

JamlUnit was proposed by C.V.Videira and T. C. Ngo, as
an aspect oriented extension of the Java unit testing
framework called JUnit. It was specifically developed for
Java Aspect Markup Language where aspects are
represented using Java base classes and XML binder [5, 8].

Dr. T. Xie introduces the Aspetcra framework for aiding
in the automated testing of aspect oriented programs to
reduce manual effort in testing [6].

Other related work on the general area of testing aspect
oriented programs include fault model for AOP [3,4,5,13],
which could potentially be used to help assess the quality of
the test data generated by our approach in addition to the
aspectual branch coverage being used currently [45].

XI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel approach to
automated test data generation for AOP. This approach is
based on evolutionary testing, which uses search based
optimization to target hard to cover branches. This paper
proposed a framework for testing aspect oriented programs
automatically using existing object oriented testing tools,
where aspectual branches of the program are identified and
tested.

Another framework has been proposed based on this
framework which enables to reduce the size of the input
domain for evolutionary testing. The result of empirical
study on several hundred search problems drawn from 10
AOP benchmark programs show that the evolutionary
approach is capable of producing significantly better results
than the current state of the art.

In future work we can extend the implementation tools
for conducting more experiments to get more results on
automated testing of aspect oriented programs. Our future
plan is to develop other more advanced test data generation
techniques such as mutation testing techniques. To apply
mutation techniques first we have to identify the mutant
operators for aspect oriented programs, then to develop a
tool for empirical study about mutation testing. In this paper,
empirical study based on branch coverage, so our future
plan is to achieve other type of coverage in AOP systems
like data flow coverage between aspect and base code.

REFERENCES

[1] AspectJ compiler 1.2,. http://eclipse.org/aspectj/. (Accessed on 31st
Jan, 2011)

[2] R. T. Alexander, J. M. Bieman, and A. A. Andrews. Towards the
systematic testing of aspect-oriented programs. Technical Report CS-
4-105, Department of Computer Science, Colorado State University,
Fort Collins, Colorado, 2004.

[3] K. Arnold, J. Gosling, and D. Holmes. The Java Programming
Language. Addison-Wesley Longman Publishing Co., Inc., 2000.

[4] B. Beizer. Software Testing Techniques. International Thomson
Computer Press, 1990.

[5] L. Bergmans and M. Aksits. Composing crosscutting concerns using
composition filters. Commun. ACM, 44(10):51–57, 2001.

[6] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing
based on Java predicates. In Proc. International Symposium on
Software Testing and Analysis, pages 123–133, 2002.

[7] U. Buy, A. Orso, and M. Pezze. Automated testing of classes. In
Proc. the International Symposium on Software Testing and Analysis,
pages 39–48. ACM Press, 2000.

[8] C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness
tester for Java. Software: Practice and Experience, 34:1025–1050,
2004.

[9] Foundations of Software Engineering, Microsoft Research. The
AsmL test generator tool.
 http://research.microsoft.com/fse/asml/doc/AsmLTester.html.

[10] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating
finite state machines from abstract state machines. In Proc.
International Symposium on Software Testing and Analysis, pages
112–122, 2002.

[11] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In Proc. 3rd
International Conference on Aspect-Oriented Software Development,
pages 26–35, 2004.

[12] JUnit, 2003. http://www.junit.org.
[13] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic

execution for model checking and testing. In Proc. 9th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 553–568, April 2003.

[14] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In Proc. 11th
European Conference on Object-Oriented Programming, pages 220–
242. 1997.

International Journal of Information and Education Technology, Vol. 1, No. 2, June 2011

183

[15] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented
programming with adaptive methods. Commun. ACM,44(10):39–41,
2001.

[16] Parasoft. Jtest manuals version 4.5. Online manual, April, 2003.
http://www.parasoft.com/.

[17] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and
analysis for aspect-oriented programs. In Proc. 12th International
Symposium on the Foundations of Software Engineering, pages 147–
158, 2004.

[18] D. Saff and M. D. Ernst. Automatic mock object creation for test
factoring. In Proc. the Workshop on Program Analysis for Software
Tools and Engineering (PASTE’04), pages 49–51, June 2004.

[19] A. L. Souter, D. Shepherd, and L. L. Pollock. Testing with respect to
concerns. In Proc. International Conference on Software Maintenance,
page 54, 2003.

[20] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N degrees
of separation: multi-dimensional separation of concerns. In Proc. 21st
International Conference on Software Engineering, pages 107–119,
1999.

[21] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking
programs. In Proc. 15th IEEE International Conference on
Automated Software Engineering (ASE), pages 3–12, 2000.

[22] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation
with Java PathFinder. In Proc. 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 97–107, 2004.

[23] T. Xie, D. Marinov, and D. Notkin. Improving generation of object-
oriented test suites by avoiding redundant tests. Technical Report
UW-CSE-04-01-05, University of Washington Department of
Computer Science and Engineering, Seattle,WA, Jan. 2004.

[24] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework for
detecting redundant object-oriented unit tests. In Proc. 19th IEEE
International Conference on Automated Software Engineering, pages
196–205, Sept. 2004.

[25] T. Xie, D. Marinov, W. Schulte, and D. Noktin. Symstra: A
framework for generating object-oriented unit tests using symbolic
execution. In Proc. the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS
2005), April 2005.

[26] T. Xie, J. Zhao, D. Marinov, and D. Notkin. Detecting redundant unit
tests for AspectJ programs. Technical Report UW-CSE-04-10-03,
University of Washington Department of Computer Science and
Engineering, Seattle,WA, Oct. 2004.

[27] D. Xu, W. Xu, and K. Nygard. A state-based approach to testing
aspect-oriented programs. Technical Report NDSU-CS-TR04-XU03,
North Dakota State University Computer Science Department,
September 2004.

[28] J. Zhao. Tool support for unit testing of aspect-oriented software. In
Proc. OOPSLA’2002 Workshop on Tools for Aspect-Oriented
Software Development, Nov. 2002.

[29] J. Zhao. Data-flow-based unit testing of aspect-oriented programs. In
Proc. 27th IEEE International Computer Software and Applications
Conference, pages 188–197, Nov. 2003.

[30] Y. Zhou, D. Richardson, and H. Ziv. Towards a practical approach to
test aspect-oriented software. In Proc. 2004 Workshop on Testing
Component-based Systems (TECOS 2004), Net.ObjectiveDays, Sept.
2004.

[31] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

[32] M. Weiser. Program slicing. In International Conference on Software
Engineering Proceedings, pages 439 449, 1981.

[33] P. McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14(2):105--156, 2004.

Anuranjan Misra is working as Professor and Dean
Academics at Bhagwant Institute of Technology,
Ghaziabad, India. He had authored 20 books on
computer engineering and its application areas. He
had been reviewed many research papers
conferences organized by IEEE computer society,
Los Angles. He has been published many research
papers in reputed Journals of India and aboard. He
had member of many international professional

societies.

Raghav Mehra is working as Associate Professor, at Bhagwant Institute
of Technology, Muzaffarnagar, India. He has been published many
research papers in reputed Journals of India and aboard. He had member of
many international professional societies.

Mayank Singh is working as Assistant Professor, Computer Science
Department, J.P. Institute of Engineering & Technology, Meerut, India.

Jugnesh Kumar is working as Assistant Professor at
Manav Rachna College of Engineering, Faridabad,
India.

Shailendra Mishra is working as Professor and Head of Department of
Computer science and Engineering at kec dwarahat uttarakhand

International Journal of Information and Education Technology, Vol. 1, No. 2, June 2011

184

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

