
  

 

Abstract—Wireless ad hoc networks of mobile devices 

enables users to communicate with each other in an 

infrastrucre-less environment.   This paper presents the design 

and implementation a middleware on mobile Android devices 

for managing wireless multi-hop ad hoc networks. The 

middleware is implemented in the user space over Android OS 

and requires no kernel modification. It uses the Ad hoc 

On-demand Distance Vector (AODV) protocol for application 

layer routing and the Reliable User Datagram Protocol (RUDP) 

for reliable data delivery. It is implemented in two ways, one 

using traditional layered networking structure and the other 

based on software-defined networking principles. The 

implementations are portable across different versions of 

Android and provide easy-to-use interfaces for Android 

applications. To evaluate our middleware implementations, a 

text chat and a file sharing application were implemented based 

on the middleware and experimental results show good 

performance, up to 5Mb/s and 4Mb/s throughput in single-hop 

and two-hop communications, respectively. 

 

Index Terms—Ad hoc wireless networks, networking 

middleware, software-defined networking, smartphones. 

 

I. INTRODUCTION 

Nowadays, modern smartphones are rapidly gaining 

popularity. The powerful processing and wireless networking 

capabilities of these smartphones enable users to 

communicate and share information much easily than ever 

before. In forming mobile ad hoc networks (MANETs), 

mobile devices including smartphones can connect to each 

other wirelessly without existing network infrastructure. This 

extends the usage of smartphones and also makes 

information sharing more convenient at lower cost.  

Although mobile ad hoc networking has been actively 

researched for many years, implementations on smartphones 

are rare. Android and iOS supports single-hop wireless 

networking, but not multi-hop.   Most existing MANET 

middleware designs require modifying the OS’s networking 

stack in order to achieve multi-hop communication. Kernel 

modification hinders portability across different hardware 

and kernel versions [1].  

In this paper, we present the design and implementation of 

a middleware for WiFi-based ad hoc multi-hop networking 

on Android devices. Compared to Bluetooth, WiFi offers a 

much higher transmission bandwidth over longer distance. 

The middleware is implemented in user space to make it 

more portable on different Android devices. It enables user 

applications to discover nearby devices and connect to 

 
Manuscript received April 1, 2013; revised June 1, 2013. 

Tiancheng Zhuang, Paul Baskett, and Yi Shang are with the Department 

of Computer Science, University of Missouri, Columbia, MO 65211 USA 

(e-mail: harrycn1987@gmail.com,  pkbkbc@mail.missouri.edu, and 

shangy@missouri.edu).  

 

remote applications through a simple wireless networking 

interface. As part of the middleware, the Ad hoc On-demand 

Distance Vector (AODV) protocol [2] is implemented for 

application layer routing and the Reliable User Datagram 

Protocol (RUDP) [3] for reliable data delivery. Both unicast 

and broadcast data services are provided. The middleware 

also supports transmission control for establishing reliable 

end-to-end connections.  It is implemented in two ways, one 

using traditional layered networking structure and the other 

based on software-defined networking principles. 

 The rest of the paper is organized as follows. In Section II, 

we describe related work. In Section III, specifics of the 

middleware design using traditional layered networking 

structure are presented and discussed. In Section IV, 

implementation details using traditional layered networking 

structure are presented. In Section V, the implementation 

based on software-defined networking principles is presented. 

Section VI shows experimental results.  Finally,   Section VII 

concludes the paper. 

 

II. RELATED WORK 

Although many implementations of ad hoc multi-hop 

networking have been developed on PC operating systems 

such as Windows and Linux, very few are available for 

smartphones.  

BEDnet [4] is a Bluetooth-based mobile ad hoc 

networking implementation in Java. It uses a simple 

scatternet formation algorithm and DSDV routing protocol. 

BEDnet has a poor data transfer speed due to limitations of 

J2ME. It can only be used by a single application and does 

not work on Android and iOS devices. 

As the successor of BEDnet, Beddernet [5] is a 

Bluetooth-based mobile ad hoc networking software 

developed for Android OS. It is built on top of Bluetooth’s 

RFCOMM protocol and also implements DSDV routing 

protocol.  Compared to BEDnet, Beddernet has better 

communication throughput and supports both unicast and 

multicast.   

Although WiFi is widely used for communication on 

mobile devices and offers faster speed and longer distance 

communication than Bluetooth, development of ad hoc 

networking via WiFi on smartphones is rare. WiFi (IEEE 

802.11) standard specifies two operating modes for wireless 

communication: infrastructure mode and ad hoc mode (also 

called infrastructureless networking mode). In ad hoc mode, 

each device can directly communicate with another device 

and the management of the ad hoc network is done through 

collaboration between the nodes in the network. Only 

single-hop communication is supported, so if devices A and 

B are not within the transmission range of each other, they 

cannot talk to each other. Multi-hop communication in ad hoc 

mode is not supported due to the lack of routing functions. 

Managing Ad Hoc Networks of Smartphones 

Tiancheng Zhuang, Paul Baskett, and Yi Shang 

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

540DOI: 10.7763/IJIET.2013.V3.332



  

Many methods have been proposed to implement routing 

protocols to support multi-hop ad hoc networking on PC OS 

such as Windows and Linux. A common approach is the 

in-kernel implementation, in which a routing module in the 

kernel is added to modify IP layer management. The 

in-kernel module handles route discovery and route 

maintenance by adding some additional processing to all IP 

packets that are going through the IP module. Once a route is 

found, a new route entry is created in the OS’s kernel routing 

table to achieve packet forwarding. Because most of the 

routing service is done by the routing module in the IP layer, 

the biggest advantages of this type of implementation is that 

it minimizes the cost for copying packet between kernel and 

user space, and usually has the best performance in terms of 

speed and efficiency.   

Split kernel-user implementation is an approach to reduce 

kernel modifications and make the system more portable. 

Usually a routing daemon is implemented in the user space 

and a packet sniffing module is implemented in the kernel 

space. The approach requires the use of packet sniffing tools 

such as Netfilter and Snoop to intercept all the incoming and 

outgoing IP packets in the kernel space [6]. These tools are 

usually implemented as a kernel module to identify many 

events that may trigger a routing action. The routing daemon 

maintains and updates the kernel routing table through IPC 

calls between kernel space and user space. 

When the kernel of an OS cannot be easily modified, like 

the case of Android, a user-space implementation is an 

alternative to support ad hoc multi-hop networking. The 

major drawback of this approach is the reduction of 

communication efficiency. ORWAR on Android by Davide 

Anzaldi is an example of this approach on Android OS [7]. It 

is a standalone Android application and does not provide any 

API for third party applications to use it. Ad hoc on Android  

aims to implement an ad hoc networking library that can be 

included in Android applications [8]. The implementation 

uses reactive routing and the library cannot be used by 

multiple applications at the same time. Both of these two 

systems are UDP based and offer no data flow control, so 

they may be used for simple message exchange and are not 

sufficient to support applications such as file sharing and 

interactive real time gaming. 

Similarly, our multi-hop ad hoc networking middleware on 

Android is implemented in the user space. It utilizes WiFi 

communication and provides a richer set of functionalities 

than existing implementations.   Its unique features include 

data flow control, service discovery, and multiple 

applications support.  

 

III. NEW MIDDLEWARE DESIGN USING TRADITIONAL 

LAYERED NETWORKING STRUCTURE 

Even though the Android OS runs on top of a Linux kernel, 

existing implementations of MANET routing protocols on 

Linux can’t be ported to Android OS. This is because 

Android runs on its own version of a well protected Linux 

kernel that user access is very limited. Tools that are typically 

used to intercept IP packet and modify system routing table 

such as Netfilter, Snoop and Netlink are not available on 

Android. In addition, any improper modification to Android 

kernel could easily crash the whole system.  

Our middleware is designed to run as a standard Android 

Service in its own process in user space. The service can be 

installed and uninstalled as a normal Android application. To 

avoid modifying existing networking stack of Android, the 

middleware is built on top of existing transport protocol APIs 

provided by Android and data packet routing is performed in 

the application layer.  In order to share the networking 

resources among multiple user applications, inter-process 

communication needs to be implemented between user 

applications and the middleware. The implementation is 

designed to meet the following requirements: 

 Enable an Android device to construct and join an ad hoc 

network. 

 Reliable user-space data forwarding and route 

maintenance in mobile environment. 

 Support multiple applications and provide easy-to-use 

application interfaces. 

 Portable to different versions of Android systems and 

different devices. 

As shown in Fig. 1, the middleware consists of three layers: 

Data Link Layer, Route and Service Discovery Layer, and 

End-to-End Transport Layer. 

 

 
Fig. 1. The proposed middleware architecture. 

 

A. Data Link Layer 

The data link layer handles data transmission between 

directly connected devices and hides low-level 

implementation from the upper level. In this layer, we use 

UDP (User Datagram Protocol) in direct communication 

between devices. All control and data packets are 

encapsulated into UDP packet to sent and received through 

JAVA UDP Socket. We choose UDP instead of TCP for two 

reasons: 

 UDP supports both broadcast and unicast. Since each node 

has no knowledge of its neighbor in the beginning, 

broadcast is necessary for discovering neighbors and 

updating routes. 

 TCP is connection-oriented and goes through end-to-end 

handshaking before communication. This process is time 

consuming and requires multiple threads to maintain the 

connections. Compared to TCP, UDP is much simpler and 

faster.  

B. Route and Service Discovery Layer  

All nodes in a multi-hop ad hoc network play a role of 

routers, determining the path to forward a data packet toward 

its final destination. A distributed routing protocol needs to 

be adopted by every node in the network. Routing protocols 

for MANET should be able to detect link breakage and 

maintain the networking when nodes moves or exits. Existing 

routing protocols can be divided into two main categories: 

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

541



  

proactive and on-demand. Proactive routing protocols, such 

as DSDV [9] and OLSR [10], maintain a routing table by 

continuously broadcasting topology discovery messages. The 

advantage is that routes are available at any time and the 

disadvantage is the high routing overhead. On-demand 

routing protocols, such as AODV and DSR [11], discover 

routes on an “on demand” basis. Route discovery messages 

are only flooded in the network when there is a need to reach 

an unknown destination. They have less routing overhead, 

but incurs a delay from the route discovery process.  

The route and service discovery layer is responsible for 

forwarding data packets and discovering routes and services. 

Each device maintains a routing table for the next hop. To 

achieve multi-hop data transmission, additional route 

information is injected into the header of each data packet. 

Data packets are held in user space until a route is established 

to avoid the problem of having packet cross the boundary 

between user space and kernel space before route request is 

even detected, as stated in [6]. 

In order to establish routes, AODV routing protocol is used 

due to its simplicity and good performance [12]. When a 

source node needs to discover a new route, it generates and 

floods a Route Request (RREQ) message containing the 

destination’s IP address through the network. Each 

intermediate node receiving the RREQ packet updates its 

reverse route to the source if the sequence number is higher 

than its cached one. When the RREQ reaches the destination 

node or a node has a fresh route to the destination by 

comparing the destination sequence numbers, A Route Reply 

(RREP) message will be generated and sent back to the 

originator through the reverse route. The originator uses the 

information contained in RREP to update its routing table and 

start data transmission. Each device periodically broadcasts 

HELLO message to its neighbors to maintain links. If a link 

breakage is detected, a Route Error (RREQ) message will be 

sent to the source node.  

Service discovery can also support nodes running the same 

applications to connect to each other. For example, multiple 

smartphones running the same peer-to-peer photo sharing 

application could find and connect to each other to transmit 

photos between them. For such applications, communication 

targets are not specified and may be changing over time.  In 

the service discovery mechanism, each node maintains a 

service table to keep track of current services being provided 

by running applications. Each service entry contains a 

Service ID and a Service Content that are specified by the 

application. The Service ID is used as a unique identifier for 

each service and Service Content contains all required 

information for connecting to a remote application. When an 

application issues a service request to find all available 

communication targets, a service request message containing 

the requested Service ID is flooded in the network. When a 

node receiving the service request message has the service 

available on one of its running application, it unicasts a 

service reply message back to the source with the requested 

Service ID and its Service Content. To make this service 

discovery process more efficient, both service request 

message and service reply message contains route 

information (source address, destination address, hop counts 

and sequence number) to be used by each intermediate node 

for updating its routing table. So a communication path 

between the source and target can also be built during this 

service discovery process.  

C. End-to-End Transport Layer  

The transport layer is the layer that third party user 

applications interact with the middleware and provides 

interfaces for end-to-end communication between 

applications. Both connectionless and connection-oriented 

transport services are provided in this layer. Because 

application data are sent using UDP at the data link layer, 

where packet delivery is not guaranteed, reliable UDP 

protocol (RUDP) [3], [13] is used in this layer to achieve 

reliable unicast over UDP. RUDP extends UDP by adding 

several additional features such as acknowledgment of 

received packets, windowing and flow control, 

retransmission of lost packets, and over buffering. It follows 

the general principles of TCP’s retransmission mechanism 

and flow control, but does not have any congestion control. A 

RUDP connection would fail if packet retransmission 

exceeds certain limit. At that time, the routing layer will be 

notified of this invalid route and a discovery request for a new 

route will be issued.   

The interfaces provided to application at this layer are 

simple, easy to use, and similar to network socket API to 

minimize changes to existing TCP and UDP based 

applications when using our middleware.  

 

IV. IMPLEMENTATION USING TRADITIONAL LAYERED 

NETWORKING STRUCTURE 

The middleware was implemented using the Android Java 

SDK and tested on Google Nexus One smartphones running 

Android 2.3 operating system. In order for a smartphone to 

join an ad hoc network, the phone needs to be rooted so that 

its WiFi adapter can be accessed and configured to work in ad 

hoc mode. The middleware is implemented as an Android 

Service [14] and runs its own process in the background. It 

can be installed and uninstalled as a normal Android 

application and requires no OS configuration.  Third party 

user applications communicate with the middleware via 

Android’s AIDL (Android Interface Definition Language) 

[15], which is used to define the programming interface for 

inter-process communication (IPC). This feature of Android 

allows a single instance of our service to communicate with 

multiple user applications. Our RUDP implementation is 

based on the Simple Reliable UDP open source project [16] 

initiated by Adrian Granodos and Marco Carvalho in 2011.   

The implementation of our multi-hop ad hoc networking 

middleware in user space has the following benefits: 

 Easier development and testing in the user space than in 

the Android’s Linux kernel. 

 A clean network layering model and a more reliable 

system without interference with the Linux kernel. 

 Better portability by having the application runs on top of 

JVM. 

Its performance will not be as fast as a kernel 

implementation because all packets need to be passed from 

the kernel space to the user space and processed in user space 

programs. In addition, Android system runs on top of the Java 

virtual machine, which doesn’t manage the memory as 

efficient as native code such as C and C++. 

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

542



  

A. Application Interface  

Instead of directly exposing AIDL interfaces to user 

applications, we implemented two java libraries for user 

applications to use for data transmission. The 

MultihopUDPSocket library is implemented to enable third 

party applications to broadcast and unicast UDP datagram to 

destinations through multi-hop paths. The 

ReliableMultihopUDPSocket library is implemented to 

enable user to set up end to end connections and provide byte 

streaming services. The libraries are responsible for setting 

up AIDL connections to the middleware and passing data to 

the middleware’s transport layer through AIDL interface. In 

addition, the following AIDL interfaces are implemented for 

applications to use in service discovery. 

  RegisterService(int serviceID, Document doc): When an 

application wants to make a new service available, this 

interface is called to add the new service to its service 

table. 

 DiscoverService(int serviceID, int timeout): This interface 

is called by an application to discover available services in 

the network. A temporary buffer is created for caching 

received service replies. After a specified timeout, the 

cached replies are converted to XML document and 

returned back to the application.  

 UnregisterService(int serviceID): When an application 

wants to make a service unavailable, this interface is called 

to remove the specified service entry from service table. 

B. Middleware Configuration  

The middleware must be turned on and configured before 

any third party user application can use it. A configuration 

program with a simple GUI is provided for users to configure 

the middleware. In Fig. 2, the left image shows the main 

screen of the configuration program.  Users can manually 

configure networking settings includes ESSID, channel and 

IP address. Note that in order for devices to join the same ad 

hoc network, they must use the same ESSID and channel. 

The IP address of each node is within the 192.168.2/24 prefix 

and is currently manually assigned by users. By clicking on 

the “Start Middleware” button, the ad hoc service will be 

started and available for other applications to use.   

 

            
Fig. 2. A screen shot of the middleware configuration program (left) and the 

text chat demo app (right). 

 

C. Chat and File Sharing Demo Applications 

A text chat app and a file sharing app were developed on 

top of our middleware to verify the correctness of our 

implementation and evaluate its performance. The 

applications allow users to chat and share files between 

smartphones. In Fig. 2, the right image shows a screen shot of 

a chat session.  

 

V. IMPLEMENTATION BASED ON SOFTWARE-DEFINED 

NETWORKING (SDN) PRINCIPLES  

Software defined networking (SDN), a new approach for 

the next generation Internet, is proposed to make networks 

more adaptable and easily configurable to meet the changing 

demands and operating environments [17], [18]. Open 

standards, such as OpenFlow, transforms networking 

architecture and turns individual network elements into 

programmable entities [19], [20]. By decoupling the control 

and data planes, network intelligence and state are logically 

centralized and the underlying network infrastructure is 

abstracted from the applications. As a result, highly adaptive, 

flexible, and scalable networks can be built.  

In SDN, a network is separated into three distinct 

components: communication layer, network operating 

system (NOS), and control program. Similarly, our 

implementation has three layers: a) an ad hoc networking 

layer based on AODV, b) an NOS layer that maintains a 

global map of the network, manages sub-networks for each 

application, and supports dynamic change of routing 

protocols, and c) a control program that controls forwarding 

rules, routing tables, and routing protocol on the fly. The 

system enables virtualization of a physical ad hoc network 

through virtual network slices, which provides a convenient 

way to implement application-specific routing rules and 

resource management.   

A. Ad Hoc Networking Layer 

While traditional SDN uses network routers with 

proprietary routing protocols, our middleware relies on ad 

hoc networking services written in the application layer on 

each node. In the smartphones prototype, AODV over Wi-Fi 

is used as the underlining networking service. Each node 

tracks its neighbors through the use of periodic Hello packets. 

When a route is desired, a route request (RREQ) is broadcast 

throughout the network. When a route to the destination is 

found, a route reply (RREP) is sent back to the initiating node, 

updating routes to both source and destination for 

intermediate nodes. When a node loses a neighbor a route 

error (RERR) is sent to nodes that rely on the node’s 

connection with the lost neighbor for routes. Android 

Interface Definition Language (AIDL) is used for 

inter-process communication between the three layers.   

B. Network Operating System (NOS) 

The NOS sends/receives application packets and maintains 

a network map and network slicing. It scans the network 

periodically to generate a network map. The node initiating 

the request sends a map request packet to all single-hop peers, 

including packet data unit type, a randomly generated integer 

id, the node address of original requester, a blacklist of 

already visited nodes, and a global view table. The first node 

labels itself as the original requester, adds itself to the 

blacklist, and adds a series of pairs to the global view table. 

Each pair contains the original node itself and one of its 

single-hop peers. When a peer receives the packet, it adds 

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

543



  

pairs representing its single-hop peers, blacklists itself, and 

continues forwarding to its peers that are not already 

blacklisted. The original node collects responses from other 

nodes to build an adjacency list, representing the whole 

network.  

A logical network refers to our implementation of network 

slicing. Each logical network running over the physical ad 

hoc network is distinguished primarily by its logical network 

tag. Each user application could run in its own logical 

network, making it easy to implement application specific 

routing rules and better manage network resources across 

applications. Our logical network implementation involves 

the use of a logical network manager in the NOS, which 

maintains a set of logical network objects. All application 

data sent through the network must be done via a logical 

network object, which currently defines a network tag and a 

set of node members. 

C. Control Program  

A simple control program is implemented in our system, 

which communicates with NOS using an INetworkOS AIDL 

interface. The control program first initializes and configures 

the ad hoc network. Its network management portion allows 

the user to view the network map and to update it by changing 

routing rules. It can display a node’s forwarding table, where 

routing rules can be added or removed.  

Fig. 3 and Fig. 4 are representative screen shots. Fig. 3 

shows the launch of the SDNAN system via the control 

program and Fig. 4 shows a view of the forwarding table of a 

phone, while receiving a route tracing packet. 

 

      
      Fig. 3. A control program view.        Fig. 4. A forwarding table view. 

 

D. User Application Interface  

The interface to user applications is implemented in two 

ways, using Android Intent system [21] and AIDL, 

respectively. The intent-based system requires third-party 

developers to implement an Android BroadcastReceiver, 

which listens for intents broadcast by the Android operating 

system. Data sent in an Android intent is provided as a 

key-value pair, so application developers need to know the 

keys used for the various Intents used by the NOS.  
In the AIDL-based implementation, a small library was 

developed to simplify the use of AIDL for third-party 

developers. The library sets up an AIDL connection to the 

NOS and allows the application to view and communicate 

with other nodes in the network running the same application. 

VI. EXPERIMENTAL RESULTS  

In this section, we present the performance results of our 

middleware implementations in real environments. The 

experiments were carried out with forced multi-hop setup in a 

room, as shown in Fig. 5. By programmatically forcing node 

A and node C to drop each other’s packet, we were able to 

achieve a two-hop networking topology. Each smartphone 

was placed a few meters away from each other, e.g. 5 meters, 

and performance data was collected for both single-hop and 

two-hop communications. Each reported result is an average 

of 15 trials.  

 

 
Fig. 5. Experiment set-up of the forced two hop communication. 

 

A. Route Discovery Time of the Traditional Layered 

Networking Implementation 

The route discovery time was measured using phone A as 

the source and phone C as the destination. The route 

discovery time is the time taken for phone A to generate a 

RREQ until a route is established upon receiving a RREP. 

Note that the number of hops both RREQ and RREP need to 

go through depends on whether phone B has a valid route to 

C or not. If phone B has a valid route to C, then it is a one hop 

route discovery process. Otherwise it is a two hop route 

discovery process. The results for both one hop route 

discovery and two hop route discovery are shown in Table I. 

Due to the fact that the two-hop discovery process has higher 

delay, the average round-trip delay time (RDT) is increased 

by 48% from the single-hop discovery.  
 

TABLE I: EXPERIMENTAL RESULTS OF AVERAGE ROUTE DISCOVERY TIMES 

OF DIFFERENT SETTINGS 

 
Average 

RDT  

 Standard 

Deviation 

One hop 62.30 ms  26.84 ms  

Two hops  92.21 ms  32.96 ms  

 

B. Throughput of the Traditional Implementation 

Using the chat app and the file sharing demo app, we 

evaluated throughput performance of the middleware.  In this 

experiment, data were sent to destinations through RUDP 

socket. Since RUDP does not specify any congestion control 

mechanism, packets are sent at a certain fixed sending rate.  

Fig. 6 through 8 shows the average throughput and 

standard deviations when packets were sent at different rates 

in the middleware.  

The results show that initially throughput increases as 

sending rate increases. When the sending rate is above a 

certain value, packet loss will increase and throughput goes 

down as sending rate increases. In one-hop communications, 

the maximum throughput is 0.61Mbps, 2.54Mbps, 4.33Mbps, 

and 5.1Mbps for packet size 1KB, 5KB, 10KB, and 20KB, 

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

544



  

respectively. Similarly, in two-hop communications, the 

maximum throughput is 0.47Mbps, 1.99Mbps, 2.82Mbps, 

and 3.91Mbps for packet size 1KB, 5KB, 10KB, and 20KB, 

respectively. When node A sends data through a two-hop 

path, each data packet is stored and forwarded in the 

intermediate node B, which adds a delay to the delivery of 

packet. This delay includes the propagation delay, 

transmission delay, queuing delay and processing delay. The 

delay has more significant impact for larger sending rates. 

When the intermediate node B cannot keep up, the sender 

will retransmit unacknowledged packets more often, leading 

to lower throughput. 

 

 
Fig. 6. Communication throughput at different sending rate, for packet size 

1KB. 

 

 
Fig. 7. Communication throughput at different sending rate, for packet size 

5KB. 

 

 
Fig. 8. Communication throughput at different sending rate, for packet size 

20KB. 

 

 
Fig. 9. Average throughput and standard deviation for different packet sizes 

and number of hops in the 5-meter experiments.  

 

Fig. 9 summarizes the throughput performances for 

different packet sizes. The results show that larger packet 

sizes lead to higher throughput, with 20KB the best for both 

single-hop and 2-hop communications. The reason is that per 

packet processing overhead is quite high in our user-space 

middleware implementation and sending data in many small 

packets is less efficient. By increasing packet size from 1KB 

to 5KB, the average throughput was improved by 316%. 

However, when increasing packet size from 10KB to 20KB, 

the throughput was only improved by 18%. The diminishing 

return is because increasing packet size also causes more 

packet fragmentation overhead at the IP layer. 

C. Effect of Weaker WiFi Links on Throughput of the 

Traditional Implementation 

The following experiment evaluated throughput of the 

middle implementation over weaker WiFi links.  In an 

outdoor parking lot, three phones were still placed in a 

triangle shape, but the distance between each phone was 

increased to 15 meters and 30 meters, respectively. The 

results are shown in Fig. 10 and Fig. 11. 

The experimental results show that with weaker 

phone-to-phone WiFi links, the throughput goes down, 

especially for larger packet sizes. Throughput variations are 

small when packet size is 1KB and are larger for larger packet 

sizes. The average throughput is the highest when packet size 

is 5KB for both the 15-meter and 30-meter settings. In the 

30-meter experiment, we failed to get throughput data for 

10KB and 20KB packet sizes for the two-hop case. This is 

because larger packets have a higher chance of packet 

corruption and dropped packets and the RUDP connection 

fails after the number of retransmission of a packet exceeds 

the maximum limit. 

 

 
Fig. 10. Average throughput and standard deviation against packet size and 

number of hops in the 15-meter experiments. 

 

 
Fig. 11. Average throughput and standard deviation against packet size and 

number of hops in the 30-meter experiments. 

 

D. Speed of the SDN Implementation 

For a 3-node network setup with one phone sending 100 

text messages to another phone through one intermediate 

phone, three implementations were tested: Intents-based 

SDN implementation, AIDL-based SDN implementation, 

0

0.2

0.4

0.6

0.8

0 2 4

Th
ro

u
gh

p
u

t 
(M

b
p

s)

Sending Rate (Mbps)

one 
hop

0
0.5

1
1.5

2
2.5

3

0 1 2 3 4 5 6 7 8 91011

Th
ro

u
gh

p
u

t 
(M

b
p

s)

Sending Rate (Mbps)

one 
hop

two 
hop

0

2

4

6

0 2 4 6 8 10121416

Th
ro

u
gh

p
u

t 
(M

b
p

s)

Sending Rate (Mbps)

one 
hop

two 
hop

0
1
2
3
4
5
6

1KB 5KB 10KB 20KB

Th
ro

u
gh

p
u

t(
M

b
p

s)

Packet Size

one hop

two hop

0

1

2

3

1KB 5KB 10KB 20KB

Th
ro

u
gh

p
u

t(
M

b
p

s)

Packet Size

one hop

two hop

0

0.5

1

1.5

1KB 5KB 10KB 20KBTh
ro

u
gh

p
u

t(
M

b
p

s)

Packet Size

one hop

two hop

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

545



  

and the traditional layered networking implementation. The 

three implementations have significant speed differences. 

The traditional, Intents-based, and AIDL-based 

implementations averaged 733 ms, 2600 ms, and 1600 ms, 

respectively. 

 

VII. SUMMARY 

This paper presents two implementations of an ad hoc 

multi-hop networking middleware over WiFi on Android 

devices. The middleware is implemented in the user space 

and is portable across different versions of Android. 

Experimental results show that the middleware achieves 

around 5Mbps transmission bandwidth in single-hop and 

around 4Mbps bandwidth in 2-hop communications with 

strong WiFi links, and is sufficient to support some common 

applications such as text messaging, photo sharing, and 

multiplayer games.   

The benefit of the implementation based on traditional 

networking structures is its efficiency, about twice as fast as 

the SDN implementation. The major benefit of the SDN 

implementation is in its clean interfaces between its three 

layers and the user applications, which makes it much easier 

to improve the functionality and performance of each 

component and to develop user applications on ad hoc 

networks. The text messaging app takes less than 20 lines of 

code to use the AIDL interface library and less than 50 lines 

to use the intent interface, whereas implementing similar 

functionality in the traditional implementation takes 

hundreds lines of code. 

ACKNOWLEDGEMENT 

This work is supported in part by NSF Grant 

CNS-1004606.  

REFERENCES 

[1] P. García-López, R. Tinedo, and J. Alsina, “Moving routing protocols 

to the user space in MANET middleware,” Journal of Network and 

Computer Applications, September 2010. 

[2] C. Perkins, E. Belding-Royer, and S. Das. (July 2003). Ad hoc 

On-Demand Distance Vector (AODV) Routing. [Online]. Available: 

http://www.ietf.org/rfc/rfc3561.txt 

[3] T. Bova and T. Krivoruchka. (February 1999). Reliable UDP Protocols. 

[Online]. Available: 

http://tools.ietf.org/id/draft-ietf-sigtran-reliable-udp-00.txt 

[4] M. Nielsen, A. J. Glenstrup, F. Skytte, and A. Gunason, “Real-world 

Bluetooth MANET Java Middleware,” Technical report TR-2009-120, 

IT-University of Copenhagen, 2008. 

[5] R. S. Gohs, “Beddernet – Bluetoth Scatternet Framework For Mobile 

Devices,” M.S. thesis, IT University of Copenhagen, 2010. 

[6] P. Gupta and R. K. Tuteja, “Design Strategies for AODV 

Implementation in Linux,” International Journal of Advanced 

Computer Science and Applications, vol. 1, no. 6, 2010. 

[7] D. Anzaldi, “ORWAR: a delay-tolerant protocol implemented on the 

Android platform,” M.S. thesis, Linkpoings University, 2012. 

[8] R. K. Jradi and L. S. Reedtz. (August 2010). Adhoc on Android. 

[Online]. Available: http://code.google.com/p/ad-hoc-on-android/ 

[9] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced 

distance vector routing (DSDV) for mobile computers,” in Proc. ACM 

SIGCOMM’94, October 1994, pp. 234-244. 

[10] T. Clausen and P. Jacquet, “Optimized link state routing protocol 

(OLSR),” IETF Network Working Group RFC 3626, Oct. 2003. 

[11] D. B. Johnson, D. A. Maltz, and Y. Hu. (July 2004). Dynamic Source 

Routing Protocol for Mobile Ad Hoc Networks (DSR). [Online]. 

Available: 

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt 

[12] K. Lego, P. K. Singh, and D. Sutradhar, “Comparative Study of Ad hoc 

Routing Protocol AODV, DSR and DSDV in Mobile Ad hoc 

NETwork,” Indian Journal of Computer Science and Engineering, vol. 

1, no. 4, pp. 364-371, December 2010. 

[13] T. L. Kuthethoor et al., “Reliable User Datagram Protocol for airborne 

network,” in Proc. Military Communications Conference, 2009, pp. 

1-6. 

[14] Android Service documentation. [Online]. Available: 

http://developer.android.com/guide/components/services.html.  

[15] Android Interface Definition Language (AIDL). [Online]. Available: 

http://developer.android.com/guide/components/aidl.html 

[16] A. Granodos and M. Carvalho. (November 2011). Simple Reliable 

UDP. [Online]. Avalable: http://sourceforge.net/projects/rudp/ 

[17] A. Feldmann, “Internet clean-slate design: what and why?” ACM 

SIGCOMM Computer Communications Review (CCR), vol. 37, no. 3, 

pp. 59-64, July 2007. 

[18] Open Networking Foundation. (April 2012). Software-Defined 

Networking: The New Norm for Networks. [Online]. Available: 

https://www.opennetworking.org/images/stories/downloads/white-pap

ers/wp-sdn-newnorm.pdf. 

[19] Scott Schenker. (2011). An attempt to motivate and clarify 

Software-Defined Networking (SDN). Ericsson Research. [Online]. 

Available: 

http://www.youtube.com/watch?v=WVs7Pc99S7w&feature=player_e

mbedded#! 

[20] The OpenFlow Switch Consortium. (2011). OpenFlow Switch 

Specification Version 1.1.0. [Online]. Available: 

http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf 

[21] Android Intents and Intent Filters. [Online]. Available: 

http://developer.android.com/guide/components/intents-filters.html 

 

Tiancheng Zhuang is presently working as 

software engineer in Cerner Corporation, 

Kansas city, Missouri. He received his M.S. 

degree in computer science from University of 

Missouri in 2012 and B.E. degree from Hohai 

University, China in 2009. His area of 

specialization includes computer networks and 

mobile computing. 

 

 

 

Paul Baskett received his M.S. degree in 

computer science from the University of 

Missouri, Columbia in 2012 and his B.S. in 

computer science from the University of 

Missouri in 2011.  He currently works for 

MidwayUSA as an Application Developer.  His 

research interests are in mobile computing and 

wireless sensor networks. 

 

 

 

Yi Shang is a professor and director of 

Graduate Studies in the Computer Science 

Department, University of Missouri, Columbia, 

Missouri. He received his Ph.D. degree in 

computer science from University of Illinois at 

Urbana-Champaign in 1997, M.S. degree from 

the Institute of Computing Technology, 

Chinese Academy of Sciences, Beijing, in 

1991, and B.S. degree from the University of 

Science and Technology of China, Hefei, in 1988. He has published over 

140 refereed papers in the areas of nonlinear optimization, wireless 

sensor networks, mobile computing, intelligent systems, and 

bioinformatics, and received funding from NSF, NIH, Army, DARPA, 

Microsoft, and Raytheon. He is a lifetime member of ACM and senior 

member of IEEE.  

 

 
 

 

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

546


	组合 1
	332-k027


