

Abstract—In this paper, we present the first stabilizing

solution to the ℓ-exclusion problem in arbitrary networks. The

ℓ-exclusion problem is a generalization of the mutual exclusion

problem to ℓ (ℓ ≥ 1) processes, instead of 1, are free to use a

shared resource simultaneously. The algorithm is semi-uniform

and its space requirement is (ℓ + 3)∆r states for the root r, 4 ×

∆2p × Lmax states for each non root process p, where ∆p is the

degree of process p and Lmax is the diameter of the

communication network. This is the first ℓ-exclusion algorithm

on arbitrary networks with the property that the space

requirement is independent of ℓ for all processes except the root.

The proposed protocol is distributed, deterministic, and does

not use a pre-constructed spanning tree. Since our algorithm is

self-stabilizing, it does not require initialization and withstands

transient faults. The stabilization time of the algorithm is

O(⌈n/l⌉ × (ℓ + Lmax)) rounds.

Index Terms—Distributed systems, fault-tolerance,

self-stabilization, ℓ-exclusion, propagation of information with

feedback.

I. INTRODUCTION

In 1974, Dijkstra introduced the property of

self-stabilization in distributed systems and applied it to

algorithms for mutual exclusion [1]. Self-stabilizing

algorithms are able to withstand transient failures. We view a

fault that perturbs the state of the system but not the program

as a transient fault.

The ℓ-exclusion problem is a generalization of the mutual

exclusion problem where ℓ processes are allowed to execute

the critical section concurrently. A number of ℓ-exclusion

algorithms are available in the literature [2]. The problem

was first defined and solved by Fischer, Lynch, Burns, and

Borodin in a generalized test and set model. The first

token-based self-stabilizing algorithm for the ℓ-exclusion

problem was presented in [3]. This solution is a

generalization of Dijkstra’s algorithm [1] on a ring. The

algorithm in [4] is the second solution to the ℓ-exclusion

problem, but unlike the first solution it assumes the shared

memory model. In both cases the space requirement depends

on the size of the network and ℓ. Algorithms in [4] and [3]

require O(2n) and Ω(nl) states per process, respectively,

where n is the size of the network. Algorithm [5] works on

tree and requires O(Max2∆+1) where ∆ is degree of the

network and Max ≥ ℓ. First attempts to solve the ℓ-exclusion

 Manuscript received

November 25, 2012;

revised March 13, 2013.

 Mehmet Hakan Karaata is with Department of Computer Science and

Department of Computer Eng P.O. Box 5969, Safat 13060 Kuwait (e-mail:

karaata@gmail.com).
 Rachid Hadid is with MIS, Universite ́ de Picardie Jules Verne , 33, rue

Saint Leu, 80039 Amiens Cedex 01, France.

problem with a space complexity independent of n (and

almost independent of ℓ) are presented in [6] for rings, and [7]

for trees.

The algorithm in [8], present the first self-stabilizing

ℓ-exclusion in message passing model in tree networks. In [9],

two randomized uniform solution in unidirectional rings are

presented. The first algorithm requires (ℓ × log(n)) states per

processor and the second algorithm requires (ℓ × log2(n))

states per processor. Recently, [10] propose a random walk

solution in message passing model in ad hoc network. The

drawback of this kind of the solution is that the waiting time

of processor to enter the critical section is not bounded.

In this paper, we present the first self-stabilizing

ℓ-exclusion algorithm in arbitrary networks. We provide an

extension of the approach introduced in [7] to arbitrary

networks. Our algorithm is token-based: a process can enter

its critical section only upon receipt of a token. Our algorithm

uses the well-known propagation of information with

feedback scheme. Specifically, we use the new PIF scheme,

called Propagation of information with Feedback and

Cleaning (PFC) introduced in [11]. In our algorithm, all

processes distribute tokens in the breadth-first manner, i.e.,

tokens are passed to different neighbors (provided more than

one neighbor exists) following a local ordering. The space

requirement of our algorithm is (ℓ + 3)∆r states (or ⌈log((ℓ +

3)∆r)⌉ bits) for the root r, 4 × Lmax × ∆2p states (or ⌈4 × log(2

× Lmax × ∆p)⌉ bits) for non root process p, where ∆p is the

degree of process p and Lmax is the diameter of the network.

This is the first algorithm on arbitrary networks in which the

state space requirement is independent of the size of the

network and l, except for the root. The stabilization time is

O(⌈n/l⌉ × (Lmax + ℓ)) rounds.

The rest of the paper is organized as follows: in Section II,

we describe the distributed system, the model we use in this

paper, and also, state the specification of the problem solved

in this paper. Then we present the proposed algorithm in

Section III. The proof is omitted due to space constraints.

Finally, we make some concluding remarks in Section IV.

II. PRELIMINARIES

We consider a distributed system as an undirected

and E the set of edges. Nodes of G represent processes and

edges represent bidirectional communication links. We

assume that processes and communication links are

anonymous i.e., they do not have identifiers. We consider

networks which are asynchronous and rooted, i.e., among the

processes we distinguish a particular process called root and

noted r. A communication link (p, q) exists if and only if p

A Self-Stabilizing Algorithm for the Generalization of the

Mutual Exclusion Problem

Mehmet Hakan Karaata and Rachid Hadid

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

353DOI: 10.7763/IJIET.2013.V3.296

connected graph G = (V, E), where V is a set of nodes (|V | = n)

and q are neighbors. For convenience, we assume that each

process p labels its links 1, 2, ..., ∆p and the labels of p are

locally ordered by ≺ p. To simplify the presentation, we refer

to the link from p to q (where q is one of the neighbors of p) at

p by simply q.

In our computation model, each process executes the same

program except the root. The distributed program of any

process consists of a set of locally shared variables

(henceforth referred to as variables) and a finite set of actions.

A process can only write to its own variables, and read its

own variables and that owned by the neighboring processes.

Each action is of the following form: < label >:: < guard > →

< statement >. The guard of an action in the program of p is a

boolean expression involving the variables of p and its

neighbors. The statement of an action of p updates one or

more variables of p.

An action can be executed only if its guard evaluates to

true. If a guard is true, then the corresponding action is said to

enabled, and disabled otherwise. A process is called enabled

if it has at least one action enabled. The state of a process is

defined by the values of its variables. The state of a system is

a product of the states of all processes (∈ V). In the sequel,

we refer to the state of a process and system as a (local) state

and configuration, respectively. Let C, the set of all possible

configuration of the system. Let a distributed protocol P be a

collection of binary transition relations denoted by ↦ , on C.

A computation of a protocol P is a maximal sequence of

configurations e = (γ0 , γ1 , ..., γi , γi+1 , ...), such that for i ≥ 0,

γi ↦ γi+1 (called step) if γi+1 exists, else γi is a terminal

configuration. All computations considered in this paper are

assumed to be maximal. The set of all possible computations

of P in a system is denoted E. We assume that each

synchronous computation step, all actions enabled at the start

of the step are executed concurrently by a concurrent

distributed daemon. In synchronous round all processes read

their neighboring states to determine the enabled guards, and

then all these actions are executed concurrently before the

next synchronous step.

1) Privilege: The definition of privilege to enter the critical

section is the same as in [7], [12]: A processor has the

privilege “if and only if it is enabled to make a particular

move”. The privileged action has the mark PR. In this

paper, a processor is privileged if it holds a token.

2) Specification of the ℓ-exclusion protocol.: We consider a

computation e of P to satisfy SPP of the protocol if the

following conditions are true:

requirements.

III. SELF-STABILIZING ℓ-EXCLUSION ALGORTHIM

In this section, we present a stabilizing ℓ-exclusion

algorithm where ∆r > ℓ (other case is a simple version of this

algorithm).

The Algorithm is shown in III.1 for the root and other

processes.

A. Basis of the algorithm

The proposed algorithm works in two concurrent phases:

The token distribution phase where the root starts a wave to

distribute ℓ tokens down the network and the PIF

synchronization phase which cleans the trace of the token

distribution phase so that the root is subsequently ready to

initiate a new token distribution phase.

These two phases are launched by the root alternately and

carried out concurrently. After the root distributes all ℓ tokens

then it can starts the PIF phase to clean up the network from

the distributed tokens. The clean up phase (PIF) follows but

not meets the token distribution and the token distribution

phase terminates before the PIF phase. The goal of the token

distribution phase is twofold: first, l tokens are distributed to

the network using a wave in a fair manner and second, a

spanning tree rooted at the root of the network is constructed.

The token distribution phase is initiated by the root process

by distributing ℓ tokens to its neighbors one at a time in order.

If some tokens remain after distributing a token to each

neighboring process, the root continues to distribute tokens

again starting from the first neighbor. This is repeated until

all the tokens are distributed. Upon receipt of a token, each

process assumes the sender to be its parent and forwards the

token to the next neighboring process (based on its local

order of neighbors) that has not been included in the tree if

such process exists. To determine the next neighboring

process, each process keeps track of where it sent the last

token using a pointer that circularly advances after sending

each token. If a process fails to find a neighbor that has not

been included in the tree and it does not have a child then the

process destroys its token and becomes a leaf in the tree. On

the other hand, if it fails to find a neighbor that has not been

included in the tree, but has one or more children, it sends the

token to its next child. The root always sends its token to the

next process based on its local order of neighbors even if this

process is already a child of a non-root process. So, this

process accepts the token from the root and consequently

becomes its child. Since during the token distribution every

process records the process from which it receives a token as

its parent so a tree rooted at the root is gradually built. But,

we should note that many token distribution phases may be

necessary to complete the construction of the tree since every

process joins the tree after receiving a token and one phase

may be not sufficient to reach all the processes of the system.

However, after the construction of the complete spanning

tree, each process distributes its tokens only among its

children.

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

354

 Safety. In any computation e, at most ℓ processes can

execute their critical sections concurrently.

 Fairness. In any computation e, each requesting process

can enter the critical section in a finite time.

 Liveness. In any computation e, if k < ℓ processes execute

the critical section forever and some other processes are

requesting the critical section, then eventually at least

another process will eventually enter the critical section.

An ℓ-exclusion algorithm is self-stabilizing if every

computation starting from an arbitrary initial configuration,

eventually satisfies the above safety, liveness, and fairness

After all ℓ tokens are distributed, the PIF Propagation of

Information with Feedback (PIF) synchronization phase is

initiated by the root process to clean up the network between

two consecutive token distributed phases. The PIF is carried

out only on the spanning tree built by the token distributed

phases in a top-down manner. Since only those processes

who have forwarded their tokens to their children are allowed

to participate in this phase, PIF propagation follows and does

not affect the token distribution phase. Once the leaves of the

tree are reached by the PIF, they initiate the feedback and

their parents relay the feedback to the root. When root

receives the feedback from all its children, then it knows that

the tree is cleaned up from the previous tokens and then starts

a new token distribution phase. The repetition of the token

distribution in this manner ensures that every process will

receive a token (fairness) and the complete spanning tree of

the network is eventually built. The safety is clearly obtained

from the fact that the token distribution starts only after

cleaning the tree from the preceding tokens and the root

distributes exactly l tokens in the tree.

The self-stabilizing ℓ-exclusion algorithm is shown in

Algorithm III.1. The token distribution phase is implemented

using the privileged actions a1, a2, and a6 and are marked as

“(PR)”. So p is privileged or has a token iff one of the

following conditions holds:

1) p is the root (p=r), and a1 or a2 is enabled.

2) p is non-root processor and a6 is enabled.

The cleanup process (PIF) is implemented using actions a4

and a5 for the root, a7, a8, and a9 for other processes. Before

describing the two phases of our algorithm in detail, we first

introduce the variables maintained by each process p.

 Tp is used to implement both the token passing mechanism

and the PIF synchronization. Tp ∈ {0, ...l − 1, B, C, R} for

the root process and Tp ∈ {T ok, B, F, C} for a non-root

process.

 Sp denotes the neighbor to which p sent its last token.

 Pp denotes the parent of p. If there exists a neighbor of q (q

∈ Np) such that Pp = q, then q is said to be the parent of

process p and p is said to be a child of q. If a process p is

not a parent of any process then process p is said to be a

leaf or terminus process. Otherwise, p is said to be an

internal process. Since the root never receives any token

from any of its neighbors, it does not need to maintain Pp.

So, we show this variable as a constant in the root’s

algorithm.

 Lp denotes the length of the path followed by the token

from the root p. Again, since the root never receives any

token from any of its neighbors, Lr must be 0, and hence, is

shown as a constant in the algorithm

3) Token Distribution: As explained above, during the

token distribution phase, the root process sends a wave

containing l tokens to its neighbors and each token sent

follows a path from root r until it reaches the terminus of

the path (a leaf process) where it disappears. Moreover, a

spanning tree rooted at r is built during the token passing

process. A switch mechanism is used during the token

distribution to ensure that every processor gets a token

infinitely often. The switch mechanism is maintained at

every process and implemented using a macro (not a

variable but a dynamically evaluated function) Nextp to

identify, using the pointer variable Sp, the next neighbor

to be visited by the token. For any process p, Nextp

returns the id of its next neighbor that has not been

included in the tree, if exists. Otherwise, it returns the id

of the next child among its ordered set of children, if

exists, otherwise, i.e., p does not have neighbor not

included in the tree nor a child, p destroys the token since

its a leaf. However, before process p identifies its parent,

multiple processes (called potential parents) may

simultaneously send their tokens to p. Then, among all

these potential parents, p chooses the root process to

receive the token from if the root is also a potential

parent of p; otherwise, p chooses the neighboring

process with the smallest link number (Macros Parp and

P otentialp).

The T variable of the root process Tr is in state C before

participating in the next token distribution phase.

Subsequently, the root uses the successive values 0, ..., ℓ − 1

of the variable Tr to differentiate the distribution of its ℓ

tokens. A non-root process q receives a token when its Tq

variable is in state C and one of its neighbors p such that Tp =

T ok (or ∈ {0, ..., ℓ − 1} if p is root) holds, p has selected q as

its potential child by assigning q to its Sp variable and the T

variable of next process to receive its token, if any, is equal to

C. When a leaf process assigns Tok to its T variable, token

propagation ends and the trace of this token propagation

(values in T variables) are cleaned by the following PIF

wave.

Whenever the root or an internal processor p receives a

token, it selects the next neighbor (say q) to receive the token

by advancing its pointer variable Sp to q. The token is passed

by the root to one of its neighbors by executing either action

a1 (for the first token) or a2 (for the second through the ℓ-th

token). The token is received by a non-root process by

executing a6.

When a process q discovers that its parent or one or many

neighboring potential parents are sending their tokens to it

and if q has not yet a parent, then q is involved in this phase as

follows (a6):

 If q has no parent, then it chooses its parent p by assigning

the link number associated to p to its variable Pq

(consequently, q becomes a child of p). This leads process

q to join the tree rooted at r.

 decides its level by assigning Lp + 1 to its variable Lq ,

 selects the next process (if any) by advancing Sq to the

next neighbor (using Nextq) in its ordered sequence of

neighbors to determine the recipient of the new token. If q

fails to find a neighbor to transmits its token to, then it

destroys the token and becomes leaf process in the tree,

and

 q passes its token by changing its T value to Tok.

When p uses the token by executing a6, p cleans the trace

of this token (Tok value) with a C value (action a9). Then p

becomes ready either to receive another token of the same

cycle or to execute the next phase (PIF synchronization

phase). The root cleans the trace of this token (for the 0 to l −

2 tokens) with the next token number (a2) or a R value (for the

4) PIF Synchronization.: After root sends its ℓ-th token and

before starting the distribution of a fresh wave of ℓ

tokens, it must be sure that the tree built during the

preceding phases is cleaned up from tokens of the

previous wave, i.e., all the distributed tokens are

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

355

(ℓ − 1) th token) (a3).

consumed and disappeared at the leaves. This is done by

setting the T variable of every process in the tree to a C

(Cleaning) value. The clean up process is implemented

using the PIF scheme. To implement this phase we

specifically use the PFC (Propagation of Information

with Feedback and cleaning) introduced in [11]. For that

purpose, we need to use some additional values and

variables. So, Tp = B and Tp = F refers to the broadcast

and feedback state, respectively.

The root uses another additional values R of Tr to represent

the ready to synchronize state. The root is in the ready to

synchronize state before it initiates the PFC. After root sends

its last token (the ℓ-th token), it sets its T variable to R (Ready

to synchronize) to indicate to its children to be ready for a

new PFC (action a3). Subsequently, all its children alter their

T variables to C (action a9). Then, root starts a new PFC by

switching Tr variable to B (action a4). When process p ∈ V

-{r} with Tp = C discovers that its parent process with T = B

then p participates in the broadcast phase and changes its Tp

to B (action a7). When the broadcast phase reaches a leaf

process, the leaf process knows that all its ancestors entered

the broadcast phase and starts the feedback phase by

assigning F to its T variable (action a8). Then, upon finding

all its children in state F, each internal process p participates

in the feedback phase by assigning F to its T variable (also

action a8). Consequently, the feedback phase propagates

towards the root in a bottom-up manner and eventually reach

root r. Every process p in the tree initiates the cleaning phase

by setting its Tp value to C when each of its children and its

parent q is either in the feedback phase (Tq = F) or in the

cleaning phase (Tq = C) (action a9). The purpose of the

cleaning phase is to clean the trace of the preceding PFC

phase. The cleaning phase works in parallel and pursues the

feedback phase. Once all the children of the root enter the

feedback phase, root participates in the cleaning phase

(action a5) causing the system to enter in the next phase of the

algorithm and start a new ℓ-tokens distribution. Thus, the

PFC wave works in parallel and follows the token

distribution phase. The PFC wave should not be allowed to

meet any token, i.e., the PFC wave cannot interfere with the

token distribution phase. We implement this constraint as

follows: A process p can change Tp to B only if Tp has a value

C and all of its children have the C value, and its parent Pp has

the value B (see action a7).

B. Error Correction.

During the normal behavior, all system processes must

preserve some properties based on the value of their variables

and those of their parents. For each non-root process p the

following properties need to be maintained.

1) For each process p which has already chosen its parent

(i.e., Pp = q), the following properties need to be

maintained.

 The parent q of p has also chosen its parent i.e., Pq ≠⊥.

 The distance Lp of process p is one plus that of the parent

i.e., Lp = Lq + 1.

 If a process p is in the broadcast phase, then its parent q is

also in the broadcast phase.

 If a process p is in the feedback phase, then its parent q is

either in the broadcast, cleaning, or feedback phase.

 If a process p is in a token distribution phase (i.e., Tp = Tok),

then its parent q is either in the token distribution phase,

cleaning phase, or ready to synchronize phase if q is the

root process; token distributed phase or cleaning phase if q

is non-root process.

2) For each process p which has not yet chosen its parent

(i.e., Pp =⊥), then p is in a cleaning phase.

A process conforming to the above conditions is said to be

in a normal state (Predicate Normal (p)). Otherwise, it is said

to be in an abnormal state. For satisfying these properties, the

correction actions a10 and a11 (Algorithm III.1) are used.

IV. CONCLUSION

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

356

In this paper, we presented the first stabilizing ℓ-exclusion

algorithm in arbitrary networks. This algorithm uses the PIF

scheme and the Breadth-First token distribution. This makes

our approach quite different than that followed by any other

ℓ-exclusion algorithm. Our algorithm stabilizes in only

O(⌈n/l⌉ × (Lmax + ℓ)) rounds. Its space requirement is (ℓ + 3)∆r

states (or ⌈log((ℓ + 3)∆r)⌉bits) for the root r, 4 × Lmax × ∆2p

states (or ⌈4 log(2 × Lmax × ∆p)⌉bits) for non root process p.

This is the first algorithm on arbitrary network in which space

requirement is independent of ℓ for any process except one. A

drawback of our algorithm, as in many deterministic

self-stabilizing solutions to this problem in the current

literature ([4], [7]), we cannot ensure that every execution of

our algorithm always satisfies the liveness property: some

processes may have to wait for others which are in their

critical section, even if the total number of processes in the

critical section is less than ℓ. Precisely, our algorithm allows

at most one token to exist in a sequence of three processes.

However, based on the assumption ℓ ≤ ⌈ n ⌉, 3 we can observe

that in any computation on numerous tree topologies, there

exist some configurations where ℓ processes hold a privilege

concurrently. Implementing a solution which satisfies the

liveness property is a future challenge.

REFERENCES

[1] E. W. Dijkstra, “Self stabilizing systems in spite of distributed control,”

Communications of the Association of the Computing Machinery, vol.

17, no. 11, pp. 643–644, 1974.

[2] Y. Afek, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, “A bounded

first-in, first-enabled solution to the ℓ-exclusion problem,” in Proc. the

4th International Workshop on distributed Algorithm, LNCS,

Springer-Verlag, vol. 486, 1990, pp. 422-431.

[3] M. Flatebo, A. K. Datta, and A. A. Schoone, “Self-stabilizing

multi-token rings,” Distributed Computing, vol. 8, pp. 133–142, 1994.

[4] U. Abraham, S. Dolev, T. Herman, and I. Koll, “Self-Stabilizing

ℓ-exclusion,” TCS, Theoretical Computer Science, vol. 266, no. 1-2, pp.

653-692, 2001.

[5] G. Antonoiu and P. K. Srimani, “Self-stabilizing depth-first

multi-token circulation in tree networks,” International Journal of

Parallel, Emergent and Distributed Systems, vol. 16, no. 1, pp. 17–35,

2000.

[6] V. Villain, “A key tool for optimality in the state model,” in

DIMACS’99, The 2nd Workshop on Distributed Data and Structures,

Carleton University Press, pp. 133–148, 1999.

[7] R. Hadid, “Space and time efficient self-stabilizing ℓ-exclusion in tree

networks,” Journal of Parallel and Distributed Computing, vol. 62, pp.

843–864, 2002.

[8] R. Hadid and V. Villain, “A New efficient tool for the design of

self-stabilizing ℓ-exclusion algorithms : the controller,” in Proc. the 5th

IEEE International Workshop, WSS, 2001, pp. 137–151.

[9] M. Gradinariu and S. Tixeuil, “Tight space self-stabilizing uniform

ℓ-mutual exclusion. Distributed Computing Systems,” in Proc. 21st

International Conference, 2001, pp. 83–90.

[10] T. Bernard, A. Bui, O. Flauzac, and F. Nolot, “A multiple random

walks based self-stabilizing k-exclusion algorithm in ad-hoc

net-works,” International Journal of Parallel, Emergent and

Distributed Systems, T. Francis eds, vol. 25, no. 2, pp. 135152, 2010.

[11] A. Cournier, A. KDatta, F. Petit, and V. Villain, “Self-stabilizing PIF

algorithm in arbitrary rooted networks,” in Proc. 21st International

Conference on Distributed Computing Systems (ICDCS-21), IEEE

Computer Society Press, pp. 91-98, 2002.

[12] M. G. Gouda and F. F. Haddix, “The stabilizing token ring in three

bits,” Journal of Parallel and Distributed Computing, vol. 35, pp.

43–48, 1996.

Mehmet Hakan Karaata was born in Turkey in 1966. He received his PhD

Degree in Computer Science in 1995 from the University of Iowa. He joined

Bilkent University, Ankara, Turkey as an Assistant Professor in 1995. He is

currently working as a Professor in the Department of Computer Engineering,

Kuwait University. His research interests include mobile computing,

distributed systems, fault tolerant computing and self-stabilization.

Rachid Hadid was born in Algeria in 1971. He received his PhD Degree in

Computer Science in 2002 from the University of Picardie Jules Vernes,

France. He worked in the University the Picardie Jules Vernes, Engineering

School of Bourges, Mazoon College University, and Saad Group University

as Assistant Professor from 2002 to 2010. He is currently working as

Research Associate in the Department of Computer, University of Picardie

Jules Vernes. His research interests include distributed systems, fault tolerant

computing and self-stabilization.

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

357

