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Abstract—Identifying highly robust graphs (i.e. graph having 

high vertex connectivity value) is a well known problem in the 

field of social network analysis. Robustness of a social network 

implicitly assumes that social links are dynamic and should be 

allowed to be changed with and without restrictions or 

constrains. In social network finding robust subgraphs is hard 

problem i.e. NP Complete Problem. The paper focuses on 

identifying whether the original graph is robust or not. It takes 

into consideration the Maximum degree, Minimum degree and 

Vertex Connectivity values of given Graph (G), based on which 

the algorithm determines above Property.   

The algorithm uses vertex connectivity and order constraints 

to find robust subgraphs i.e. Dominating (H) from set of all 

induced subgraphs.  The social network G is decomposed using 

minimum cut decomposition algorithm over vertex connectivity 

parameter. The skyline approach is used to determine the 

solution set Dominating (H). The computational time of 

algorithm is improved by using preprocessing techniques like 

identifying and deleting cut set vertices and also by using 

pruning strategies like minimum degree criteria. 

  

Index Terms—Skyline, order, vertex connectivity, 

robustness. 

  

I. INTRODUCTION 

In the last years, there has been an ever-increasing research 

activity in the study of real-world complex networks (the 

world-wide web, the Internet autonomous-systems graph, co 

authorship graphs, phone call  graphs, email graphs and 

biological networks, to cite a few). These networks, typically 

generated directly or indirectly by human activity and 

interaction, appear in a large variety of contexts and often 

exhibit a surprisingly similar structure. One of the most 

important notions that researchers have been trying to capture 

is node centrality": ideally, every node (often representing an 

individual) has some degree of influence or importance 

within the social domain under consideration, and one 

expects such importance to be reacted in the structure of the 

social network; centrality is a quantitative measure that aims 

at revealing the importance of a node. 

In this paper, by a graph we mean an undirected graph with 

no loops and no multiple edges. Graphs are widely used to 

represent complex structures that are difficult to model. 

Using labeled graphs or unlabeled graphs depends on the 

application need. The vertex set of a graph G is denoted by V 
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(G) and the edge set by E (G). A graph G is a subgraph of H if 

G has all its vertices and edges of H and it is denoted by H ⊆ 
G. G is called a super graph of H.   

Existing pattern discovery approaches operate by using 

simple constraints on the mined patterns. For example, given 

a database of graphs, a typical graph mining task is to report 

all subgraphs that appear in at least s graphs, where s is the 

frequency support threshold. In other cases, we are interested 

in the discovery of dense or highly-connected subgraphs. In 

such a case, a threshold is defined for the density or the 

connectivity of the returned patterns. Other constraints may 

be defined as well, towards restricting the number of mined 

patterns. However, the methods proposed so far apply the 

constraints by posing simple thresholds in the mining process 

(e.g., give me all subgraphs which contain at least n vertices 

and their frequency is at least f). 

There are three important limitations with this approach: 

1) There is an on-off decision regarding the eligibility of 

patterns, i.e., a pattern either satisfies the constraints or 

not. 

2) In the case where the constraints are very strict, we risk 

an empty answer or an answer with only a few patterns, 

and 

3) In the case where the constraints are too weak the 

number of patterns may be huge. 

In skyline approach, the records returned to the user are the 

ones that are not dominated by any other record, where 

domination is based on the values of each record. Let p and q 

be two records, each composed of d attributes. We denote by 

pi (qi) the value of the ith attribute of p (q). Record p 

dominates record q if p is ―as good as‖ q in all attributes and 

is ―better‖ than q in at least one attribute. Assuming a 

preference in large values, p is better than q in the ith attribute 

if pi > qi. 

Skyline processing is scale invariant, it does not require a 

Ranking function, it does not require any threshold and can 

be used as long as the data dimensionality is low (e.g., below 

10). For high dimensional spaces the probability that a record 

dominates another is very small and this may lead to an 

increased answer size towards applying preferences in 

subgraph discovery, each subgraph can be seen as a record 

containing two attributes: 1) the order (number of vertices) 

and 2) the vertex connectivity. The importance of a 

discovered subgraph increases as both the order and the 

vertex connectivity increase. Therefore, the best possible 

subgraphs (termed skyline subgraphs) are the ones that are 

maximized both in order and vertex connectivity.  

In top-k ranking algorithm, a ranking function is applied to 

records and the k records with the highest score are returned 

to the user. Skyline approach provides large number of 
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dominating but important subgraphs in the solution sets. Top 

k ranking algorithm reduces the solution set and assists in 

obtaining only the highly robust subgroups. 

A labeled graph can be represented by a 4-tuple, G = (V, E, 

L, l), where V is a set of vertices and E is a set of edges, L is a 

set of labels, l: V U E → L in which l is a function assigning 

labels to the vertices and edges. Given an undirected graph G, 

if a path exists between any two vertices, G is called a 

connected graph.  

Definition 1 Graphs: A graph G = (V, E) is a pair in which 

V is a (non-empty) set of vertices or nodes and E is either a 

set of edges E ⊆ {{v, w} | v, w ϵ v,  v ϵ w} or a set of arcs E ⊆ 

{(v, w) | v, w ϵ v, v ϵ w}. In the latter case we call the graph 

directed. 

Definition 2 The vertex connectivity  (G) of a connected 

graph G (other than a complete graph) is the minimum 

number of vertices whose removal disconnects G. When (G) 

≥ , the graph is said to be -connected (or -vertex 

connected). When we remove a vertex, we must also remove 

the edges incident to it.   

The significance of a graph G is determined by two 

attributes, the graph order (number of vertices) denoted as N 

and the vertex connectivity of G, denoted as (G). 

The vertex connectivity,  (G), of a graph G is a measure 

of its robustness. If  (G) is large, then the graph is 

considered more robust. A small  (G) is a sign that the graph 

can be easily decomposed in two subgraphs, and therefore it 

is considered less robust. 

Definition 3 Maximum Degree (∆) of a given Graph (G) is 

defined as the largest degree over all the vertices.  

Definition 4 Minimum degree (δ) of a given Graph (G) is 

defined as the smallest degree over all the vertices.  

Definition 5 Monotonic Constraint: A monotonic 

Constraint is a constraint Cm such that for all Subgraphs H 

derived from a Graph G satisfies Cm if H satisfies it. 

Monotonic Graph over Vertex Connectivity and Order 

Constraint implies that the set of subgraphs (H) obtained by 

decomposing the graph (G) will always contain the value of 

the Vertex connectivity and Order less than that of Graph 

(G).  

Let H (G) be the set of all induced subgraphs of graph G. 

Among all subgraphs in H (G) we are interested in 

determining the most important ones regarding order and 

vertex connectivity.  

Each subgraph g is represented as a pair Ng,  (g), where 

Ng is the number of vertices of g and  (g) the vertex 

connectivity. Between two subgraphs gi ∈ H (G) and gj ∈ H 

(G), gi is considered more significant than gj if one of the 

following holds: 

– N (gi) > N (g j) and  (gi) >  (gj): in this case, gi has 

more vertices that gj and also the edge connectivity of gi is 

higher than that of gj. 

– N (gi) = N (gj) and  (gi) > (gj): in this case, gi and gj 

have the same number of vertices, and gi has higher 

connectivity than gj . 

– N (gi) > N (gj) and  (gi) = (gj): in this case, gi contains 

more vertices than gj, but the edge connectivity of the two 

graphs is the same. 

More formally:   

Dominating (H) = {gx ∈ H (G): gz ∈ H (G), gz <: gx} 

 

II. RELATED WORKS 

There is an on-going interest in the research community 

regarding knowledge discovery from graph data [1], [2]. In 

this section, we briefly present some fundamental 

contributions related to our work. Density has been used as a 

measure of subgraph importance. In [2] an algorithm has 

been studied to determine the densest subgraph of a given 

input graph, by using O (log N) min-cut computations, where 

N is the number of vertices of graph G. However, the densest 

subgraph may not be adequate to draw conclusions regarding 

the properties of the initial graph. The basic limitation of the 

algorithm is that it is not able to discover more than one dense 

sub-graph. The algorithm proposed in [3], [4] is able to 

determine many dense bipartite subgraphs of large graphs. 

The density concept has been also used in [5] where the 

authors study the problem of dense subgraph discovery 

across a set of input graphs. Instead of applying a dense 

discovery algorithm in each graph, a summary graph is first 

constructed and then processed to determine the important 

subgraphs. A similar method has been used in [6], [7] for 

reconstruction of human transcriptional regulatory modules. 

The main limitation of this technique is that the answer is 

composed by all subgraphs satisfying the constraints. This set 

may be too small or too large, according to the constraints 

applied. Since density cannot describe adequately the 

coherency of a graph, the concept of edge connectivity has 

been used, which is a well-known concept in Graph Theory 

[8]-[10]. Edge connectivity has been applied as a clustering 

tool, where clusters are formed by the vertices of a graph G 

that show a high degree of connectivity [11], [12]. 

In [5] the authors describe two algorithms (CLOSECUT 

and SPLAT) for mining frequent subgraphs in relational 

graphs, by using connectivity constraints. The algorithms 

report all closed subgraphs that satisfy the connectivity 

constraints and the support threshold. A general framework 

for incorporating constraints into the discovery process has 

been proposed in [6]. The gPrune method is proposed which 

uses the concept of pattern-inseparable 

data-antimonotonicity. This framework fails to consider 

cases where only the most important patterns (regarding 

some preference criteria) are required. All the 

aforementioned research efforts are characterized by the 

application of specific constraints that must be met by the 

discovered subgraphs. These constraints may involve the 

number of vertices, the density, the edge connectivity, the 

vertex connectivity [13], [14] or the frequency. We go 

beyond this approach, proposing a technique for the 

discovery of subgraphs that are ―as good as possible‖ with 

respect to some important characteristics such as the number 

of vertices and the edge connectivity. This way, only the most 

significant subgraphs (regarding the preference criteria) are 

exposed, whereas the rest are not contained in the final result. 

Our work is inspired by the plethora of research proposals 

towards supporting skyline query processing in database 

systems [15], [16]. The recent contribution is with regard to 

SkyGraph algorithm [17] where in the edge connectivity and 

number of vertices has been taken as constraints. 
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The work in the paper is inspired from [18]–[20]  

 

III.  CONTRIBUTION 

In the paper we determine set of dominating sub-graphs 

from the set of all the induced sub-graphs (H) of the given 

graph (G) which dominates over the values of order and 

vertex connectivity. The induced sub-graphs are obtained 

using minimum cut decomposition over vertex connectivity 

parameter. The skyline approach is used to determine the 

solution set (Dominating (H). The computational time of 

algorithm is improved using preprocessing techniques and 

pruning strategies.  

The problem we study in this work is formally stated as 

follows: Given a Relational Graph G, we determine the set of   

induced connected Sub-graph of G, which are maximal with 

respect to the number of vertices and vertex Connectivity 

Constraint. 

 

IV. MONOTONIC GRAPHS 

Given a relational graph G, a general method is to generate 

all induced connected subgraphs, and then compute the 

vertex connectivity and order of subgraphs. However, the 

number of subgraphs in G is exponential in relation to the 

number of vertices, and therefore the performance of the 

method degrades rapidly for large graphs. For this reason, we 

are interested in a polynomial time algorithm to solve the 

problem. Such an algorithm, termed Algorithm Vertex 

Monotone Graph (G), is proposed in the sequel. 

Theorem 1  

Let δ min (g) denotes the minimum degree among all 

vertices of g and Ng the number of vertices of g. If δ min(g) ≥ 

Ng/2, then λ(g) = δmin(g). As we know K(g) ≤ λ(g) ≤ 

δ(g),Hence  K(G)≤ δmin(g). 

Lemma 1 

The worst case for the Algorithm Mining Important 

Sub-Graph appears when in each min-cut computation one of 

the subgraphs contains a single vertex. 

Proof:   Let N and M denote the number of vertices and the 

number of edges of the input graph. The complexity of the 

min-cut algorithm is O(M ・ N + N2 ・ log N). Since we are 

interested on the number of vertices, we express M as a 

function of N by considering three different cases: 

1) M = O (N),  

2) M = O(N ・ log N), and  

3) M = O (N2).  

For the first two cases the worst-case complexity of 

min-cut is O (N2 ・ log N), whereas in the third case the 

complexity becomes O (N3).We will show that the 

worst-case complexity appears when the application of each 

min-cut computation results in a completely unbalanced cut, 

where one of the subgraphs contains a single vertex (i.e., each 

time only one vertex is removed from the graph).  

Let F (N) = C ・ N2 ・ log N (the O(N3) case is handled in 

a similar manner), where C is a positive real constant. To 

prove the statement of the lemma it is sufficient to prove that 

for any integer 

x ∈ [0, N − 2]: F (1) + F (N − 1) ≥ F(1 + x) + F(N − 1 − x) 

Essentially, this inequality states that we cannot find a 

worse cut than that produced by isolating a vertex each time 

we apply the min-cut algorithm. Thus, for any integer 

number x ∈ [0, N − 2], a more balanced cut cannot have worse 

performance.  

The above inequality is equivalent to the following one: 

 

F (N − 1) – F (N − 1 − x) ≥ F (1 + x) – F (1) 

 

Since F (N) is increasingly monotone, both parts of 

inequality are positive. Moreover, since the growth rate of F 

(N) (as determined by its first derivative  

F (N) = 2 ・ C ・ N ・ log N + (C/ ln 2) ・ N) increases in 

a log linear fashion by increasing N, it follows that inequality 

is true.  

Lemma 2   

Let g be a subgraph produced during the generation of the 

MCD-tree. It is not necessary to continue the decomposition 

process if g is one of the following: 1) a tree, 2) a cycle or 3) 

a clique. 

Proof let g be the subgraph corresponding to the node of 

interest. 1) If g is a tree, then K (g) = 1 and any induced 

connected subgraph of g has an vertex connectivity of 0 

(single vertex) or 1 (a tree) and contains at most Ng − 1 

vertices. This means that any induced subgraph of g is 

dominated by g and therefore cannot be part of the Solution 

set. 2) If g is a cycle, then K (g) = 2. Any induced connected 

subgraph of g has an vertex connectivity of 1 and contains at 

most Ng −1 vertices. Again, these facts show that g 

dominates any connected subgraph induced by g. 3) If g is a 

clique, then K (g) = Ng − 1. Any induced connected subgraph 

of g has an Vertex connectivity at most K (g) − 1 and contains 

at most Ng − 1 vertices. Again, it is observed that g dominates 

all induced connected subgraphs of g. In conclusion, it is safe 

to declare the node associated to g as a leaf node and 

terminate the decomposition process since the continuation 

does not have an impact on the final result set. 

Lemma 3 

If the vertex connectivity of the given graph (G) is one and 

the given graph is tree then the given graph (G) satisfies 

monotonic property over Vertex Connectivity and Degree 

Constraint.  

Proof: Consider a Graph G, Let the vertex connectivity of 

Graph (G) be 1 i.e. K (G) = 1. 

Since the given graph is tree its vertex connectivity is 

always 1 and the vertex connectivity of its induced subgraph 

is either 1 or 0. 

Hence a Graph (G) satisfies monotonic property over 

vertex connectivity constraint. 

Lemma 4 

If ∆ is the Maximum Degree and δ is the minimum Degree 

of a given graph (G) then the Vertex connectivity of the 

subgraph (H) obtained from the given graph (G) is always 

less than or equal to Maximum Degree. 

Proof:  

1) The Subgraph (H) obtained from given Graph (G) can 

have Minimum Degree at most ∆. 

2) The Vertex connectivity of (H) cannot be greater than 

Minimum Degree (δ). 



  

3) The vertex-connectivity of a graph is less than or equal to 

its edge-connectivity. That is,  (G) ≤ λ (G). Both are less 

than or equal to the minimum degree of the graph, since 

deleting all neighbors of a vertex of minimum degree 

will disconnect that vertex from the rest of the graph. 

Hence Vertex Connectivity of H is at most ∆. 

Lemma 5 

Consider a Graph G Having maximum degree = ∆, 

Minimum Degree = δ and Vertex Connectivity = KG .Let H 

be set of all induced subgraphs obtained from Given Graph G 

having Vertex Connectivity KH. 

If maximum degree is equal to Minimum Degree (∆ = δ) 

then the Vertex connectivity of all the induced subgraph (KH.) 

is always less than the edge connectivity KG of Given Graph. 

Under the condition that Given Graph G does not contain any 

Cut Vertex. 

Proof: Since the Maximum Degree (∆) = Minimum Degree 

(δ).Therefore Edge Connectivity of given graph λG is less 

than equal to Maximum Degree (∆) or Minimum Degree (δ). 

The Edge Connectivity λH of Subgraph (H) is always less 

than equal to Maximum Degree (∆) from Lemma One. 

Hence the given graph will always satisfy monotone 

constraint over edge connectivity. 

Lemma 6 

Consider a Graph G Having maximum degree = ∆, 

Minimum Degree = δ and Vertex Connectivity = KG .Let H 

be set of all induced subgraphs obtained from Given Graph G 

having Vertex Connectivity KH. 

If the Vertex Connectivity KG of Graph (G) is less than 

Minimum Degree (δ) and there exists clique with Maximum 

degree equal to δ then there exists  Subgraph whose Vertex 

connectivity is greater then Vertex connectivity of Graph (G), 

Hence Graph Does not Satisfy Monotonic Property.  

Proof: If KG is Vertex connectivity of Graph G and δ is 

minimum degree of Graph G and Vertex Connectivity KG is 

less than Minimum Degree δ of graph G and there exist a 

clique whose minimum degree is equal to δ, then Vertex 

connectivity (KH) of clique is equal to δ. 

This Implies KH is greater than KG. 

Hence a given Graph (G) satisfies anti-monotonic property 

over Vertex connectivity constraint. 

Lemma 7 

Consider a Graph G Having maximum degree = ∆, 

Minimum Degree = δ and Vertex Connectivity = KG .Let H 

be set of all induced subgraphs obtained from Given Graph G 

having Vertex Connectivity KH. 

If the Vertex Connectivity KG of Graph (G) is equal to 

Minimum Degree (δ) and minimum degree is less than equal 

to n where n is less than Maximum Degree (∆) and if there 

exists clique with Maximum degree equal to n+1 then there 

exists Subgraph whose Vertex connectivity is greater then 

Vertex connectivity of Graph (G), Hence Graph Does not 

Satisfy Monotonic Property.  

Proof: Let  G be  Vertex connectivity of Graph G and δ be 

minimum degree of Graph G. 

If KG  =  δ and δ is less than equal to n and ∆ is greater than 

n and there exist a clique with minimum degree equal to n + 1, 

This implies Vertex Connectivity (KH) of clique is greater 

than δ. 

Hence a given Graph (G) satisfies anti-monotonic property 

over Vertex connectivity constraint. 

 

V. ALGORITHM AND EXPLANATION 

In this section we propose Algorithm Rob-sky (H) for 

detecting important sub- graphs over vertex connectivity and 

order constraint. The later part of the section explains the 

algorithm in brief. 

Algorithm for Mining dominating sub-graphs 
 

Algorithm Dominating (H) 

Input: G, Initial Input Graph 

Output: Dominating Sub-Graphs (H)  
 

1) Initialize queue Q; solution (g) = Null; 

2) Insert connected components of G into Q; 

3) While (Q not empty) 

4) If Graph (G) contains a cut set && Graph (G) is a Tree 

5) Then G is dominating. 

6) Else  

7)       Calculate Max. Degree (∆) and Min. Degree (δ). 

8) End if 

9) If Maximum Degree = = Minimum Degree  

10) Then G is dominating. 

11) Else Calculate Vertex Connectivity (K) 

12) End if 

13) If Maximum Degree ǂ  Minimum Degree 

14)      If Minimum Degree = = Vertex Connectivity 

15)      && Minimum Degree = = n, n < Maximum Degree 

16)            If There Does Not Exist Clique with 

17)                         Degree (n+1) 

18)                         Then G is dominating 

19)      Endif 

20)  Else If Minimum Degree > Edge Connectivity 

21)   If there exist no Clique with degree (δ). 

22)   Then G is dominating 

23)  Endif 

24) Endif 

25) If above conditions does not hold go to step 26 

26)  If Graph (G) contains cut vertex 

27)     Update solution (g); 

28)              Disconnect G by removal of Vertex 

29)          Insert Sub-Graph H into Q 

30)  Endif 

31)  While (δmin (g) ≥ [Ng / 2]) /* pre-processing */  

32)             Compute Vertex Connectivity  (G); 

33)        Update solution (g); 

34)             Remove a vertex with degree δmin (g); 

35)   End if;          

36)   If (H is a terminal graph) /* pruning */. 

37)         Calculate Vertex Connectivity  (H); 

38)   Update solution (g); 

39)   Else     

40)   Calculate Vertex Connectivity  (H); 

41)   Update solution (g); 

42)         Run min-cut algorithm on H; 

43)         Compute vertex connectivity  (H) 

44)         Update solution (g); 

45)  End if 

46) Return results to step 4 
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Explanation  

Line 4 to Line 7: Here the given Graph (G) is checked for 

the cut vertex.  If it contains a cut vertex then it is checked if 

the given graph is tree. If it satisfies above condition then the 

given graph satisfies monotonic property. Else calculate 

maximum degree and Minimum Degree of the Graph (G). 

Line 8 to Line 12: Here if the Maximum Degree of the 

Graph (G) equals Minimum Degree of Graph (G) then the 

given Graph satisfies the monotonic property. Else calculate 

the Vertex Connectivity of the given graph. 

Line 13 to Line 18: Here if the Maximum degree of given 

graph is not equal to Minimum Degree then the algorithm 

checks for the following condition: 

If minimum degree equal to Vertex Connectivity and 

assigns variable n for the value of minimum degree. 

Determine if there exist a clique with degree n+1, If There 

exist no clique with degree n+1 then the given graph satisfies 

monotonic property. 

Line 20 top Line 23: If Minimum degree of a given graph 

is greater than Vertex Connectivity then check for the 

following condition: 

Line 26 to Line 30: The Graph (G) is checked for cut 

vertex.  If cut vertex is detected, then it is added to solution 

set and the graph G is further disconnected by removing cut 

vertex. 

Line 31 to Line 35: This is pre-processing module. The 

Condition (δmin (g) ≥ [Ng / 2]) is checked. If the sub-graph 

satisfies the condition, then the vertex connectivity of 

sub-graph is calculated and added to the solution set. Then 

the Sub-Graph is further disconnected by removing vertex of   

Minimum degree.  

Line 36 to Line 38: This is pruning module. This is based 

on mechanism of detecting Tree, Cycle or Clique. If either of 

above is detected then the sub-graph is added to solution set 

by calculating its vertex connectivity.  

Line 40 to Line 45: If none of the sub-graphs are detected 

for tree, cycle or Clique then the Min Cut Decomposition 

algorithm is carried out on the Sub-Graph. After every 

iteration the vertex connectivity of the sub-graph is 

calculated and added to solution set. 

 

VI.  EXPERIMENTAL RESULTS 

Algorithm Dominating (H) has been implemented in Java 

and all experiments have been performed on an Intel Core 

Duo at 2.2GHz, with 2GB RAM running Windows Vista. 

The performance evaluation study is based on real-life graph 

data sets.                    

A. Real Life Graph Data Set 1 

TABLE I: THE SOLUTION SET (DOMINATING (H)) FOR REAL LIFE GRAPH 

DATA SET 1 

To                              Total Number of Nodes 5242 

Total Number of Edges 14478 

Disconnected Graphs 69 

Minimum Degree 1 

Maximum Degree 81 

Trees Detected 82 

Cycles Detected 0 

Cliques Deetcted 56 

Dominating (H) 138 

Time Taken 26.08 Secs 

B. Real Life Graph Data Set 2 

 

TABLE II: THE SOLUTION SET (DOMINATING (H)) FOR REAL LIFE GRAPH 

DATA SET 2 

To                            Total Number of Nodes 1379917 

Total Number of Edges 3843320 

Disconnected Graphs 80 

Minimum Degree 1 

Maximum Degree 56 

Trees Detected 198 

Cycles Detected 0 

Cliques Deetcted 50 

Dominating (H) 44 

Time Taken 46.03 Seconds 

C. Real Life Graph Data Set 3 

 

TABLE III: THE SOLUTION SET (DOMINATING (H)) FOR REAL LIFE GRAPH 

DATA SET 3 

To                        Total Number of Nodes 7115 

Total Number of Edges 100762 

Disconnected Graphs 13 

Minimum Degree 1 

Maximum Degree 165 

Trees Detected 57 

Cycles Detected 1 

Cliques Deetcted 0 

Dominating (H) 57 

Time Taken 38.07 Seconds 

 

VII. PERFORMANCE EVALUATION 

The software ―U-GIGA‖ project aims at providing 

Graphical User Interface for various graph mining algorithms. 

The software has been implemented in JAVA (jdk1.5.0 or 

jdk1.6.0_12) and the graphs and their corresponding 

attributes are displayed to the user using the JAVA 

applet-viewer. All the graph algorithms have been 

implemented in Java and all experiments have been 

performed on an Intel Core Duo at 2.2GHz, with 2GB RAM 

running Windows Vista. The software basically checks for 

graph parameters such as order, size, etc. that are stored or 

saved in a foreign source (i.e. in a text file) and using this 

information about the graph, various graph attributes such as 

vertex/edge connectivity, clique detection, time complexity, 

etc. are calculated and displayed on the user interface. The 

software aims at investigating performance by varying the 

graph parameters and also keeps a track on the time taken to 

evaluate a graph (i.e. the time complexity of the 

software).The various phases of the software for evaluating 

and displaying a particular graph scanned are as follows: 

Scan the text file, which the user chooses on the interface (by 

clicking the corresponding file link) and store the graph data 

to the corresponding variables. Using these variables, 

perform the following task and calculate the following graph 

attributes: 

Define and store a particular path in variables, so as to 

draw and display the graph, using the information from these 

variables, on the user interface. 

1) Calculate the number of bridges present in the graph 

2) Calculate the edge connectivity/vertex connectivity. 

3) Calculate the cliques detected. 

4) Check if the given graph is a tree or not. 
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5) Calculate the minimum and maximum degree of the 

graph. 

6) Check if the graph is monotonic, using information of 

vertex connectivity, edge connectivity, cliques, tree 

information. 

These graph attributes are then displayed to the user. 

 

VIII. CONCLUSION 

In this paper we proposed a novel way to determine 

dominating subgraph over vertex connectivity and order 

constraint. We have developed an efficient algorithm 

Dominating (H) which determines whether the given graph is 

dominating over vertex connectivity and order constraint. 

Software using Java Programming Language has been 

designed, which assists in determining important 

sub-graph .It  also helps in determining the value  of 

Maximum Degree, Minimum Degree, vertex connectivity of 

given graph (G) and Determine if there exist a clique in given 

graph (G).  
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