



Abstract—Tic-Tac-Toe game is a popular two-player game

played on a three by three grid. The first objective of this study

is to examine whether machine learners can successfully classify

Tic-Tac-Toe finished games. The second objective is to find out

whether novices learning data mining classifications can

successfully conduct experiments to evaluate the performance

of machine learners using different evaluation methods. Seven

machine learners are used and three evaluation methods are

applied in this study. The experimental results show that

machine classifiers can successfully judge the finished games

and novice can correctly conduct evaluations. Also, in-depth

instructional pedagogy further improves the correctness of

evaluations.

Index Terms—Classification, data mining, evaluation,

Tic-Tac-Toe game.

I. INTRODUCTION

Tic-Tac-Toe game is a popular two-player game played on

a three by three grid. The player who can place the own

marks three-in-a-row wins the game. To judge the winner of

the game, it requires the marks on the grid and follows the

game rule to find out the winner, either X or O. Such problem

is an example of classification. Data mining techniques have

been successfully applied to solve problems such as credit

evaluation [1], forecasting financial performance [2],

assessing risks of prostate cancer patients [3], generating

document taxonomies [4], profiling Web usage in the

workplace [5], classifying open source software development

projects [6], and web query classification [7]. In this study,

the first objective is to examine whether machine learners can

successfully classify Tic-Tac-Toe games.

Conducting an experiment to evaluate machine learners’

performance is normally not a challenge for experienced

researchers. However, novice users may run into troubles

even a tool is available for use. Since learning data mining

concepts and techniques is usually hard for novices, a user

friendly context may benefit the learning processes. The

Tic-Tac-Toe game has been a commonly played game since

their childhoods. The second objective of the study is to

examine whether novices can correctly evaluate the

performance of machine learners classifying the familiar

Tic-Tac-Toe games. Specifically, the study attempts to

answer the following research questions:

 Can machine learning classifiers successfully classify

Tic-Tac-Toe games?

Manuscript received March 8, 2013; revised June

24, 2013.

C.-H.

Chou

is with the School of Business, College of Charleston,

Charleston, SC 29424

USA (e-mail: chouc@cofc.edu).

 What is the best machine learning classifier in classifying

Tic-Tac-Toe games?

 In learning classifications, can novices correctly evaluate

the trained classifiers using different evaluation methods?

 What are the common issues from novices’ evaluations?

The rest of the paper is organized as follows. Relevant

background is discussed in the next section. Experimental

methods are then described. Findings of experiments are

reported. Finally, conclusions are drawn and future directions

are highlighted.

II. LITERATURE REVIEW

A. Tic-Tac-Toe Game

The Tic-Tac-Toe, also called noughts and crosses, is

originally designed as a paper and pencil game. Two players

take turns marking down their own Xs or Os in a three by

three grid. A player who successfully place three marks in a

row, a column, or a diagonal wins the game. Thus, the rule to

win the game is “three-in-a-row.” Fig. 1 shows a game won

by X due to three X in the diagonal row. There are 255,168

possible games in total. Among the available games, 958

terminal configurations are reached when a winner is found

[8]. The terminal configuration could be a game with a

determined winner without using all nine cells such as the

game in Fig. 1 or with all cells marked.

X O X

O X O

 O X

Fig. 1. A Tic-Tac-Toe won by X.

B. Classification

Classification is one of the typical data mining techniques.

It is a supervised learning process to build a model for future

predictions (classifications). The model, generated from

training data, is to associate characteristics of data

observations with a desired category. The observations in the

training data consist of a set of characteristics (input variables)

and a given category (output variable). Tic-Tac-Toe game is

a typical binary classification problem. In classifying

Tic-Tac-Toe games, there are nine positional input variables

and a given winner output variable. Each input variable can

carry an “X”, an “O”, or nothing (blank). The binary winner

output variable can be either “X” or “O”. The training data is

a set of games {g1, g2, …, gj} with their output category {c1,

c2}. A machine learning algorithm, a classifier, is used to find

the model ci = f(gj) from correct pairs of <gj, ci> consistently,

where game gj is represented by nine positional variables.

Once the classifier is built, a correct prediction is made when

Using Tic-Tac-Toe for Learning Data Mining

Classifications and Evaluations

Chen-Huei Chou

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

437DOI: 10.7763/IJIET.2013.V3.314

a game gj can be assigned to the correct class ci, either “X” or

“O”. Various classifiers have been successfully applied in

several data mining problems such as credit evaluation [1],

forecasting financial performance [2], assessing risks of

prostate cancer patients [3], generating document taxonomies

[4], profiling Web usage in the workplace [5], classifying

open source software development projects [6], and web

query classification [7].

C. Evaluation Methods

1) Training set method

The training set evaluation method is to utilize 100% of

observations to build a classifier and apply the same set of

observations as test set for evaluation. The performance of

such evaluation method is normally optimal or overestimated

while the built classifier may not perform well when using

different test sets.

2) Holdout method

The holdout method, so called percentage split, is to

randomly split the observations into two sets, a normally

larger training set and a normally smaller test set. In this

study, 70% of observations are used for training and 30% of

observations are used for evaluation. Good evaluation results

may be obtained in some lucky cases randomly allocating

easy observations in the test set.

3) Cross validation method

In order to address the issues using training set and holdout

method, cross validation provides a more rigorous evaluation

procedure by randomly splitting observations into a number

of subsets, e.g. n folds. The first n-1 folds are used for

training and the left fold is used for testing. Next, it rotates

the test set forward while still using the other n-1 folds for

training. After repeating the procedure n times, the last

procedure uses the last n-1 folds for training and the first fold

for testing. Finally, the average of the n evaluation results is

the overall performance using the cross validation method.

“Extensive tests on numerous datasets, with different

learning techniques, have shown that 10 is about the right

number of folds to get the best estimate of error, and there is

also some theoretical evidence that backs this up” [9].

Therefore, in this study, 10-fold cross validation is applied.

III. EVALUATION METHODS

A. Data Collection and Data Preparation

In a Tic-Tac-Toe game, nine input cells are available for

nine positions. They are upper-left (UL), upper-middle (UM),

upper-right (UR), middle-left (ML), middle-middle (MM),

middle-right (MR), lower-left (LL), lower-middle (LM), and

lower-right (LR). According to Schaeffer [8], 958 terminal

configurations are reached when a winner is found assuming

X is the first player. Therefore, the 958 games are used for

this study. Table I lists 10 games (observations) out of the

958 games. The first nine variables are the positional input

variables and last variable—Winner is the output variable.

Notation “x” is used for input variables if the player X marks

on the cells. Similarly, notation “o” is used if the player O

marks on the cells. When a cell is blank without any mark,

“b” is used. For the Winner variable, it could be “x” if the

player X gets three marks in a row. “o” is stored if the play O

is the winner.

TABLE I: SAMPLE OBSERVATIONS OF TIC-TAC TOE GAMES

UL UM UR ML MM MR LL LM LR Winner

x o x o x o o x x x

x o x o x o b b x x

x o x o x b x o b x

x o x o x b x b o x

x o x o x b o b x x

x o x x o x o o b o

x o x x o x b o o o

x o x x o o b o x o

x o x x o b o o x o

x o x x o b b o b o

x o x x o x o o b o

B. Experimental Design

Seven machine learning methods (Naïve Bayes [10],

Neural Network, Support Vector Machine [11], [12],

Logistic [13], k-Nearest Neighbor [14], and Decision Treess:

ID3 [15] and C4.5 [16]) were used for performance

evaluations using Weka [17] tool. Two experiments were

conducted in order to answer the research questions.

1) Design of experiment 1

In first experiment, for each learning method, 10-fold

cross validation was performed 10 times. Accuracy rate of a

fold was treated as a performance outcome. Thus, 100

performance results were obtained for each learning method.

ANOVA was then applied to determine whether the seven

learners have similar performance. When difference was

found, Bonferroni post hoc test was applied to differentiate

the performance of seven learners.

2) Design of experiment 2

In the second experiment, novice participants were asked

to conduct the experiments using Weka. Two pedagogies

were used to instruct the use of Weka tool. Through both

pedagogies, three evaluation methods (training set, holdout,

and cross validation) were used for evaluating the seven

learning methods. Finally, the 21 evaluation results from

each participant were aggregated and t tests were conducted

to determine whether the different pedagogies matter in

instructing Weka.

In total, 136 students taking upper-level management

information systems course in two different semesters

participated in the experiments. After covering the concepts

of machine classifiers and evaluation methods, the

experiments took place in a computer lab. Different

pedagogies were used in the two semesters. In the first

semester, textual instructions using Weka tool and settings

for the experiments were given (see one example in Fig. 2).

Participants followed the printed instructions and conducted

the experiments their own. In the second semester, same

printed instructions were given with additional screenshots

leading the processes. Additional messages highlighting the

potential common mistakes were given as well (see one

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

438

example in Fig. 3). In the beginning the experiment, another

hands-on exercise was given to demonstrate the use of Weka

tool.

Fig. 2. Sample textual instruction used in both semesters.

Fig. 3. Additional screenshots used in the second semester.

C. Experimental Environment

Weka’s default parameters were kept for most algorithms.

For learning methods, two hidden layers and 50 training

epochs were used for Neural Network. Also, three neighbors

were set for k-Nearest Neighbor method. The J4.8 decision

tree method was Weka’s implementation of C4.5. All

experiments were conducted in a computer lab equipped with

40 identical personal computers in terms of CPU, RAM, hard

drive, operating system, Java runtime, and Weka tool. Each

participant used one computer to perform the experiments.

Accuracy rate was used for performance evaluations.

IV. EXPERIMENTAL RESULTS

A. Experiment 1

Based on ANOVA analysis, there was a significant mean

performance difference among the seven machine classifiers

(p=.000), Bonferroni post hoc test was performed to conduct

pairwise comparisons with a control of overall error rate. The

results of pairwise t tests were listed in Table II. Based on the

mean performance of 10 runs of 10-fold cross validation

results (second column of Table II), 3-Nearest Neighbor

outperformed other methods (see second column of Table II).

The performance of two decision tree classifiers J4.8 and ID3

were significantly different at .05 level, but not at the .01

level. Pairwisely, no difference was found in a group of four

classifiers: Neural Network (NN), Support Vector Machine

(SVM), Logistic (LOG), 3-Nearest Neighbor (3NN). Since

there was no significant difference found in the four

classifiers, they were in the top performer’s group. Naïve

Bayes (NB) had the poorest performance among the seven

classifiers.

Method
Mean

Accuracy

Significance Test (p-value)

J4.8 ID3 NN SVM LOG NB 3NN

J4.8 85.28 -- .033 .000 .000 .000 .000 .000

ID3 84.05 -- -- .000 .000 .000 .000 .000

NN 98.03 -- -- -- 1.000 1.000 .000 .307

SVM 98.33 -- -- -- -- 1.000 .000 1.000

LOG 98.28 -- -- -- -- -- .000 1.000

NB 69.64 -- -- -- -- -- -- .000

3NN 98.98 -- -- -- -- -- -- --

B. Experiment 2

The objective of the second experiment was to examine

whether the novice participants were able to conduct data

mining classifications correctly using three different

evaluation methods. The same seven machine learners in

experiment 1 were used in this experiment. The three

evaluation methods used were training set, holdout, and

10-fold cross validation. Each participant was asked to

conduct the experiments and report the performance results,

accuracy rates, of the classifiers along with the original result

generated from the Weka tool (see Appendix). 21 (7

classifiers by 3 evaluation methods) experimental results

were collected from each participant. A total of 136

participants joined this experiment and similar size of

participants was allocated in the two semesters. The

participants came with similar background taking the same

course. The mistakes found from participants conducting the

classifications were summarized in the Table III. While

getting correct results from Weka tool, three participants

reported the results incorrectly in the first semester and one

was found in the second semester. With such mistake, the

results of cross validation method, for example, were

reported as results of holdout method. Default settings were

used for the classifiers except for NN and 3NN. Four

participants in the first semester and one in the second

When evaluating the performance of 3-Nearest Neighbor

classifier using holdout method, you need to change the

classifier setting and holdout setting.

1. After choosing the IBk classifier, click on the bar in

the Classifier section in the top portion of screen and

change the value to 3 for the KNN in the pop-up

window.

2. Next, in the test options, choose Percentage split for

holdout method and specify the percentage to 70.

3. Finally, you can click on Start button to execute the

evaluation. The result will be displayed in the

Classifier output area.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

439

TABLE II: PAIRWISE T TESTS RESULTS

semester left the default setting using NN. Similarly, three

participants in the first semester and one participant in the

second semester used the 3NN classifier without changing

the settings. In addition, the default numerical split for the

holdout is 66%. Three from the first semester forgot to

change it to the required 70%. Based on the number of

participants making mistakes evaluating machine learners,

pedagogy in the second semester improved the evaluation

processes.

Furthermore, to determine whether there was a significant

difference between the correct accuracy rate of a classifier

and the corresponding mean accuracy rates of the classifier

prepared by participants using a particular evaluation method,

one t test was applied. A total of 42 t tests were applied for the

two semesters. Table IV, Table V, and Table VI summarizes

the performance results of classifiers using training set,

holdout, and cross validation evaluation methods,

respectively.

TABLE IV: RESULTS USING TRAINING SET EVALUATION METHOD

Classifier Goal

Accuracy Mean

of Semester 1

(N=67)

Accuracy Mean

of Semester 2

(N=69)

J4.8 93.7370
93.2148

[.087]

93.6039

[.321]

ID3 100.000
99.2307

[.083]

99.7579

[.321]

NN 98.4342
98.5297

[.041]

98.4539

[.394]

SVM 98.3299
98.3486

[.159]

98.3299

[*]

LOG 98.3299
98.3173

[.159]

98.3299

[*]

NB 69.8330
69.8567

[.220]

69.8300

[.321]

3NN 99.1649
99.1929

[.211]

99.1740

[.471]

TABLE V: RESULTS USING HOLDOUT EVALUATION METHOD

Classifier Goal

Accuracy Mean

of Semester 1

(N=67)

Accuracy Mean

of Semester 2

(N=69)

J4.8 80.8362
81.2984

[.050]

81.0377

[.321]

ID3 82.5784
82.6785

[.724]

82.8309

[.321]

NN 98.6063
98.4134

[.004]

98.5786

[.277]

SVM
98.9547 98.9323

[.176]

98.9456

[.321]

LOG
97.9094 97.9120

[.860]

97.9155

[.321]

NB
70.7317 70.7047

[.358]

70.7187

[.321]

3NN 98.9547
98.9360

[.152]

98.9577

[.321]

TABLE VI: RESULTS USING CROSS VALIDATION EVALUATION METHOD

Classifier Goal

Accuracy Mean

of Semester 1

(N=67)

Accuracy Mean

of Semester 2

(N=69)

J4.8
84.5511 84.7997

[.266]

84.4973

[.321]

ID3
83.2985 83.7863

[.168]

83.2881

[.321]

NN
98.2255 98.1876

[.145]

98.2189

[.624]

SVM
98.3299 98.3392

[.321]

98.3390

[.321]

LOG
98.3299 98.3236

[.321]

98.3238

[.321]

NB
69.6242 69.6470

[.185]

69.6403

[.321]

3NN 98.9562
98.9624

[.160]

98.9562

[.321]

First column of the tables indicates the machine classifiers.

Second column reports the correct evaluation accuracy rates

in percentage. Mean accuracy rates of classifiers prepared by

participants in the first and second semesters are listed in the

third and fourth columns. P-values of the t tests are listed

below the accuracy rates. Statistically, no significant

differences were found in most participants’ evaluations,

when compared with correct performance results. When

training set evaluation method was used, mean accuracy rates

of J4.8 (at .1 level), ID3 (at .1 level), and NN (at .05 level)

from the participants in the first semester were significantly

different from the corresponding correct results. Using the

same evaluation method, all participants from the second

semester obtained correct results for SVM and Logistic

classifiers. When holdout method was used, the results of

J4.8 and NN from the participants in the first semester were

significantly different from the correct results at .05 level. No

significant differences were found in the second semester.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In the first experiment, 3-Nearest Neighbor classifier

outperformed others with accuracy rate close to 99%

classifying Tic-Tac-Toe games. Four machine learners,

Neural Network, Support Vector Machine, Logistic, and

3-Nearest Neighbor, were the top performers with over 98%

accuracy rates. There was no statistically significant

difference among these four learners. In the second

experiment, two different instructional pedagogies were

conducted for novices to learn machine classifications. Both

pedagogies showed that most novices can correctly conduct

experiments to evaluate machine classifiers using data

mining tool Weka. The graphical in-depth instructional

pedagogy from the second semester did improve the

correctness of evaluations statistically.

In this study, a familiar game was used for learning

machine classifications. Future studies may adopt another

familiar scenario—academic admission decision for learning

classifications. The decision could be acceptance or rejection

based on a set of applicant’s characteristics such as admission

exam score, years of working experience, grade point

average, etc. Another direction of future studies is to explore

the Tic-Tac-Toe rules generated from data mining techniques

such as decision trees and association rules.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

440

TABLE III: MISTAKES FOUND FROM THE PARTICIPANTS

Mistake Semester 1 (N=67) Semester 2 (N=69)

Incorrect reporting 3 1

Incorrect parameter in NN 4 1

Incorrect parameter in 3NN 3 1

Incorrect holdout setting 3 0

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

441

APPENDIX

APPENDIX A: REPORT TEMPLATE PROVIDED TO PARTICIPANTS

Classifier (Brief Setting in Weka) Evaluation Methods

Accur

acy

Rate

Decision Tree J4.8 (Tree→J48) Training Set

Decision Tree J4.8 (Tree→J48) 10-fold Cross-Validation

Decision Tree J4.8 (Tree→J48) Holdout (70%)

Decision Tree ID3 (Tree→Id3) Training Set

Decision Tree ID3 (Tree→Id3) 10-fold Cross-Validation

Decision Tree ID3 (Tree→Id3) Holdout (70%)

Neural Network
(Functions→MultilayerPerceptron,
hiddenLayers=2, trainingTime=50)

Training Set

Neural Network
(Functions→MultilayerPerceptron,
hiddenLayers=2, trainingTime=50)

10-fold Cross-Validation

Neural Network
(Functions→MultilayerPerceptron,
hiddenLayers=2, trainingTime=50)

Holdout (70%)

Support Vector Machine
(Functions→SMO)

Training Set

Support Vector Machine
(Functions→SMO)

10-fold Cross-Validation

Support Vector Machine
(Functions→SMO)

Holdout (70%)

Logistic (Functions→Logistic) Training Set

Logistic (Functions→Logistic) 10-fold Cross-Validation

Logistic (Functions→Logistic) Holdout (70%)

Naïve Bayes (Bayes→NaiveBayes) Training Set

Naïve Bayes (Bayes→NaiveBayes) 10-fold Cross-Validation

Naïve Bayes (Bayes→NaiveBayes) Holdout (70%)

3-Nearest Neighbor (Lazy→IBk, k=3) Training Set

3-Nearest Neighbor (Lazy→IBk, k=3) 10-fold Cross-Validation

3-Nearest Neighbor (Lazy→IBk, k=3) Holdout (70%)

APPENDIX B: PARTIAL RESULTS GENERATED FROM WEKA TOOL

REFERENCES

[1] A. P. Sinha and J. H. May, “Evaluating and Tuning Predictive Data

Mining Models Using Receiver Operating Characteristic Curves,”

Journal of Management Information Systems, vol. 21, no. 3, pp.

249-280, 2005.

[2] S. Walczak, “An Empirical Analysis of Data Requirements for

Financial Forecasting with Neural Networks,” Journal of Management

Information Systems, vol. 17, no. 4, pp. 203-222, 2001.

[3] L. Churilov, A. Bagirov, D. Schwartz, K. Smith, and M. Dally, “Data

Mining with Combined Use of Optimization Techniques and

Self-Organizing Maps for Improving Risk Grouping Rules:

Application to Prostate Cancer Patients,” Journal of Management

Information Systems, vol. 21, no. 4, 2005.

[4] S. Spangler, J. T. Kreulen, and J. Lessler, “Generating and Browsing

Multiple Taxonomies Over a Document Collection,” Journal of

Management Information Systems, vol. 19, no. 4, pp. 191-212, 2003.

[5] M. Anandarajan, “Profiling Web Usage in the Workplace: A

Behavior-Based Artificial Intelligence Approach,” Journal of

Management Information Systems, vol. 19, no. 1, pp. 243-254, 2002

[6] R. E. Vlas and W. N. Robinson, “Two Rule-Based Natural Language

Strategies for Requirements Discovery and Classification in Open

Source Software Development Projects,“ Journal of Management

Information Systems, vol. 28, no. 4, pp. 11-38, 2012.

[7] S. M. Beitzel, E. C. Jensen, D. D. Lewis, A. Chowdhury, and O. Frieder,

“Automatic classification of Web queries using very large unlabeled

query logs,” ACM Transactions on Information Systems, vol. 25, no. 2,

2007.

[8] S. Schaeffer. (2002). Tic-Tac-Toe (Naughts and Crosses, Cheese and

Crackers, etc.). Mathematical Recreations. [Online]. Available:

http://www.mathrec.org/old/2002jan/solutions.html

[9] I. H. Witten and E. Frank, Data mining: practical machine learning

tools and techniques, 2nd ed. Morgan Kaufmann, 2005.

[10] G. H. John and P. Langley, “Estimating continuous distributions in

Bayesian classifiers,” in Proc. the eleventh conference on uncertainty

in artificial intelligence, Morgan Kaufmann Publishers Inc., 1995, pp.

338-345.

[11] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,

“Improvements to Platt's SMO Algorithm for SVM Classifier Design,”

Neural Computation, vol. 13, no. 3, pp 637-649, 2001.

[12] J. Platt, “Fast Training of Support Vector Machines using Sequential

Minimal Optimization,” in Advances in Kernel Methods - Support

Vector Learning, B. Schoelkopf, C. Burges, and A. Smola, eds.,

Cambridge, MA: MIT Press, 1998.

[13] S. le Cessie and J. C. van Houwelingen, “Ridge Estimators in Logistic

Regression,” Applied Statistics, vol. 41, no. 1, pp. 191-201, 1992.

[14] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine

Learning, vol. 6, pp. 37-66, 1991.

[15] R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

no.1, pp. 81-106, 1986.

[16] R. Quinlan, C4.5: Programs for Machine Learning, San Mateo, CA:

Morgan Kaufmann Publishers, 1993.

[17] Weka 3: Data Mining Software in Java. (2013). [Online]. Available:

http://www.cs.waikato.ac.nz/ml/weka/

Chen-Huei Chou received the B.S. in information

and computer engineering from Chung Yuan

Christian University, Taiwan in 1996, the M.S. in

computer science and information engineering from

National Cheng Kung University, Taiwan in 1998,

the M.B.A. from the University of Illinois at Chicago,

Chicago, Illinois, USA in 2004, and the Ph.D. in

management information systems from the University

of Wisconsin-Milwaukee, Wisconsin, USA in 2008.

He is an assistant professor of Management Information Systems and

Decision Sciences in the School of Business at the College of Charleston,

South Carolina, USA. His research has been published in MIS journals and

major conference proceedings, including Journal of Association for

Information Systems, Decision Support Systems, IEEE Transactions on

Systems, Man, and Cybernetics, and Journal of Information Systems and

e-Business Management. His areas of interests include web design issues in

disaster management, ontology development, and data mining.

