



Abstract—Computer Graphics (CG) is a fundamental course

to further study the related subjects such as computer

animation, computer vision, computer games, and image

processing. It is very difficult to shortly understand CG if

students have no experience in theory of CG and basic

mathematics. In consequent, we develop a simulator toolkit for

teaching three-dimensional (3D) Graphics in order to assist

students in understanding with 3D Graphics and using OpenGL.

Moreover, this research focuses on using Object-Oriented

environment to design and implement the simulator. From an

assessment of students’ satisfaction and using the simulator, this

simulator is rated in the range of good and excellent for all

aspects.

Index Terms—Computer graphics, object-oriented, opengl,

simulator.

I. INTRODUCTION

Computer Graphics (CG) is a fundamental course to

further study the involved subjects such as computer

animation, computer vision, computer games, and image

processing. One of the most principle contents of this subject

is three-dimensional (3D) Graphics because it is applicable to

graphical usage, game development and multimedia

application. In the CG course, 3D Graphics consist of

transformation, lighting and coloring, and projections. These

concepts are difficult to shortly understand due to complexity

of the Graphics parameter setting and basic mathematics

knowledge for transformation such as linear algebra, matrix,

vector and so on. Moreover, most students have no an

experience in 3D Graphics knowledge and using Graphics

Application Programming Interface (API).

There are many researches which focus on how to the

students easily understand the CG concepts especially 3D

Graphics and use the Graphics API. They used a variety of

teaching techniques to achieve the goal.

M. B. Gousie [1] stated that the concepts of CG are able to

easily understand by implement many CG projects using an

appropriate API such as OpenGL, Open Inventor or Java3D.

The goals of the projects were to enhance understanding of

CG principles and force students to design and code projects

in a different programming language. However, students who

interested in computer graphics need more skills in

programming to implement the 3D graphics program and

familiarize the 3D setting commands of API. In additional,

From R. D. Necaise’s study [2], an interactive graphics is one

Manuscript received December 10, 2012; revised March 12, 2013.

The authors are with the

School of Science, University of the Thai

Chamber of Commerce

(e-mail: khaikhae_chu@utcc.ac.th).

of the techniques supporting the process of learning and

teaching in CG. Rance’s research proposed the Graphix

Windowing Toolkit as an alternative to the use GLUT which

is the basic tools for creating a simple user interactive

OpenGL based programs. The use of this toolkit has

expended the interests and imagination of the students in his

introductory CG course and has resulted in a number of

highly successful programming projects. But the Rance’s

research did not implement the 3D transformation,

projections, lighting and shading. In addition to, the research

of G. Shultz [3] proposed a higher-level pedagogically

Graphics API, called Simple Library. It is a simple Graphics

API in order to facilitate program coding in 3D Graphics.

However, the students need to code the Graphics program to

understand 3D Graphics concepts. On the other hand, this

research did not include the material color setting in 3D

Graphics which is an essential property of them. Moreover, G.

Shanshan’s study [4] presented a new CG teaching model,

namely all theories or algorithms of CG are included in a

synthetic computer scenes case. Implementation steps for

case teaching is introduced in detail, and then the multimedia

teaching based on the new teaching model is researched. It

has been proved that the efficiency and quality of teaching

have been improved in practice.

From the conclusion of these researches it was revealed

that the use of simulator for learning CG is a necessary to

understand the basic concepts and their operations of 3D

Graphics such as translation, rotation, lighting, coloring, and

so on.

For this reason, this research focuses on using

Object-Oriented environment to design and implement the

simulator to assist students in understanding with 3D

Graphics and using OpenGL. Object-Oriented environment

is used for this research since it is easy to extend the objects

[5] and their properties to conform to advance CG content.

Furthermore, the simulator is reinforcement of

mathematics knowledge for studying in CG. It will be

advantageous for both computer science and computer

animation students who early study in CG course. Therefore,

we divided the development of the simulator toolkit into 2

parts: object oriented design and implement. Then, we took

the simulator to our CG class to evaluate it.

II. OBJECT ORIENTED DESIGN AND IMPLEMENTATION

The simulator is developed for the teaching assistance of

CG course by using Microsoft visual C++ and graphics API

such as OpenGL, GLUT and AntTweakBar. The simulator

aims to assist students in understanding the fundamental

concepts of CG such as setting color of material and lighting

Object-Oriented Design and Development of a Simulator

Toolkit for 3D Graphics Teaching in Computer Graphics

Khaikhae Chulajata and Chesada Kaewwit

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

401DOI: 10.7763/IJIET.2013.V3.307

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

402

of object, creating the viewport and understanding 3D

transformations. Initially, we designed use case for serving

the purpose of the simulator consisting of eight use cases as

shown in Fig. 1. These use cases include:

 Create Viewport for creating viewport.

 Delete Viewport for deleting viewport.

 Create Object for creating object.

 Delete Object for deleting Object.

 Set Object Property for setting properties of an object

such as Translation, Scale, Rotation and color.

 Create Light for creating a source of light.

 Delete Light for deleting a source of light.

 Set Light Property for setting properties of light such as

Position, Ambient, Diffuse and Specular.

Then, we designed classes as shown in Fig. 2 for

representing things in the real world as shown in Fig. 3. The

problem domain classes include CGS Viewport, CGS World,

CGS Camara, CGS Object and CGS Light. CGS World

consists of CGs Object and CGS Light. The class CGS World

represents the real world consisting of an object and light.

The object and light are represented by the class CGS Object

and CGS Light respectively. The class CGS Viewport

represents a viewport, which is a region of a screen used to

display object captured by a camera. And the camera is

represented by the class CGS Camera. The object type of the

simulator can be a teapot, polygon or sphere.

Next, the class diagram can be converted into code to

implement class of the simulator. The example of the

implementation to the class “CGS Object” is shown in

Fig. 4.

The result of design and implementation is the simulator

that is comprised of 2 windows. The first window is the

control center and the other window is the main window

shown in Fig. 5.

From Fig. 5 a), the control center which is the main

controller of the simulator is separated into 4 parts as follows:

The first part is Viewport Management. It controls and

manages the viewport of simulator such as create, delete and

reset the viewport. The second part is World and Camera.

The part is able to create and delete both objects and cameras

on the viewport. The third part is Light Sources. Its functions

are creating, deleting and setting the lighting source. Next,

the final part, called Objects, is the created and deleted 3D

objects.

+selectObject()

+getSelectedObject()

+addLight()

+getSelectedLight()

+processSelection()

+selectedObject

+selectedLight

CGSWorld

+setAmbient()

+setDiffuse()

+setSpecular()

+setposition()

+ambient

+diffuse

+specular

CGSLight

1

0..*

+translate3D()

+rotate3D()

+scale3D()

+setPosition()

+draw()

+setSmooth()

+setColor()

+setSize()

+radiusR[3]

+size[3]

+rotatevector[3]

+color[4]

+blend

+smooth

+objectType

CGSObject

+setPositon()

+setSize()

+setName()

+selectVPByPosition()

+name

+width

+height

+pos_x

+pos_y

CGSViewport

+setEyePos()

+setCenterPos()

+setUpPos()

+setEye()

+eyePos_x

+eyePos_y

+eyePos_z

+centerPos_x

+centerPos_y

+centerPos_z

+upPos_x

+upPos_y

+upPos_z

CGSCamera

1

1

1 1

1

0..*
select

select

Fig. 2. Class diagram.

From Fig. 5 b), the window displays a selected object on

the viewport. The window can be added another viewport to

show different view of the object.

class CGSObject

{

public:

float posVector[3];

float radiusR[3];

float size[3];

float rotateVector[3];

float matrix[16];

float color[4];

bool blend;

bool smooth;

float speed;

int objectID;

string objectType;

public:

CGSObject();

void SetID(int id);

void SetPosition(float x,float y,float z);

void SetRadius(float rx,float ry,float rz);

void SetSize(float szx,float szy,float szz);

void SetSpeed(float sp);

void setRotate(float rx,float ry,float rz);

int getID();

float* getPosition();

World

Object
Camera

Viewport

Light

Fig. 3. Example of things in the real world.

SetObjectProperty

CreateViewport

DeleteViewport

CreateObject

DeleteObject

Simulator

Toolkit

User

SetLigthProperty

CreateLigth

DeleteLigth

Fig. 1. Use case diagram.

float* getRadius();

float* getSize();

float getSpeed();

float* getRotate();

void Translate3D(float x,float y,float z);

void Rotated3D(float radians,float x,float y, float z);

void Scaled3D(float x,float y,float z);

void Translate3D();

void Rotated3D();

void Scaled3D();

void setColor4f(float red,float green,float blue,float alpha);

setColor4v(const float *color);

void setBlend(bool state);

void setSmooth(bool state);

const float* getColor4v();

float getBlend();

float getSmooth();

void addTransformMatrix(const float *matrix);

void clearMatrix();

void dotMatrix(float *m2);

void Render();

void Draw();

void drawLines();

string getObjectType();

};
Fig. 4. An example of class CGS object.

a) b)

Fig. 5 a) The control center and b) the main window.

Fig. 6. Example of modification of the object’s properties.

In case the students want to change object’s properties,

they must select a viewport and object, and then right click on

the object, the properties window will be displayed as shown

in Fig. 5. The students can adjust properties of the selected

object such as translation, scale, rotation and material.

Interactions between objects related to this use case are

shown in Fig. 6.

The sequence diagram shown in Fig. 7 can be described as

follows:

 Two methods, select VPBy Position (x, y) and process
Selection (x, y), in Viewport class are called by a student.

 Viewport class interacts with World class via calling
selected Object (object ID) method.

 The get Select Object method in World class is invoked by
selecting one of the shown objects on screen. A frame will
appear after the selection.

 The student is able to set several properties such as
rotation, color, scale and position settings of the selected
object via Rotate3D (x, y, z), Set Color (red, green, blue)
Scale3D (x, y, z), and Set Position (x, y, z), respectively.

Fig. 7. Sequence diagram for use case set object property.

III. ASSESSMENT OF THE SATISFACTION OF USERS

There are two groups of the evaluation. For the first time,

57 students enrolled in CG course in the second semester of

2009 school year. Then, 42 students who have studied in CG

course opened in the first semester of 2010 school year. The

total number of student in this evaluation is 99 persons. The

criteria used to evaluate users’ satisfaction include ease of the

Toolkit using and understanding of 3D Graphics. The

measure scale ranges from 1 to 5 (Very poor to Excellent),

shown in Table I.

The study discovered that more than 80% of students

understood 3D Graphics concepts and OpenGL in CG course.

Besides, the simulator supports ease of using with Good

satisfaction level.

IV. CONCLUSION

According to the study results, we found that the simulator

Selected Viewport

Selected Object

Properties Window

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

403

TABLE I: SATISFACTION OF THE 3D GRAPHICS TOOLKIT

Assessment Topic Average Satisfaction Level

Ease of using

Ease of understanding

Good

Excellent

toolkit is important tool for the 3D graphics study. It can be

applied some theories of CG to practice and to reduce time in

learning and teaching 3D Graphics API. In this paper, we

develop the simulator toolkit for teaching 3D Graphics and

using OpenGL. The simulator is developed by using

Microsoft Visual C++, OpenGL, GLUT, and AnTweakBar.

Then, we use Object-Oriented environment to design and

implement the simulator because it is easy to extend the

objects and their properties to the simulator.

REFERENCES

[1] M. B. Gousie, “Teaching computer graphics in a small department,”

Journal of Computing Sciences in Colleges, vol. 15, pp. 194-202, May

2000.

[2] R. D. Necaisei, “Interactive graphics using OpenGL and the Graphix

Windowing Toolkit,” Journal of Computing Sciences in Colleges, vol.

22, pp. 220-202, December 2006.

[3] G. Shultz, “Integrating 3D graphics into early CS Courses,” Journal of

Computing Sciences in Colleges, vol. 21, pp. 169-178, February 2006.

[4] G. Shanshan, Z. Caiming, Z. Rui, and C. Jing, “Design and

Implementation of Case in CG Case Teaching,” in Proc. IEEE Symp. IT

in Medicine and Education (ITME 2008), IEEE Press, Dec. 2008, pp.

332-335, doi: 10.1109/ITME.2008.4743882.

[5] E. Youdon, “Object-Oriented Systems Design: an Integrated

Approach,” Upper Saddle River, NJ: Prentice-Hall International, 1994.

Khaikhae Chulajata received her M.Sc. in Applied

Statistics, majoring in Computer Science, from the

National Institute of Development Administration

(NIDA). She is currently a lecturer in the School of

Science, University of the Thai Chamber of Commerce.

Her research interests are in system analysis and design,

database management, and software development.

Chesada Kaewwit

received his M.Sc. in Applied

Statistics, majoring in Computer Science, from the

National Institute of Development Administration

(NIDA). He is currently a lecturer in the School of

Science, University of the Thai Chamber of Commerce.

His research interests are in computer graphics, data

communication and networking, and Internet technology.

International Journal of Information and Education Technology, Vol. 3, No. 3, June 2013

404

http://dx.doi.org/10.1109/ITME.2008.4743882

