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Abstract—Bi- or multi-objective scheduling problem is 

important in practice because it offers two and more 

managerial indicators simultaneously for decision-makers 

doing some trade-offs. To date the studies of single 

batch-processing machine problems with bi-criteria were 

relatively few compared to the single unit-processing machine. 

In this paper, we consider a bi-criteria scheduling problem of 

minimizing the makespan and total weighted tardiness on a 

single batch-processing machine. An exhausted enumeration 

approach is provided to find all Pareto-optimal solutions for 

small-scale problems. In addition, an alternative method called 

SA-based multi-objective (SAMO) algorithm is also developed 

for comparison with the exhausted enumeration approach. 

Computational results revealed that the proposed SAMO 

algorithm could almost find all Pareto-optimal solutions for the 

small problem. Obviously, the success on small-scale problems 

suggests the readiness of the proposed SA for large-scale 

problems. 

 

Index Terms—Makespan, total weighted tardiness, 

batch-processing machine, simulated annealing. 

 

I. INTRODUCTION 

Batch-processing machine (BPM) scheduling is an 

increasingly attractive research topic since the pioneer work 

of Ikura and Gimple [1]. In the batch-processing machine 

scheduling problems, the machines can process several jobs 

simultaneously, in the other words, the jobs should be 

grouped into a batch as long as the total sizes of jobs in the 

batch do not exceed the capacity of the batch-processing 

machines, and the processing time of the machine is 

represented as the longest processing times of jobs among the 

batch. Once the process begins, it cannot be interrupted, thus 

the completion time of jobs in the batch are the same. In 

batch-processing machine scheduling problem, two decisions 

of forming batches and sequencing batches are made to 

optimize one or more objectives under some certain 

constraints, in this way there is more difficult than 

unit-processing machine scheduling problem.  

In the literature, most studies considered an objective 

function on a single BPM scheduling problem, such as the 

following: minimum makespan (Lee and Uzsoy [2]; Sung 

 

 

and Choug [3]; Uzsoy [4]; Husseinzadeh Kashan et al. [5]; 

Dupont and Dhaenens-Flipo [6]; Melouk et al. [7]; 

Damodaran et al. [8]; Chou et al. [9]), minimum total flow 

time or mean flow time (Chandru et al. [10]; Dupont and 

Ghazvini [11]; Chang and Wang, [12]), minimum related due 

date criterion (Wang and Uzsoy [13]; Mehta and Uzsoy [14]; 

Perez et al. [15]; Chou and Wang [16]; Wang [17]). There has 

been little reported research on single BPM problem with 

more than one objective. To our best knowledge, Kashan et al. 

[18] did the first research on minimizing makespan and 

maximum tardiness simultaneously for a single BPM 

problem with non-identical job sizes. They proposed two 

multi-objective genetic algorithms based on different 

representation schemes. However, they did not consider the 

release time of jobs in their study. In the real world, the jobs 

has different arrival time for being processing, therefore, in 

this paper, we extend this static single-machine batching 

problem to the dynamic problem where jobs have different 

release times. Moreover, we consider simultaneously two 

objectives of makespan and total weighted tardiness for the 

problem, because the former represents the utilization of 

machines, and the latter measures the customers’ satisfaction, 

each of both is very important for increasing a company’s 

competitiveness. 

As the first systematic attack to this problem, we construct 

an exhausted enumeration approach to find all Pareto-optimal 

solutions for small problems. Moreover, the problem is a 

well-known NP-hard problem because the problem with one 

of two objectives is also a NP-hard; therefore, we also 

developed a SA-based multi-objective (SAMO) algorithm 

and examine its effectiveness and efficiency by comparing 

the obtained solutions with those obtained from the 

exhausted enumeration approach. The experimental results 

showed that the proposed SAMO algorithm is successful to 

search Pareto-optimal solutions for small problems. 

 

II. PROBLEM DEFINITION 

According to the three-field notation proposed by [19], the 

considered problem can be defined as 

 jjjjj TwCBwsr ,|,,,|1 max , and the assumptions and 

notation for this problem are described as follow: 

1) The processing time jp , release time jr , size js , 

weights jw , and due date jd  of each job are known and 

fixed. 

2) The BPM is available at the beginning, i.e., 0t . 

3) The capacity ( B ) of BPM is known. 

4) All jobs can be grouped as a batch and be processed on a 

BPM simultaneously as long as the total sizes of jobs in 

the batch does not exceed the capacity of the BPM, i.e., 
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  Bs j . 

5) The batch processing time )( kbp for a BPM is 

represented as the longest processing time among the 

jobs in a batch, i.e., )max( jk pbp   kbatchjjob    . 

6) No machine breakdowns and preemptions. 

7) Two objectives of makespan ( maxC ) and total weighted 

tardiness ( jjTw ) are considered simultaneously. 

 

III. PARETO-OPTIMAL SET 

This paper attempts to find Pareto-optimal set under the 

bi-criterion ( maxC  and  jjTw ) for the single BPM problem. 

According to the definition proposed by Tamaki et al. [20], 

the set  of Pareto-optimal solutions to a minimization 

problem with n objective functions should satisfy the 

following conditions: 

1) Two feasible solutions 1 , 2 , 1  is dominated by 2  

if  

)()( 21  ii ff  , ni ,...,2,1  

and 

)()( 21  ii ff  , ni ,...,2,1  

2) If  0 , there is no other feasible solution  *

such that 0  is dominated by 
* . 

The well-known approach used to search Pareto-optimal 

solutions in the multi-objective scheduling problems is 

weight weighting method which search Pareto-optimal 

solutions in different directions by altering slightly weighted 

values. Chang et al. [21] combined the weight weighting 

method with a GA to solve multi-objective flowshop 

scheduling problem. Due to its successful for solving 

multi-objective flowshop scheduling problem, we also 

combine the weight weighting method with SA to develop a 

SAMO algorithm for the bicriteria BPM problem. 

 

IV. MULTI-OBJECTIVE SIMULATED ANNEALING 

Meta-heuristic algorithms such as GA, SA, ant colony 

optimization (ACO), particle swarm optimization (PSO) 

have been successful to solve combinatorial problem. 

Recently, some researchers have applied SA, called MOSA, 

to solve multi-objective scheduling problems because of its 

simplicity and capability of finding Pareto solutions in a 

single run with very short computation time compared to 

other meta-heuristic algorithms.  

The proposed SAMO is similar to single-objective SA, 

both start with initial solutions, and neighbor solutions are 

generated based on some mechanism. To avoid trapping to 

local optimum, SA use accepting mechanism to deal with 

non-improving neighboring solutions. In single-objective SA, 

the general accepting mechanism is Boltzmann probability as 

follows: 










 


TK

E
Pyprobabilit

B

exp)(  

where E  is the change in the objective value from one 

point to the next, and KB the boltzmann’s constant and T the 

temperature (control parameter). For MOSA, the calculation 

of E has to deal with two or more conflicting objective 

values, and some different accepting mechanism are 

proposed by different MOSA, such as SMOSA [22], 

UMOSA [23], WMOSA [24], and PSA [25]. In this paper, 

we use the concept of UMOSA to integrate two objective 

values into a fitness value as follows: 










 


xT

E
Pyprobabilit exp)(  

where
c

x

new zzE 
and  

)()( 2121

newnewnewnewnew ffzzz    

In addition, we separate the search space into 11 directions 

shown in Fig. 1. Thus, at the beginning of SA, we have 11 

initial solutions. The detail of SA is described in the 

following. 
 

 
Fig. 1. The search directions. 

 

The pseudo code of SAMO 
 

𝑍𝑥
𝑖 = ∞, 𝑧1,𝑥

𝑖 = ∞, 𝑧2,𝑥
𝑖 = ∞, 𝜋𝑥

𝑖 = {∅}, x=0, 1, 2,…, 10 

 

𝑘=1, and Pareto-optimal set={∅} 

Do while (𝑘 ≤ 10) 

Generate a job sequence, πnew  and maintain the 

Pareto-optimal set. 

Calculate two objective values, 𝑧1
𝑛𝑒𝑤  and 𝑧2

𝑛𝑒𝑤 , for 𝜋𝑛𝑒𝑤  

 

Let 𝑥=0 

Do while (𝑥 ≤ 10) 

 𝛼 = 0.0 + 0.1𝑥 , 𝛽 = 1 − 𝛼 , 𝑍𝑛𝑒𝑤 = 𝛼𝑧1
𝑛𝑒𝑤 +

𝛽𝑧2
𝑛𝑒𝑤  

IF (𝑍𝑛𝑒𝑤 < 𝑍𝑥
𝑖 ) then  

𝑍𝑥
𝑖 = 𝑍𝑛𝑒𝑤 , 𝑧1,𝑥

𝑖 = 𝑧1
𝑛𝑒𝑤 , 𝑧2,𝑥

𝑖 = 𝑧2
𝑛𝑒𝑤 , 𝜋𝑥

𝑖 =

𝜋𝑛𝑒𝑤  

End IF 

x=x+1 

 End Do 

 k=k+1 

End Do 

𝑍𝑥
𝑏 = 𝑍𝑥

𝑐 = 𝑍𝑥
𝑖 , 𝑧1,𝑥

𝑏 = 𝑧1,𝑥
𝑐 = 𝑧1,𝑥

𝑖 , 𝑧2,𝑥
𝑏 = 𝑧2,𝑥

𝑐 = 𝑧2,𝑥
𝑖 , 

𝜋𝑥
𝑏 = 𝜋𝑥

𝑐 = 𝜋𝑥
𝑖  

Initial Temperate 𝑇x = 1.618 × 𝑍𝑥
𝑖 ,  𝑥=0,1,2,…,10, cooling 

𝑟𝑎𝑡𝑒 𝛿 = 0.98 

Stop_flag=0 

f1

f2
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Do while (Stop_flag =0) 

 𝑥=0 

 Do while (𝑥 ≤ 10 and Stop_flag = 0) 

  Generate a neighbor sequence πnew  based on πx
c  

Maintain Pareto-optimal set by Comparing πnew  

with each of Pareto-optimal set 

𝑦=0 

Do while (𝑦 ≤ 10) 

𝛼 = 0.0 + 0.1𝑦 , 𝛽 = 1 − 𝛼 , 𝑍𝑛𝑒𝑤 =
𝛼𝑧1

𝑛𝑒𝑤 + 𝛽𝑧2
𝑛𝑒𝑤  

   IF (𝑍𝑛𝑒𝑤 < 𝑍𝑦
𝑏) then 

𝑍𝑦
𝑏 = 𝑍𝑛𝑒𝑤 , 𝑧1,𝑦

𝑏 = 𝑧1
𝑛𝑒𝑤 , 𝑧2,𝑦

𝑏 = 𝑧2
𝑛𝑒𝑤 , 

𝜋𝑦
𝑏 = 𝜋𝑛𝑒𝑤  

       End IF 

      𝑦=𝑦+1 

     End Do 

 𝛼 = 0.0 + 0.1𝑥 , 𝛽 = 1 − 𝛼 , 𝑍𝑛𝑒𝑤 = 𝛼𝑧1
𝑛𝑒𝑤 +

𝛽𝑧2
𝑛𝑒𝑤  

  IF (𝑍𝑛𝑒𝑤 < 𝑍𝑥
𝑏) then 

𝑍𝑥
𝑐 = 𝑍𝑛𝑒𝑤 , 𝑧1,𝑥

𝑐 = 𝑧1
𝑛𝑒𝑤 , 𝑧2,𝑥

𝑐 = 𝑧2
𝑛𝑒𝑤 , 𝜋𝑥

𝑐 =

𝜋𝑛𝑒𝑤  

𝑍𝑥
𝑏 = 𝑍𝑛𝑒𝑤 , 𝑧1,𝑥

𝑏 = 𝑧1
𝑛𝑒𝑤 , 𝑧2,𝑥

𝑏 = 𝑧2
𝑛𝑒𝑤 , 𝜋𝑥

𝑏 =

𝜋𝑛𝑒𝑤  

Else 

 IF (𝑍𝑛𝑒𝑤 < 𝑍𝑥
𝑐) then 

𝑍𝑥
𝑐 = 𝑍𝑛𝑒𝑤 , 𝑧1,𝑥

𝑐 = 𝑧1
𝑛𝑒𝑤 , 𝑧2,𝑥

𝑐 = 𝑧2
𝑛𝑒𝑤 , 

𝜋𝑥
𝑐 = 𝜋𝑛𝑒𝑤  

 Else 

   Generate a random γ, p = exp⁡(
Zx

c −Znew

Tx
) 

   IF (𝛾 ≤ 𝑝) 

𝑍𝑥
𝑐 = 𝑍𝑛𝑒𝑤 , 𝑧1,𝑥

𝑐 = 𝑧1
𝑛𝑒𝑤 , 𝑧2,𝑥

𝑐 = 𝑧2
𝑛𝑒𝑤 , 

𝜋𝑥
𝑐 = 𝜋𝑛𝑒𝑤  

   End IF 

 End IF 

End IF 

𝑇𝑥 = 𝛿𝑇𝑥 , x=x+1 

IF (execute time ≥ time limit) 

 Stop_flag=1 

End IF 

 End Do 

End Do 

 

V. COMPUTATIONAL EXPERIMENTS 

For testing effectiveness of the proposed SAMO, we 

compare the approximate Pareto-optimal solutions obtained 

by the SAMO with those obtained by the exhausted 

enumeration approach. Because it is difficult for the 

exhausted enumeration approach to solve large problems, 

thus in this paper small-scale test problem instances are 

generated. All the algorithms are implemented in C++, 

running on a LINUX (Ubuntu 10.10.1) with AMD Phenom 

9559 2.2 GHz processor (4 GB RAM). In this following the 

parameters for producing test instances and the performance 

measures are described.  

A. Parameters for Producing Test Instances 

The test problems are generated randomly; each of test 

problems has 10 instances with 5, 7, 9, 11, and 13 jobs. 

Therefore, problem instance is fifty totally. For each job j, a 

release time jr , a processing time jp , job sizes js  and a 

weight jw  were generated from the discrete uniform 

distribution [0, 48], [8, 48], [1, 30], and [1, 11] respectively. 

The due date jd is also generated from a discrete uniform 

distribution in the range 



























2
1,

2
1

RR
pr jj 

 where  is 

equal to *
max)1( CT , *

maxC is an estimation value for the 

completion time to finish all jobs. According to the study 

(Lee and Uzsoy [2]), the estimation value of 
*
maxC is 

calculated by the FBLPT algorithm and minimum release 

times among the jobs, that is, 

)()min( max
*
max FBLPTCrC j  . Additionally, T and R 

values are dedicated to 0.6 and 0.5 which represents the due 

date tightness factor, and the spread range of due dates. The 

machine capacity is 40 for all test problems.  

B. Performance Measures 

There are two general types of performance measure are 

used to compare two algorithms for multi-objective 

scheduling problems: quantitative and qualitative measures 

[26].  

1) Quantitative index 

AN and BN indicate that the number of Pareto-optimal 

solution obtained by the exhausted enumeration approach 

and SAMO algorithm, respectively.  

2) Qualitative index 

CA NN and CB NN are used to obtain qualitative 

measures for the exhausted enumeration approach and 

SAMO algorithm, respectively, where cN is the number of 

Pareto-optimal solutions obtained from the two algorithms. 
 

TABLE I: THE EXPERIMENTAL RESULTS 

Jobs 
Quantitative Qualitative 

A B A B 

5 1.5 1.5 1 1 

7 1.9 1.9 1 1 

9 2.1 2.1 1 1 

11 3.1 3.1 1 0.975 

13 3.1 3.1 1 0.960 

Global ave. 2.34 2.34 1 0.987 

 

TABLE II: THE EXECUTION TIME TAKEN BY THE EXHAUSTED 

ENUMERATION APPROACH 

Jobs 5 7 9 11 13 

Time (s) 0.00 0.01 0.65 82.34 34361.71 

 

In this paper AN = cN because the exhausted 

enumeration approach can find all true Pareto-optimal 

solutions. Table I shows that the average quantitative and 

qualitative indices. From the result of Table I, it is evident 

that the proposed SAMO algorithm could almost find all the 

Pareto-optimal solutions except for two problems with 11 

and 13 jobs. On the whole, the average solution quality 

obtained by the proposed SAMO algorithm is from 100% to 

96% from 5-job to 13-job problems, although the solution 

quality of SAMO algorithm seems worse when the 

problem-scale increases. This reason is that the given time 

limit in the SAMO algorithm is short (five seconds) such that 

the SAMO algorithm did not converge. Based on the 

experimental results, we could conclude that the search 
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strategy by means of ten-directions is effective for the 

proposed SA. Moreover, the outstanding results lead us to 

apply the SAMO algorithm to solve the large-scale problems 

for the practical use. 

Table II show the execution time taken by the exhausted 

enumeration approach, it is evident that the execution time 

dramatically increases when the problem scale increase. It 

leads us to apply the SAMO algorithm to solve large 

problems efficiently. 

 

VI. CONCLUSIONS 

In this paper, an exhausted enumeration approach for the 

bicriteria single BPM problem with nonidentical job sizes 

and release times is presented, which motivated by 

semiconductor manufacturing burn-in operations, wherein 

jobs that belong to the different families can be processed 

simultaneously. The considered problem is first discussed so 

far. Experimental results shows that exhausted enumeration 

approach could find all true Pareto-optimal solution for the 

sets of 5 to 13 jobs. However, it takes an unreasonable 

amount of computation time when the jobs is thirteen, which 

suggest the need for heuristic development to solve more 

practical bicriteria BPM scheduling problems. 

A proposed SAMO algorithm was developed that solve the 

all test problems in five seconds, a stop condition in the 

proposed SAMO algorithm. The SAMO algorithm works 

efficiently to produce an approximate Pareto-optimal set 

where 98.7% of the solutions in the set were found to be true 

Pareto-optimal solutions. The outstanding performances on 

small-scale problems suggest the readiness of the proposed 

SA for large-scale problems. 

The research may be extended in the direction of 

examining the proposed SAMO algorithm on the general 

case of the problem, and developing other meta-heuristic 

algorithm such as GA is also another research direction. 
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