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Abstract—Feature extraction is key in understanding and 

modeling of physiological data. Traditionally hand-crafted 

features are chosen based on expert knowledge and then used 

for classification or regression. To determine important 

features and pick the effective ones to handle a new task may be 

labor-intensive and time-consuming. Moreover, the manual 

process does not scale well with new or large-size tasks. In this 

work, we present a system based on Deep Belief Networks 

(DBNs) that can automatically extract features from raw 

physiological data of 4 channels in an unsupervised fashion and 

then build 3 classifiers to predict the levels of arousal, valance, 

and liking based on the learned features. The classification 

accuracies are 60.9%, 51.2%, and 68.4%, respectively, which 

are comparable with the results obtained by Gaussian Naïve 

Bayes classifier on the state-of-the-art expert designed features. 

These results suggest that DBNs can be applied to raw 

physiological data to effectively learn relevant features and 

predict emotions. 

 

Index Terms—Deep belief networks, emotion classification, 

feature learning, physiological data.  

 

I. INTRODUCTION 

Inspired by the relationship between emotional states and 

physiological signals [1], [2], researchers have developed 

many methods to predict emotions based on physiological 

data [3]-[11]. Emotions could be classified into a few classes 

as follows:  the negative emotions include anger, anxiety, 

disgust, embarrassment, fear, and sadness, whereas the 

positive emotions have affection, amusement, contentment, 

happiness, joy, pleasure, pride, and relief [7]. 

Arousal-valence space [12] is an alternative way to define 

emotions by continuous values. The dimension of arousal 

represents calmness or excitement, whereas the dimension of 

valence ranges from highly positive to highly negative.  

Empirically, physiological data can be obtained from 

biosensors in various ways: Electrodermal Activity (EDA) 

measures electrical conductivity or skin conductance; 

Electrocardiogram (ECG) measures heart beats; 

Electroencephalography (EEG) measures brain activities;  

Electrooculogram (EOG) measurs eye movements [13], and,  

in a broader sense, related data such as accelerometer data, 

voice, GPS, etc.  

Traditionally, to map biological signals to emotions, the 

first step is to extract features from the raw data. For example, 

the R-R intervals extracted from ECG represent a person’s 

heart beat periods, which is related to emotional changes 

between calmness and excitement. These features are usually 

hand-engineered using task dependent techniques developed 
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by domain experts [14]-[16] and selected by experts or 

feature selection algorithms like principal components 

analysis (PCA). The process is labor-intensive and 

time-consuming. When physiological data types and/or 

prediction tasks change, the whole process needs to be 

repeated. A system that could extract important features 

automatically from raw physiological data with minimal 

human input is more scalable. 

Deep belief networks (DBNs) [17], as a semi-supervised 

learning algorithm, is promising for this problem. It consists 

of  a multilayer neural network with each layer a restricted 

Boltzmann machine (RBM) [18]. The network can be trained 

efficiently using both labeled and unlabeled data. The trained 

weights and biases in each layer correspond to features at 

different levels.    

DBNs have been applied in handwriting recognition [17], 

[19], image recognition [20], [21], and modeling human 

motions [22]. For physiological data, [23] used DBNs to 

classify EEG signals to five clinically significant waves and  

[24] used DBNs classifiers to determine sleep stages from 

EEG, EOG, and EMG. To the best of our knowledge, there is 

no existing work to predict emotional states from 

physiological data using DBNs, which is the focus of this 

paper.    

The paper is organized as follows. Section II gives a brief 

introduction to DBNs, followed by a description of the 

physiological data set DEAP [25] used in the experiment in 

Section III. Section IV presents the DBN structures and 

experimental settings in predicting emotions from raw 

physiological data.  Section V presents the learned features 

and experiment result. Finally, Section VI summarizes the 

paper.   

 

II. BASICS OF DEEP BELIEF NETWORKS 

Shallow neural networks with an input layer, a single 

hidden layer, and an output layer require more computational 

elements or are hard to model complex concepts and 

multi-level abstractions. In contrast, multi-layer neural 

networks provide better representational power and could 

derive more descriptive multi-level models due to their 

hierarchical structures, with each higher layer representing 

higher-level abstraction of the input data. Unfortunately, it is 

difficult to train all layers of a deep neutral network at once 

[26]. With random initial weights, the learning is likely to get 

stuck in local minima.   

Hinton et al. proposed deep belief networks (DBNs) to 

overcome the difficulties by constructing multilayer 

restricted Boltzmann machines (RBMs) [18] and training 

them layer-by-layer in a greedy fashion [17], [27]. The 

training process has two stages. The first stage is 

unsupervised pre-training, in which data without labels are 

used and the training is done in an unsupervised way. The 
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training begins at the bottom of the network, at layer 1, to 

obtain features in the first layer of hidden nodes from the raw 

data input. Then the training moves up a layer, between 

hidden node layer 1 and layer 2, treating hidden node layer 1 

as the new input to get features in hidden node layer 2. The 

greedy layer-wise training is conducted until reaching the 

highest hidden node layer. The first stage trains a generative 

model with weights between layers to capture the raw input’s 

features, resulting in better starting point for the second stage 

to learn than randomly assigned initial weights.  

The second training stage consists of fine-tuning the 

weights and supervised learning at the top layer. In this stage, 

a new layer is added on top of the stacked RBMs learned in 

the first stage to construct a discriminative model. Labeled 

data are used to train the new layer, which acts as a classifier. 

The overall structure of a DBN with three layers (three layers 

of hidden nodes) is shown in Fig. 1. 
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Fig. 1. The structure of a DBN with three hidden layers: (a) The pre-training 

stage using un-labeled data and (b) The fine-tuning stage with a new top 

layer added and trained using labeled data.  

 

A. Restricted Boltzmann Machines–the Building Blocks 

As the building blocks of DBNs, a restricted Boltzmann 

machine has a visible layer consisting of stochastic, binary 

nodes as the input and a hidden output layer consisting of 

stochastic, binary feature detectors as the output, connected 

by symmetrical weights between nodes in different layers. 

There is no connection between the nodes in the same layer. 

A graphical depiction of an RBM is shown in Fig. 2. 

A RBM is a generative stochastic neural network that can 

learn a probability distribution over its set of inputs. A joint 

configuration (𝑣, 𝑕) of the visible nodes 𝑣 and hidden nodes 

𝑕 can be represented by the following energy function  

 

𝐸 𝑣, 𝑕 =  − 𝑣𝑖𝑕𝑗𝑤𝑖𝑗𝑖 ,𝑗 −  𝑏𝑖𝑣𝑖 −  𝑏𝑗𝑕𝑗𝑗𝑖       (1) 

 

where 𝑣𝑖  is the binary state of visible node 𝑖, 𝑕𝑗  is the binary 

state of hidden node 𝑗, 𝑤𝑖𝑗  is the weight between node 𝑖 and 𝑗, 

and 𝑏𝑖  is the bias term of visible node 𝑖 and 𝑏𝑗  the bias term 

of hidden node 𝑗. 
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Fig. 2. A graphical depiction of an RBM. 

 

The probability of a given configuration is the normalized 

energy function:  

 

𝑝 𝑣, 𝑕 =  
𝑒−𝐸(𝑣,𝑕)

 𝑒−𝐸(𝑢 ,𝑔)
𝑢 ,𝑔

                              (2) 

 

The binary nodes of the hidden layer are Bernoulli random 

variables. The probability that node 𝑕𝑗  is activated, given 

visible layer 𝑣, is 

 

𝑃 𝑕𝑗 = 1   𝑣) =  𝜎(𝑏𝑗 +  𝑤𝑖𝑗 𝑣𝑖𝑖 )              (3) 

 

where  

 

 𝜎 𝑥 =  
1

1+𝑒−𝑥                            (4) 

 

The probability that node 𝑣𝑖  is activated, given hidden 

layer h, can be calculated in a similar way as follows 

 

𝑃 𝑣𝑖 = 1   𝑕) =  𝜎(𝑏𝑖 +  𝑤𝑖𝑗 𝑕𝑗𝑗 )            (5) 

 

Restricted Boltzmann machines are trained to maximize 

the product of probabilities of a set of training examples X: 

 

  argmax
𝑊

  𝑃 𝑥   

𝑥∈𝑋 

 

 

or equivalently to maximize the log likelihood 

 

  argmax
𝑊

  log 𝑃 𝑥 
𝑥∈𝑋

  

 

It is intractable to compute the gradient of the log 

likelihood. Therefore, [27] proposed contrastive divergence 

by doing 𝑘 iterations of Gibbs sampling to approximate it. 

 

∆𝑤𝑖𝑗 =  𝜀(< 𝑣𝑖𝑕𝑗 >0− < 𝑣𝑖𝑕𝑗 >𝑘)              (6) 

 

where <∙>𝑚  is the average in a contrastive divergence 

iteration m and 𝜀 is the learning rate. 

B. Unsupervised Learning Stage of DBN 

A single RBM is not good enough to extract high-level 

features from physiological data due to its complexity. In a 

DBN of stacked RBMs, the bottom RBM is first trained. 

Then the outputs of the bottom RBM given the original 

training examples becomes the inputs of the next layer RBM, 

i.e., the training examples of the next level RBM. Continuing 

this process, iteratively RBMs at upper layers are trained 
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using outputs of lower layers, in a way that the learned 

feature detectors in a lower layer become the visible input 

layer for an upper-layer RBM. This greedy layer-by-layer 

learning method computes weights and biases in different 

layers that represent different levels of abstractions.  

As an example, the features learned by a 

784-500-500-2000-10 DBN with 3 hidden layers on MNIST 

handwritten digits dataset [28] are shown in Fig. 3-Fig. 5. The 

experiment settings are the same as in [17]. Many features 

found by the algorithms in the first layer roughly represent 

dots in different positions. The features in the second layer 

look like strokes built upon the first layer features. The third 

layer’s features are parts of the whole digits, corresponding to 

higher-level components. 

C. Supervised Learning Stage of DBN 

The supervised learning stage adds a label layer on the top 

on DBN and removes the links in the top to down direction. 

Now the neural network becomes a feed-forward neural 

network, as shown in Fig. 1 b), and the standard 

backpropogation algorithm is used to learn the network 

weights and biases based on labeled training examples. The 

learning goal is to minimize the classification error given 

labeled examples. The weights and biases are initialized as 

the values learned in the unsupervised learning stage, except 

for those in the top layer, which are randomly initialized. 

 

III. DEAP DATASET 

DBNs are applied to the DEAP dataset [25] to study 

features learned from raw physiological signals and their 

effectiveness in predicting emotion states. 
 

 
Fig. 3. The features learned in the 1st hidden layer of a 3-layer DBN on 

MNIST handwritten digits dataset. 

 

DEAP is a multimodal dataset for the analysis of human 

affective states. The EEG and peripheral physiological 

signals (down sampled to 128Hz) of 32 subjects were 

recorded as each subject watched 40 one-minute long videos. 

Subjects rated the levels as continuous values of arousal, 

valence, liking, dominance, and familiarity.  

DBN is applied to predict the levels of arousal, valence, 

and liking, respectively, given raw physiological data. The 

arousal scale ranges from calm (1) to excited (9). The valence 

scale ranges from sad (1) to joyful (9). Liking also has values 

from 1 to 9.  

 
Fig. 4. The features learned in the 2nd hidden layer of a 3-layer DBN on 

MNIST handwritten digits dataset. 

 

 
Fig. 5. The features learned in the 3rd hidden layer of a 3-layer DBN on 

MNIST handwritten digits dataset. 

 

32 EEG channels and 8 peripheral nervous system 

channels were recorded, including hEOG (horizontal EOG), 

vEOG (vertical EOG), zEMG (Zygomaticus Major EMG), 

tEMG (Trapezius Major EMG), GSR (values from Twente 

converted to Geneva format in Ohm), respiration belt, 

plethysmograph, and body temperature. 

In our experiment, 4 peripheral channels, two EOG and 

two EMG channels, are used to do predication. The EOG 

channels record eye movements. The activity of the 

Zygomaticus major is monitored in zEMG to capture 

subject’s laughs or smiles, whereas the Trapezius muscle 

(neck) is recorded by tEMG to reflect possible head 

movements. 

As a reference, [25] trained a Gaussian Naïve Bayes 

classifier for each subject due to the high inter-subject 

variability. For each subject, three different binary classifiers 

were trained to map the 8 peripheral channels to low (1-5) / 

high (5-9) arousal, valence, and liking, respectively. A 

leave-one-video-out cross validation scheme was conducted, 

i.e., in each trial a video was taken out for testing and the 

remaining 39 videos were used for training. As was done in 

most machine-learning work on physiological data, 

engineered features such as eye blinking rate, energy of the 

signal, and mean and variance of EMG and EOG were 

extracted. All the extracted features were fed into the 

classifier to train the model. Then the model was used to 

predict the test cases. The average accuracies over all 

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

507



  

subjects were 0.570, 0.627, and 0.591 for arousal, valence, 

and liking, respectively. 

 

IV. TRAINING A DBN CLASSIFIER ON PHYSIOLOGICAL DATA 

The goal is to train a single DBN classifier for all subjects 

on the raw data from two EEG and two EOG channels to 

predict arousal, valence, and liking in two classes (low or 

high). Performance is evaluated based on the classification 

accuracy defined as follows: 

 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦  𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑  𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
      (7) 

 

There are five steps in the experiment: raw data 

pre-procession, raw data selection and division, 

normalization, randomization, and DBN training and 

classification. 

1) In the first step, all signals were pre-processed by notch 

filtering at 50 Hz in order to remove power line 

disturbance. Bandpass filters of 0.3 to 32 Hz and 10 to 32 

Hz were applied to EOG and EMG, respectively, as 

suggested by [24]. 

2) Part of the raw data is discarded and the remaining data is 

divided into training set and test set. Since a subject’s 

physiological signals are more likely to be elicited by a 

video at the end of the one-minute watching period as the 

plot develops, it is reasonable to discard the first 50 

second and use only the last 10 seconds’ data in each 

one-minute record. Then the 10 seconds’ data were 

divided into 10 one-second segments. Therefore, the 

learning process uses one-second examples, each in 512 

dimensions (128 Hz * 1 sec * 4 channel). In the total, 

there are 12800 examples (32 subject * 40 video * 10 

example). In each trial, the 10 samples of one randomly 

chosen video from each subject were left out for testing, 

resulting in the size of test set being 320 (32 subject * 1 

video * 10 example). The remaining 12480 (32 subject * 

39 video * 10 example) examples formed the training set.  

3) A channel-wise normalization is performed to scale all 

values to [0 1] according to the following formula:  

 

                            (8) 

 

where 𝑐𝑕𝑖  represents all the data in the channel 𝑖 and 𝑐𝑕𝑖𝑗  is a 

data element in the channel 𝑖. The reason to normalize data 

this way is two-folded: a) the ranges of different channels 

may vary, so normalization can make them comparable when 

concatenating all channels as input, and b) a DBN’s node in 

the input layer has to have values between 0 and 1, to be 

treated as probabilities of activation of this node.  

4) Randomizing training samples is necessary because the 

mini-batch technique in training DBNs requires samples 

of each class are evenly distributed. 

5) In the last step, a DBN is first pre-trained using unlabeled 

data (without using the labels), which means the same 

features learned in the unsupervised learning stage can be 

used for the three different classification problems in the 

supervised learning stage. Since the features obtained in 

the unsupervised learning stage captures the properties of 

the data, they can be saved for future classification 

problems. After supervised learning based on labeled data 

and backpropagation to train a DBN for arousal 

classification, it is used to predict arousal test set. The 

same process is applied to the valence and liking 

classification problems. 

For each classification problem, 10 trials were run to get 

the mean accuracies, as well as the standard deviations. The 

DBNToolbox matlab code [24] was used in the experiment. 

A DBN with two hidden layers, each layer with 50 nodes was 

constructed. Therefore the DBN structure for the 

unsupervised learning stage is 512-50-50 and for the 

supervised learning stage is 512-50-50-2. DBN parameters 

are listed in Table I. 
 

TABLE I: DBN PARAMETERS USED IN THE EXPERIMENTS 

Unsupervised learning rate  0.05 

Supervised learning rate 0.05 

Number of epochs in unsupervised learning 

(pre-training) 

50 

Number of epochs in supervised learning (fine-tuning) 20 

Mini-batch size in both stages 100 

 

V. EXPERIMENTAL RESULTS 

A. Learned Features 

 

 
 

 
 

Fig. 6. EOG features at the first hidden layers with 50 nodes learned using a) 

hEOG data and b) vEOG data. 

 

It is interesting to see what features DBNs can learn from 

the raw physiological data. Because the data of all channels 

were concatenated as the input, the weights between two 

layers need to be separated to show those only relevant to one 

channel at a time. Although [29] proposed two techniques 
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called activation maximization and sampling from a unit to 

show clear patterns in higher layers, they need to clamp input 

or somehow use the training set’s information, which is not 

convenient. Instead, to show the features learned in the first 

hidden layer, we take𝑤𝑖𝑗 , where 𝑖 is a node corresponding to 

one channel in the visible layer and 𝑗 is a node in the hidden 

layer, and draw a one-dimensional signal for node 𝑗 on one 

 

 
a) 

 
b) 

Fig. 7. EMG features at the first hidden layers with 50 nodes learned using (a) 

zEMG data and (b) tEMG data. 

 

 
Fig. 8. Performance comparison of DBN and Gaussian Naïve Bayes 

classifier on three classification problems. The ‘x’ and error bars are for 

DBN classification accuracies on raw data, while the red dots are for the 

Naïve Bayes classifier.  

The result doesn’t show obvious patterns, which is 

different from the nicely structured features learned from the 

handwritten digits shown in Figs. 3-Fig. 5.    

B. Experiment Results 

 

 
a) 

 
b) 

 
c) 

Fig. 9. The histogram of prediction accuracies of the DBN-based method on 

32 subjects. 

 

The experiments of the DBN described in Table 1 were run 

on a Windows 7 machine with 3.0 G dual-core CPU and 4G 

memory. The whole experiment with 10 trials took about 1 

hour.  

The means and standard deviations of accuracies of 

arousal, valence, and liking are 0.609/0.074, 0.512/0.097, and 

0.684/0.093, respectively, which are drawn in Fig. 8. The 

classification accuracies obtained by the Naïve Bayesian 

classifier in [25] are also shown in the figure for comparison.  
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channel. For the DBN described in Table I, Fig. 6 shows the 
features learned in the 1st hidden layer of 50 nodes using EOG 
data, a) hEOG and b) vEOG. Fig. 7 shows the features 
learned at the 1st layer nodes using EMG data, a) zEMG and b) 
tEMG.  



  

There are three major differences in these two results. First, 

the previous result of [25] is per-subject, i.e., a different 

classifier is trained for each subject, whereas one DBN 

classifier is trained for all subjects in our work. Secondly, the 

previous work used all 8 peripheral channels, compared to 

only 4 channels used in this work. Finally, the previous work 

used hand-crafted features, whereas this work simply fed the 

raw data into the DBN. The proposed method is more general, 

automated, and obtained comparable solutions.  

The experimental results show the DBN method obtained 

higher liking accuracy, slightly higher arousal accuracy, but 

lower valence accuracy than the previous work. The reasons 

of lower valence classification performance could be a) the 4 

channels used in this work do not contain sufficient 

information as in the 8 channels used in the previous work, b) 

the features of valence are too complex for the DBN in our 

settings to learn, c) the inter-subject variability is too large for 

a single model to capture, as stated in [25].   

Fig. 9 shows the histograms of the DBN-based method’s 

classification prediction accuracies on 32 subjects. 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, DBNs are applied to a physiological problem 

to learn features from raw physiological data and predict 

emotions. The trained generic model of DBNs for all subjects 

in the DEAP dataset achieved good performance compared to 

previous results. The result shows that DBNs are capable to 

learn useful features in an unsupervised fashion and obtain 

classification performance comparable with Gaussian Naïve 

Bayes classifiers on hand-crafted features. The proposed 

method is general, fully automated, and can be easily adapted 

to other physiological signal analysis and prediction 

problems. It is especially useful for new problems where 

important features are unknown. The main drawback of the 

method is the relatively long time for training, e.g., a few 

hours for the dataset in the experiments.  

In future work, more channels will be used in experiments.  

The performances of DBNs on the raw data from more 

than 4 channels in the dataset, up to all the 40 channels, 

should be investigated. Since the dimensionality of the data is 

high, an effective channel selection algorithm is necessary. 

Secondly, the relationship between a DBN’ structure and its 

performance is of interest for finding appropriate tradeoffs 

between solution quality and training time. Thirdly, in the 

fine-tuning (supervised learning) stage, there exists an active 

learning problem for selecting appropriate examples for 

labeling in some applications. For example, human experts 

are needed to evaluate the true conditions of subjects as the 

labels of training data, which is time consuming and 

expensive. When only a limited number of examples can be 

labeled, an interesting question is which examples should be 

labeled, an interesting decision problem. In addition, since 

this work shows the DBN-based method is poor in predicting 

valence, but better in predicting arousal and liking, the DBN 

learned features and hand-engineered features could be 

combined to obtain better performance.   
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