

Abstract—In view of its critical role and popularity in the

area of software architecting, Internet of things, and software

as a service, a method for improving restful Web service

programs' quality obviously is critical and valuable.

Consequently, this article presents a service for improving the

efficiency of testing restful Web service programs, the

corresponding design rationale and impact are described. This

kind of services will be helpful in speeding up the testing tasks

of restful Web applications, as well as improving quality of

restful Web service software, in terms of correctness.

Index Terms—Testing as a service, software as a service,

restful web service, software testing.

I. INTRODUCTION

Initially, Web service techniques were invented to loosely

couple distributed and heterogeneous software systems,

which usually had been implemented with diverse

technologies and deployed at different epochs. Basically,

there are two kinds of Web service enabling technologies:

SOAP (Simple Object Access Protocol) based and REST

(REpresentational State Transfer) styled. Due to the

overhead of volume message processing, the SOAP-based

Web services became bulky to sites with intensive traffic. To

address this issue, the REST-styled service presented by

Roy Fielding in his dissertation [1] looks a promising

approach for architecting various Web services that need to

serve vast amount of user requests.

The restful style [2] Web service emerged as an

lightweight alternative for realizing the concept of software

as a service (SaaS) [3], [4], which is one of the major service

delivery models in cloud computing [5] environment. In a

SaaS model, functionalities of software are delivered to

users through the Internet and HTTP; users do not need to

handle executable files and configuration data, instead, these

files are hosted in the cloud. Basically, users can consume

SaaS via a Web client (browser) that might run on diverse

form factors such as smart phones, thin clients, tablet PCs,

desktops, and so on. Besides offering a fairer pricing scheme

that charge users based on actual usage, the SaaS model

accelerated functions and data revision, from end users'

perspectives. This feature is very critical to modern

e-business and e-commerce platforms where people are

always eager for new functionalities for more efficient

operations and better competitiveness, but are reluctant to

Manuscript received April 10, 2013; revised June 25, 2013.

Shueh-Cheng Hu is with the

Department of Computer Science and

Communication Engineering at Providence University, Taichung city,

Taiwan 43301, ROC (e-mail:schu@pu.edu.tw).

I-Ching Chen

is with the Department of

Information Management at

ChungChou University of Science and Technology, Yuanlin, Changhua

county, Taiwan 51003, ROC (e-mail:jine@dragon.ccut.edu.tw).

maintain installed software.

Not surprisingly, the aforementioned strengths motivated

flagship online enterprises including Google, Yahoo,

Facebook, and Twitter that must handle millions of user

requests daily, to aggressively adopt the restful approach for

developing their Web applications and publish the

corresponding APIs with an eye to the performance and

pervasiveness. Besides online enterprises, research

organizations such as the Lawrence Berkeley National

Laboratory also developed a restful API for scientists, thus

they can remotely access an array of high performance

computing (HPC) resources that were deployed within the

laboratory via light-weight mobile devices with Web

browser [6]. The international project Globus [7], an grid

platform for supporting scientific computing, also applies

restful interface for its clients around the globe. An early

feasibility prototype using restful Web service in

telecommunication industry also indicated that the REST

architectural style is also suitable for bridging services

across technologies and application domains [8]. Overall

speaking, the restful style has being applied to develop Web

applications with diverse purposes [9]-[12].

Besides enabling the SaaS service model in cloud

computing environments, the restful Web services also play

significant roles at the area of Internet of things (IOT)

[13]-[15]. IOT refers to various real-world devices (things)

could be loosely coupled through embedded computers

supporting ubiquitous HTTP protocol; thus, each device

could be efficiently tracked and controlled within a

coordinated environment to achieve a goal that would not

have been achieved without connecting these things. In fact,

the IOT concept has been applied in establishment of smart

electricity grids [16].

In view of its significance and popularity in the area of

software architecting, SaaS, and IOT, a method for

improving restful Web service programs' quality evidently

becomes critical and valuable. There are volume of research

outcome and tools for assuring software quality. In contrast,

there are rare research works concentrating on the quality

improvement issues of restful Web programs. Accordingly,

this article proposes a system, which is presented as a

service to users and aims to facilitate the testing of deployed

restful Web programs. The anticipated contribution of the

present system is to improve the quality of deployed restful

Web programs efficiently and effectively.

II. RELEVANT TECHNIQUES AND PRIOR STUDIES

Before presenting the service-oriented system that

automatically tests restful Web programs, the relevant

techniques including restful Web services and symbolic

execution and prior studies are reviewed.

TaaS for Improving Quality of Restful Web Services

Shueh-Cheng Hu and I-Ching Chen

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

476DOI: 10.7763/IJIET.2013.V3.321

A. Characteristics of Restful Web Services

In a restful Web application, everything that could be

accessed or operated are treated as resources. The resources

must be identifiable via an uniform naming scheme, and the

uniform resource identifier (URI) is practically used in all

restful Web applications. In contrast with its heavyweight

counterpart: the SOAP-based Web service, the restful Web

service associates standard HTTP methods with basic

operations that intended to be performed on resources. In

general, the four basic HTTP methods: PUT, GET, POST,

and DELETE have been used to symbolize create, retrieve,

update, and delete operations on resources, respectively.

Due to the open and uniform identifying scheme and

access (operation) interface, the restful approach

significantly reduces the overhead that are caused by the

required processing of SOAP-based messages; either

message composition or decomposition. Consequently,

message recipients can receive and then directly interpret

(map) the request sent by users. Such reduction offers users

and bystanders a lightweight option for utilizing Web

services in the cloud. Moreover, the plain HTTP-based

access interface facilitates the integration of popular and

lightweight techniques such as asynchronous JavaScript and

XML (AJAX) into client side of restful Web applications,

which further enables more service consumers using devices

with various form factors to access various online services

ubiquitously.

In summary, most restful Web applications possess the

following characteristics: 1) resource-centered; each

component in the system could be treated as a resource that

is identifiable via an URI. This features make the Web

caching works more efficiently. 2) Uniform access interface;

each resource could be created, retrieved, updated, and

deleted through the HTTP POST, GET, PUT, and DELETE

method, respectively. 3) Representation; each resource

could be presented in at least one form, such as XML,

HTML, or JavaScript Object Notation (JSON). 4)

Connectedness; not only data, the links to other resources

also be placed in each resource's representation. 5) Stateless;

each operation does not need to rely on prior transmitted

data, this feature favors horizontal scalability and cache

performance.

B. Automatic Software Testing

To assure the quality of software, verification and/or

testing are necessary to be performed before delivering to

users. Typically, tasks of software testing include test data

preparation, test script execution, and results collection and

analysis, all of these are labor-intensive and time-consuming

tasks. Consequently, testing consumes considerable portion

of resource in most software development projects; the cost

of testing exceeds more than forty percent of the total budget

according to a report from a leading software vendor [17].

Even with the most allocation of resource, software still

cannot be tested thoroughly in most cases due to limited time

and budget. In other words, all possible execution paths of

software could not be fully covered during testing phase,

which definitely will compromise the quality of released

software.

To resolve the aforementioned issue, various automatic

software testing techniques have been presented to reduce

the required manual works and the corresponding cost.

Among other automatic testing techniques, the symbolic

execution, presented by James C. King in 1976 [18], is a

noticeable method for generating test data automatically.

Symbolic execution means symbols, rather than real data,

are used to traverse a program's execution tree that

comprises all execution paths. In a execution tree, each

program statement corresponds to a node, each

inter-statement transition corresponds to a link between

nodes. A path condition comprising input symbols and

logical operators is associated with each node and records

the condition of reaching the associated node. After

excluding all infeasible paths whose path condition is

evaluated to false, solving all path conditions associated

with feasible paths will obtain a set of test data that can

completely cover all of a program’s possible execution

paths.

Even with automatic test data generator, there is still a

major obstacle in front of us toward an efficient and

affordable automatic software testing scheme: state/path

explosion [19], [20]. Path explosion represents the

increasing number of execution paths will exhaust limited

computer memory space eventually, which will halt the

system hosting testing jobs. In practical, automatic software

testing schemes are resource-intensive, thus, they are only

afforded and adopted by large organizations and enterprises

[21]. Fortunately, the obstacle has being removed gradually

since the inception of testing as a service (TaaS) concept.

C. Testing as a Service

Testing as a service (TaaS) [22], [23], a particular

category of SaaS, aims to provide software developers and

testers an easy-to-use and cost-efficient testing facility in a

form of service. Rationally, TaaS should be deployed in a

cloud infrastructure to leverage its advantages, just like

other SaaS applications. Consequently, TaaS inheriting

merits of SaaS, to certain extent, can solve the difficulties

that adopters of automatic software testing techniques are

encountering. First, elastic allocation of computing power

and storage offered by cloud infrastructures can ease

administrative works of an automatic software testing

environment; i.e., users only need to focus on their core

business: testing the target software. In addition, the

pay-per-usage aspect of SaaS service model makes testing

jobs much more cost efficient. Second, service-based

delivery of testing functionality minimizes the preparation

effort before conducting software testing, which further

makes testing become a ubiquitous and affordable function.

As a result, with TaaS tools, programmers and testers have

better chance to identify and correct errors in early stage,

which will significantly avoid the higher cost of fixing bugs

in late stages of software lifecycle [17].

In view of significance of restful Web programs as well as

advantages of TaaS, the present work proposes a system that

aims to automatically test the correctness of deployed restful

Web programs, and delivers its testing functionality in a

form of service. The ultimate goal is providing an

environment in which clients can use testing functionality on

demand and consume the corresponding computing

resources elastically.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

477

III. TESTING AS A SERVICE FOR RESTFUL SERVICE

PROGRAMS

The present system aims to provide service for

performing restful Web program testing in an efficient and

easy way. This section dissects the system's architecture and

describe its design rationales in detail.

A. System Architecture

As Fig. 1 illustrates from a static perspective, there are

three major components in the present system: 1) a test data

generator that interprets deployed restful Web programs and

then generate test data covering the tested programs

completely; 2) a test engine that executes scripts in order to

send HTTP requests to the deployed programs, along with

data being generated if it is necessary to do so. 3) A service

wrapper that encapsulate all other components and data

modules with a service-based interface (e.g., API), so that

clients who might be users or intelligent agents can apply

restful styled interface to perform testing tasks.

Fig. 1. The TaaS system for restful Web programs.

B. Design Rationales

Apparently, the test data generator needs to rely on

symbolic execution technique to generate test data covering

deployed restful Web programs completely. However,

besides the simple service description including the URI, the

detailed specification of service programs, such as data

types and ranges, are also necessary to allow the generator

come up with both valid and invalid test data sets, which are

critical for assuring programs' robustness (capability of

exception handling) as well as correctness. Accordingly, the

specification of current restful Web programs needs to be

extended to take the properties of associated data being

processed into account. Recording test data in a

machine-readable way is critical for performing test jobs

automatically; consequently, an new XML schema needs to

be devised for storing generated test data.

In order to execute all feasible paths of tested programs,

the test engine needs to read a script file that guiding the

engine to perform a sequence of various restful operations

and send associated test data, if necessary. Obviously, the

test engine must possess the following capabilities in order

to achieve the above goal; the first one is applying four

HTTP methods (POST, GET, PUT, DELETE) to hit the

service programs. The second is processing the XML

schemas and documents.

Regarding the service wrapper, it is actually another

restful Web application, its main purpose is hiding details of

all other functional and data modules with a restful styled

interface, so that clients can perform testing tasks via diverse

types of devices supporting HTTP-client, which leads to a

more accessible testing environment and reduces software

defects accordingly.

IV. IMPACT ANALYSIS

The realization of the proposed system for automatically

testing restful Web programs will make impact on multiple

facets, which include:

1) The time to market could be shorten; due to the

conventionally time-consuming testing phase could be

condensed via automatic tools.

2) It is easy to maintain a certain level of testing quality;

quality of testing tasks tend to be fluctuating if tasks

are performed by humans possessing different levels of

expertise, experience, and patience.

3) A more accessible testing service will make software

testing more thorough. From temporal perspective,

testing works could be conducted within a wider span

of lifecycle with TaaS, which means higher chances of

bug identification and correction. From spatial

perspective, higher coverage of programs' execution

paths could be achieved within the same period of time

with TaaS since TaaS is more easy-to-use and highly

available.

4) Generally speaking, negotiating and then setting a

reasonable service level agreement (SLA) before

signing service contracts is critical to cloud service

providers that need to take both profit and risk factors

into consideration. To negotiate and set a reasonable

SLA, the cloud service provider, especially SaaS

providers, must be able to assess their deployed

software's quality precisely and promptly. Obviously,

TaaS can provide precise and complete quality data in

a more time-efficient way, comparing with traditional

testing schemes.

V.

CONCLUSIONS

Restful Web programming is a light-weight approach

toward Internet service provision. Besides being adopted by

leading Internet enterprises due to its advantage in terms of

efficiency, restful Web applications have being widely

applied in the areas of scientific computing, e-commerce,

utility management, and many other domains.

Due to its critical roles and popularity, it is important to

assure restful Web programs' quality before delivering their

functions to users. Considering restful Web programs' fast

adoption and increasing installation base, it is irrational to

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

478

test them with traditional and labor-intensive schemes.

This article presents a TaaS system that aims to test

deployed restful Web programs in a more accessible,

efficient, and effective way. To make it more accessible,

functionality of the system is wrapped with a restful styled

interface. To make it more efficient and effective, the system

applied symbolic execution technique to automatically

generate test data that cover tested programs completely.

Not only fulfilling software testing purposes, the present

system could be provided to clients who are interested in

particular restful Web service offerings, but need to assess

them thoroughly before leasing them.

ACKNOWLEDGMENT

This research work has being funded by the grant from the

National Science Council, Taiwan, ROC, under Grant No.

NSC 101-2221-E-126 -018. We deeply appreciate their

financial support and encouragement.

REFERENCES

[1] R. T. Fielding, Architectural Styles and the Design of Network-based

Software Architectures, University of California, Irvine, Irvine,

California, 2000.

[2] S. Vinoski, “RESTful Web Services Development Checklist,”

Internet Computing, IEEE, vol. 12, no. 6, 2008, pp. 96-95.

[3] F. Liu, W. Guo, Z. Q. Zhao, and W. Chou, “SaaS Integration for

Software Cloud,” in Proc. the 2010 IEEE 3rd International

Conference on Cloud Computing, 2010.

[4] G. Goth, “Software-as-a-Service: The Spark That Will Change

Software Engineering?” Distributed Systems Online, IEEE, vol. 9, no.

7, 2008, pp. 3.

[6] S. Cholia, D. Skinner, and J. Boverhof, “NEWT: A RESTful service

for building High Performance Computing web applications,” in Proc.

the Gateway Computing Environments Workshop, 2010.

[7] B. Allen et al., “Software as a service for data scientists,” Commun.

ACM, vol. 55, no. 2, 2012, pp. 81-88.

[8] C. Fu, F. Belqasmi, and R. Glitho, “RESTful web services for

bridging presence service across technologies and domains: an early

feasibility prototype,” Communications Magazine, IEEE, vol. 48, no.

12, 2010, pp. 92-100.

[9] P. Belimpasakis and S. Moloney, “A platform for proving family

oriented Restful services hosted at home,” IEEE Transactions on

Consumer Electronics, vol. 55, no. 2, 2009, pp. 690-698.

[10] H.-M. Rissanen, T. Mecklin, and M. Opsenica, “Design and

Implementation of a RESTful IMS API,” in Proc. the 6th

International Conference on Wireless and Mobile Communications,

2010.

[11] S. Gao, H. Yu, Y. Gao, and Y. Sun, “A design of RESTful style digital

gazetteer service in cloud computing environment,” in Proc. the 18th

International Conference on Geoinformatics, 2010.

[12] Z. Qian and W. Xianglong, “The research and implementation of a

RESTful map mashup service,” in Proc. the 2010 Second

International Conference on Communication Systems, Networks and

Applications, 2010.

[13] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,

“Interacting with the SOA-Based Internet of Things: Discovery,

Query, Selection, and On-Demand Provisioning of Web Services,”

IEEE Transactions on Services Computing, vol. 3, no. 3, 2010, pp.

223-235.

[14] S. Hodges, S. Taylor, N. Villar, J. Scott, D. Bial, and P. T. Fischer,

“Prototyping Connected Devices for the Internet of Things,” IEEE

Computer, vol. 46, no. 2, 2013, pp. 26-34.

[15] W. Meng, F. Chunxiao, W. Zhigang, L. Shan, and L. Jie,

“Implementation of Internet of Things Oriented Data Sharing

Platform Based on RESTful Web Service,” City, 2011.

[16] R. E. Schumann and D. Genoud, “Demand Forecasting and Smart

Devices as Building Blocks of Smart Micro Grids,” IEEE, City, 2012.

[17] S. McConnell, Code Complete, Microsoft Press, 2004.

[18] J. C. King, “Symbolic execution and program testing,”

Communication of the ACM, vol. 19, no. 7, 1976, pp. 385-394.

[19] X. Xiao, X.-S. Zhang, and X.-D. Li, “New Approach to Path

Explosion Problem of Symbolic Execution,” City, 2010.

[20] A. S. Douglas, “Simulation-Verification: Biting at the State Explosion

Problem,” IEEE Transactions on Software Engineering, vol. 27, no. 7,

2001, pp. 599-617.

[21] O. Taipale, J. Kasurinen, K. Karhu, and K. Smolander, “Trade-off

between Automated and Manual Software Testing,” International

Journal of Systems Assurance Engineering and Management, pp.

1-12, 2011.

[22] G. Candea, S. Bucur, and C. Zamfir, “Automated software testing as a

service,” in Proc. the 1st ACM symposium on Cloud computing,

Indianapolis, Indiana, USA, 2010, ACM.

[23] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea,

“Cloud9: a software testing service,” SIGOPS Oper. Syst. Rev., vol. 43,

no. 4, 2010, pp. 5-10.

Shueh-Cheng Hu was born in Taichung city, Taiwan

in 1965. He received both B.A. and M.S. degrees in

computer engineering from National Chiao-Tung

University, HsinChu, Taiwan, in 1987 and 1989,

respectively. He received his Ph.D. degree in computer

science from Texas A&M University, College Station,

TX, in 2000.

Dr. Hu is an associative professor in the Department

of Computer Science and Communication Engineering at Providence

University, Taichung, Taiwan. Prior to Providence University, he held

various software system research and development positions at a number of

companies and organizations including AT&T Lab, Taiwan stock exchange

corporation, etc. Dr. Hu has been pursuing research in the areas of Web

technology, service-based software, e-learning, and e-commerce enabling

technologies since 2004. He has published over 30 refereed papers in

relevant journals and conferences, which majorly focus on the areas of

Software development, Web and cloud technologies, e-learning, and

e-commerce.

Dr Hu currently is a member of ACM, IEEE, and IEDRC. He also has

served as reviewers for a number of international journals, and committee

members of international conferences.

I-Ching Chen was born in Yuanlin County, Taiwan in

1973. She received her B.A. degree in international

trade and business from Tunghai University, Taichung

city, Taiwan in 1997, and M.S. degree in computer

science from the same school in 2002. In 2011, she

received her Ph.D. degree in information management

from National Yunlin University of Science and

Technology, Yuanlin, Taiwan.

Dr. Chen is a faculty member at Chung-Chou University of Science and

Technology, where she is an assistant professor in the Department of

Information Management. Prior to Chung-Chou University, she held

various teaching and administrative positions at Tunghai University and

other universities in central Taiwan. She has been pursuing research in the

areas of e-commerce, management information system (MIS), customer

relationship management (CRM), and e-learning since 2005. She has

published over 30 refereed papers in relevant journals and conferences,

which majorly explore issues in the areas of MIS, CRM, e-commerce,

e-learning, and Web-based software.

Dr Chen currently is a member of IEDRC. She also has served as

reviewers for a number of journals, and committee members of international

conferences.

International Journal of Information and Education Technology, Vol. 3, No. 4, August 2013

479

[5] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and

Challenges,” in Proc. the 24th IEEE International Conference on

Advanced Information Networking and Applications, 2010.

“

