

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

554DOI: 10.7763/IJIET.2013.V3.334

Abstract—Identifying highly robust graphs (i.e. graph having

high vertex connectivity value) is a well known problem in the

field of social network analysis. Robustness of a social network

implicitly assumes that social links are dynamic and should be

allowed to be changed with and without restrictions or

constrains. In social network finding robust subgraphs is hard

problem i.e. NP Complete Problem. The paper focuses on

identifying whether the original graph is robust or not. It takes

into consideration the Maximum degree, Minimum degree and

Vertex Connectivity values of given Graph (G), based on which

the algorithm determines above Property.

The algorithm uses vertex connectivity and order constraints

to find robust subgraphs i.e. Dominating (H) from set of all

induced subgraphs. The social network G is decomposed using

minimum cut decomposition algorithm over vertex connectivity

parameter. The skyline approach is used to determine the

solution set Dominating (H). The computational time of

algorithm is improved by using preprocessing techniques like

identifying and deleting cut set vertices and also by using

pruning strategies like minimum degree criteria.

Index Terms—Skyline, order, vertex connectivity,

robustness.

I. INTRODUCTION

In the last years, there has been an ever-increasing research

activity in the study of real-world complex networks (the

world-wide web, the Internet autonomous-systems graph, co

authorship graphs, phone call graphs, email graphs and

biological networks, to cite a few). These networks, typically

generated directly or indirectly by human activity and

interaction, appear in a large variety of contexts and often

exhibit a surprisingly similar structure. One of the most

important notions that researchers have been trying to capture

is node centrality": ideally, every node (often representing an

individual) has some degree of influence or importance

within the social domain under consideration, and one

expects such importance to be reacted in the structure of the

social network; centrality is a quantitative measure that aims

at revealing the importance of a node.

In this paper, by a graph we mean an undirected graph with

no loops and no multiple edges. Graphs are widely used to

represent complex structures that are difficult to model.

Using labeled graphs or unlabeled graphs depends on the

application need. The vertex set of a graph G is denoted by V

Manuscript received April 15, 2013; revised June 26, 2013.

Abhay A. Bhamaikar is with the Department of Information technology,

Shree Rayeshwar Institute of Engineering and Information technology,

Shivshail, Karai, Shiroda – Goa, India (e-mail:

abhay_bhamaikar@rediffmail.com).

Pralhad Ramchandra Rao is with the Department of Computer Science

and Technology, Goa University, India.

(G) and the edge set by E (G). A graph G is a subgraph of H if

G has all its vertices and edges of H and it is denoted by H ⊆
G. G is called a super graph of H.

Existing pattern discovery approaches operate by using

simple constraints on the mined patterns. For example, given

a database of graphs, a typical graph mining task is to report

all subgraphs that appear in at least s graphs, where s is the

frequency support threshold. In other cases, we are interested

in the discovery of dense or highly-connected subgraphs. In

such a case, a threshold is defined for the density or the

connectivity of the returned patterns. Other constraints may

be defined as well, towards restricting the number of mined

patterns. However, the methods proposed so far apply the

constraints by posing simple thresholds in the mining process

(e.g., give me all subgraphs which contain at least n vertices

and their frequency is at least f).

There are three important limitations with this approach:

1) There is an on-off decision regarding the eligibility of

patterns, i.e., a pattern either satisfies the constraints or

not.

2) In the case where the constraints are very strict, we risk

an empty answer or an answer with only a few patterns,

and

3) In the case where the constraints are too weak the

number of patterns may be huge.

In skyline approach, the records returned to the user are the

ones that are not dominated by any other record, where

domination is based on the values of each record. Let p and q

be two records, each composed of d attributes. We denote by

pi (qi) the value of the ith attribute of p (q). Record p

dominates record q if p is ―as good as‖ q in all attributes and

is ―better‖ than q in at least one attribute. Assuming a

preference in large values, p is better than q in the ith attribute

if pi > qi.

Skyline processing is scale invariant, it does not require a

Ranking function, it does not require any threshold and can

be used as long as the data dimensionality is low (e.g., below

10). For high dimensional spaces the probability that a record

dominates another is very small and this may lead to an

increased answer size towards applying preferences in

subgraph discovery, each subgraph can be seen as a record

containing two attributes: 1) the order (number of vertices)

and 2) the vertex connectivity. The importance of a

discovered subgraph increases as both the order and the

vertex connectivity increase. Therefore, the best possible

subgraphs (termed skyline subgraphs) are the ones that are

maximized both in order and vertex connectivity.

In top-k ranking algorithm, a ranking function is applied to

records and the k records with the highest score are returned

to the user. Skyline approach provides large number of

Identifying Dominating Graphs over Vertex Connectivity

and Order Constraint in a Social Network

Abhay A. Bhamaikar and Pralhad Ramchandra Rao

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

555

dominating but important subgraphs in the solution sets. Top

k ranking algorithm reduces the solution set and assists in

obtaining only the highly robust subgroups.

A labeled graph can be represented by a 4-tuple, G = (V, E,

L, l), where V is a set of vertices and E is a set of edges, L is a

set of labels, l: V U E → L in which l is a function assigning

labels to the vertices and edges. Given an undirected graph G,

if a path exists between any two vertices, G is called a

connected graph.

Definition 1 Graphs: A graph G = (V, E) is a pair in which

V is a (non-empty) set of vertices or nodes and E is either a

set of edges E ⊆ {{v, w} | v, w ϵ v, v ϵ w} or a set of arcs E ⊆

{(v, w) | v, w ϵ v, v ϵ w}. In the latter case we call the graph

directed.

Definition 2 The vertex connectivity (G) of a connected

graph G (other than a complete graph) is the minimum

number of vertices whose removal disconnects G. When (G)

≥ , the graph is said to be -connected (or -vertex

connected). When we remove a vertex, we must also remove

the edges incident to it.

The significance of a graph G is determined by two

attributes, the graph order (number of vertices) denoted as N

and the vertex connectivity of G, denoted as (G).

The vertex connectivity, (G), of a graph G is a measure

of its robustness. If (G) is large, then the graph is

considered more robust. A small (G) is a sign that the graph

can be easily decomposed in two subgraphs, and therefore it

is considered less robust.

Definition 3 Maximum Degree (∆) of a given Graph (G) is

defined as the largest degree over all the vertices.

Definition 4 Minimum degree (δ) of a given Graph (G) is

defined as the smallest degree over all the vertices.

Definition 5 Monotonic Constraint: A monotonic

Constraint is a constraint Cm such that for all Subgraphs H

derived from a Graph G satisfies Cm if H satisfies it.

Monotonic Graph over Vertex Connectivity and Order

Constraint implies that the set of subgraphs (H) obtained by

decomposing the graph (G) will always contain the value of

the Vertex connectivity and Order less than that of Graph

(G).

Let H (G) be the set of all induced subgraphs of graph G.

Among all subgraphs in H (G) we are interested in

determining the most important ones regarding order and

vertex connectivity.

Each subgraph g is represented as a pair Ng, (g), where

Ng is the number of vertices of g and (g) the vertex

connectivity. Between two subgraphs gi ∈ H (G) and gj ∈ H

(G), gi is considered more significant than gj if one of the

following holds:

– N (gi) > N (g j) and (gi) > (gj): in this case, gi has

more vertices that gj and also the edge connectivity of gi is

higher than that of gj.

– N (gi) = N (gj) and (gi) > (gj): in this case, gi and gj

have the same number of vertices, and gi has higher

connectivity than gj .

– N (gi) > N (gj) and (gi) = (gj): in this case, gi contains

more vertices than gj, but the edge connectivity of the two

graphs is the same.

More formally:

Dominating (H) = {gx ∈ H (G): gz ∈ H (G), gz <: gx}

II. RELATED WORKS

There is an on-going interest in the research community

regarding knowledge discovery from graph data [1], [2]. In

this section, we briefly present some fundamental

contributions related to our work. Density has been used as a

measure of subgraph importance. In [2] an algorithm has

been studied to determine the densest subgraph of a given

input graph, by using O (log N) min-cut computations, where

N is the number of vertices of graph G. However, the densest

subgraph may not be adequate to draw conclusions regarding

the properties of the initial graph. The basic limitation of the

algorithm is that it is not able to discover more than one dense

sub-graph. The algorithm proposed in [3], [4] is able to

determine many dense bipartite subgraphs of large graphs.

The density concept has been also used in [5] where the

authors study the problem of dense subgraph discovery

across a set of input graphs. Instead of applying a dense

discovery algorithm in each graph, a summary graph is first

constructed and then processed to determine the important

subgraphs. A similar method has been used in [6], [7] for

reconstruction of human transcriptional regulatory modules.

The main limitation of this technique is that the answer is

composed by all subgraphs satisfying the constraints. This set

may be too small or too large, according to the constraints

applied. Since density cannot describe adequately the

coherency of a graph, the concept of edge connectivity has

been used, which is a well-known concept in Graph Theory

[8]-[10]. Edge connectivity has been applied as a clustering

tool, where clusters are formed by the vertices of a graph G

that show a high degree of connectivity [11], [12].

In [5] the authors describe two algorithms (CLOSECUT

and SPLAT) for mining frequent subgraphs in relational

graphs, by using connectivity constraints. The algorithms

report all closed subgraphs that satisfy the connectivity

constraints and the support threshold. A general framework

for incorporating constraints into the discovery process has

been proposed in [6]. The gPrune method is proposed which

uses the concept of pattern-inseparable

data-antimonotonicity. This framework fails to consider

cases where only the most important patterns (regarding

some preference criteria) are required. All the

aforementioned research efforts are characterized by the

application of specific constraints that must be met by the

discovered subgraphs. These constraints may involve the

number of vertices, the density, the edge connectivity, the

vertex connectivity [13], [14] or the frequency. We go

beyond this approach, proposing a technique for the

discovery of subgraphs that are ―as good as possible‖ with

respect to some important characteristics such as the number

of vertices and the edge connectivity. This way, only the most

significant subgraphs (regarding the preference criteria) are

exposed, whereas the rest are not contained in the final result.

Our work is inspired by the plethora of research proposals

towards supporting skyline query processing in database

systems [15], [16]. The recent contribution is with regard to

SkyGraph algorithm [17] where in the edge connectivity and

number of vertices has been taken as constraints.

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

556

The work in the paper is inspired from [18]–[20]

III. CONTRIBUTION

In the paper we determine set of dominating sub-graphs

from the set of all the induced sub-graphs (H) of the given

graph (G) which dominates over the values of order and

vertex connectivity. The induced sub-graphs are obtained

using minimum cut decomposition over vertex connectivity

parameter. The skyline approach is used to determine the

solution set (Dominating (H). The computational time of

algorithm is improved using preprocessing techniques and

pruning strategies.

The problem we study in this work is formally stated as

follows: Given a Relational Graph G, we determine the set of

induced connected Sub-graph of G, which are maximal with

respect to the number of vertices and vertex Connectivity

Constraint.

IV. MONOTONIC GRAPHS

Given a relational graph G, a general method is to generate

all induced connected subgraphs, and then compute the

vertex connectivity and order of subgraphs. However, the

number of subgraphs in G is exponential in relation to the

number of vertices, and therefore the performance of the

method degrades rapidly for large graphs. For this reason, we

are interested in a polynomial time algorithm to solve the

problem. Such an algorithm, termed Algorithm Vertex

Monotone Graph (G), is proposed in the sequel.

Theorem 1

Let δ min (g) denotes the minimum degree among all

vertices of g and Ng the number of vertices of g. If δ min(g) ≥

Ng/2, then λ(g) = δmin(g). As we know K(g) ≤ λ(g) ≤

δ(g),Hence K(G)≤ δmin(g).

Lemma 1

The worst case for the Algorithm Mining Important

Sub-Graph appears when in each min-cut computation one of

the subgraphs contains a single vertex.

Proof: Let N and M denote the number of vertices and the

number of edges of the input graph. The complexity of the

min-cut algorithm is O(M ・ N + N2 ・ log N). Since we are

interested on the number of vertices, we express M as a

function of N by considering three different cases:

1) M = O (N),

2) M = O(N ・ log N), and

3) M = O (N2).

For the first two cases the worst-case complexity of

min-cut is O (N2 ・ log N), whereas in the third case the

complexity becomes O (N3).We will show that the

worst-case complexity appears when the application of each

min-cut computation results in a completely unbalanced cut,

where one of the subgraphs contains a single vertex (i.e., each

time only one vertex is removed from the graph).

Let F (N) = C ・ N2 ・ log N (the O(N3) case is handled in

a similar manner), where C is a positive real constant. To

prove the statement of the lemma it is sufficient to prove that

for any integer

x ∈ [0, N − 2]: F (1) + F (N − 1) ≥ F(1 + x) + F(N − 1 − x)

Essentially, this inequality states that we cannot find a

worse cut than that produced by isolating a vertex each time

we apply the min-cut algorithm. Thus, for any integer

number x ∈ [0, N − 2], a more balanced cut cannot have worse

performance.

The above inequality is equivalent to the following one:

F (N − 1) – F (N − 1 − x) ≥ F (1 + x) – F (1)

Since F (N) is increasingly monotone, both parts of

inequality are positive. Moreover, since the growth rate of F

(N) (as determined by its first derivative

F (N) = 2 ・ C ・ N ・ log N + (C/ ln 2) ・ N) increases in

a log linear fashion by increasing N, it follows that inequality

is true.

Lemma 2

Let g be a subgraph produced during the generation of the

MCD-tree. It is not necessary to continue the decomposition

process if g is one of the following: 1) a tree, 2) a cycle or 3)

a clique.

Proof let g be the subgraph corresponding to the node of

interest. 1) If g is a tree, then K (g) = 1 and any induced

connected subgraph of g has an vertex connectivity of 0

(single vertex) or 1 (a tree) and contains at most Ng − 1

vertices. This means that any induced subgraph of g is

dominated by g and therefore cannot be part of the Solution

set. 2) If g is a cycle, then K (g) = 2. Any induced connected

subgraph of g has an vertex connectivity of 1 and contains at

most Ng −1 vertices. Again, these facts show that g

dominates any connected subgraph induced by g. 3) If g is a

clique, then K (g) = Ng − 1. Any induced connected subgraph

of g has an Vertex connectivity at most K (g) − 1 and contains

at most Ng − 1 vertices. Again, it is observed that g dominates

all induced connected subgraphs of g. In conclusion, it is safe

to declare the node associated to g as a leaf node and

terminate the decomposition process since the continuation

does not have an impact on the final result set.

Lemma 3

If the vertex connectivity of the given graph (G) is one and

the given graph is tree then the given graph (G) satisfies

monotonic property over Vertex Connectivity and Degree

Constraint.

Proof: Consider a Graph G, Let the vertex connectivity of

Graph (G) be 1 i.e. K (G) = 1.

Since the given graph is tree its vertex connectivity is

always 1 and the vertex connectivity of its induced subgraph

is either 1 or 0.

Hence a Graph (G) satisfies monotonic property over

vertex connectivity constraint.

Lemma 4

If ∆ is the Maximum Degree and δ is the minimum Degree

of a given graph (G) then the Vertex connectivity of the

subgraph (H) obtained from the given graph (G) is always

less than or equal to Maximum Degree.

Proof:

1) The Subgraph (H) obtained from given Graph (G) can

have Minimum Degree at most ∆.

2) The Vertex connectivity of (H) cannot be greater than

Minimum Degree (δ).

3) The vertex-connectivity of a graph is less than or equal to

its edge-connectivity. That is, (G) ≤ λ (G). Both are less

than or equal to the minimum degree of the graph, since

deleting all neighbors of a vertex of minimum degree

will disconnect that vertex from the rest of the graph.

Hence Vertex Connectivity of H is at most ∆.

Lemma 5

Consider a Graph G Having maximum degree = ∆,

Minimum Degree = δ and Vertex Connectivity = KG .Let H

be set of all induced subgraphs obtained from Given Graph G

having Vertex Connectivity KH.

If maximum degree is equal to Minimum Degree (∆ = δ)

then the Vertex connectivity of all the induced subgraph (KH.)

is always less than the edge connectivity KG of Given Graph.

Under the condition that Given Graph G does not contain any

Cut Vertex.

Proof: Since the Maximum Degree (∆) = Minimum Degree

(δ).Therefore Edge Connectivity of given graph λG is less

than equal to Maximum Degree (∆) or Minimum Degree (δ).

The Edge Connectivity λH of Subgraph (H) is always less

than equal to Maximum Degree (∆) from Lemma One.

Hence the given graph will always satisfy monotone

constraint over edge connectivity.

Lemma 6

Consider a Graph G Having maximum degree = ∆,

Minimum Degree = δ and Vertex Connectivity = KG .Let H

be set of all induced subgraphs obtained from Given Graph G

having Vertex Connectivity KH.

If the Vertex Connectivity KG of Graph (G) is less than

Minimum Degree (δ) and there exists clique with Maximum

degree equal to δ then there exists Subgraph whose Vertex

connectivity is greater then Vertex connectivity of Graph (G),

Hence Graph Does not Satisfy Monotonic Property.

Proof: If KG is Vertex connectivity of Graph G and δ is

minimum degree of Graph G and Vertex Connectivity KG is

less than Minimum Degree δ of graph G and there exist a

clique whose minimum degree is equal to δ, then Vertex

connectivity (KH) of clique is equal to δ.

This Implies KH is greater than KG.

Hence a given Graph (G) satisfies anti-monotonic property

over Vertex connectivity constraint.

Lemma 7

Consider a Graph G Having maximum degree = ∆,

Minimum Degree = δ and Vertex Connectivity = KG .Let H

be set of all induced subgraphs obtained from Given Graph G

having Vertex Connectivity KH.

If the Vertex Connectivity KG of Graph (G) is equal to

Minimum Degree (δ) and minimum degree is less than equal

to n where n is less than Maximum Degree (∆) and if there

exists clique with Maximum degree equal to n+1 then there

exists Subgraph whose Vertex connectivity is greater then

Vertex connectivity of Graph (G), Hence Graph Does not

Satisfy Monotonic Property.

Proof: Let G be Vertex connectivity of Graph G and δ be

minimum degree of Graph G.

If KG = δ and δ is less than equal to n and ∆ is greater than

n and there exist a clique with minimum degree equal to n + 1,

This implies Vertex Connectivity (KH) of clique is greater

than δ.

Hence a given Graph (G) satisfies anti-monotonic property

over Vertex connectivity constraint.

V. ALGORITHM AND EXPLANATION

In this section we propose Algorithm Rob-sky (H) for

detecting important sub- graphs over vertex connectivity and

order constraint. The later part of the section explains the

algorithm in brief.

Algorithm for Mining dominating sub-graphs

Algorithm Dominating (H)

Input: G, Initial Input Graph

Output: Dominating Sub-Graphs (H)

1) Initialize queue Q; solution (g) = Null;

2) Insert connected components of G into Q;

3) While (Q not empty)

4) If Graph (G) contains a cut set && Graph (G) is a Tree

5) Then G is dominating.

6) Else

7) Calculate Max. Degree (∆) and Min. Degree (δ).

8) End if

9) If Maximum Degree = = Minimum Degree

10) Then G is dominating.

11) Else Calculate Vertex Connectivity (K)

12) End if

13) If Maximum Degree ǂ Minimum Degree

14) If Minimum Degree = = Vertex Connectivity

15) && Minimum Degree = = n, n < Maximum Degree

16) If There Does Not Exist Clique with

17) Degree (n+1)

18) Then G is dominating

19) Endif

20) Else If Minimum Degree > Edge Connectivity

21) If there exist no Clique with degree (δ).

22) Then G is dominating

23) Endif

24) Endif

25) If above conditions does not hold go to step 26

26) If Graph (G) contains cut vertex

27) Update solution (g);

28) Disconnect G by removal of Vertex

29) Insert Sub-Graph H into Q

30) Endif

31) While (δmin (g) ≥ [Ng / 2]) /* pre-processing */

32) Compute Vertex Connectivity (G);

33) Update solution (g);

34) Remove a vertex with degree δmin (g);

35) End if;

36) If (H is a terminal graph) /* pruning */.

37) Calculate Vertex Connectivity (H);

38) Update solution (g);

39) Else

40) Calculate Vertex Connectivity (H);

41) Update solution (g);

42) Run min-cut algorithm on H;

43) Compute vertex connectivity (H)

44) Update solution (g);

45) End if

46) Return results to step 4

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

557

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

558

Explanation

Line 4 to Line 7: Here the given Graph (G) is checked for

the cut vertex. If it contains a cut vertex then it is checked if

the given graph is tree. If it satisfies above condition then the

given graph satisfies monotonic property. Else calculate

maximum degree and Minimum Degree of the Graph (G).

Line 8 to Line 12: Here if the Maximum Degree of the

Graph (G) equals Minimum Degree of Graph (G) then the

given Graph satisfies the monotonic property. Else calculate

the Vertex Connectivity of the given graph.

Line 13 to Line 18: Here if the Maximum degree of given

graph is not equal to Minimum Degree then the algorithm

checks for the following condition:

If minimum degree equal to Vertex Connectivity and

assigns variable n for the value of minimum degree.

Determine if there exist a clique with degree n+1, If There

exist no clique with degree n+1 then the given graph satisfies

monotonic property.

Line 20 top Line 23: If Minimum degree of a given graph

is greater than Vertex Connectivity then check for the

following condition:

Line 26 to Line 30: The Graph (G) is checked for cut

vertex. If cut vertex is detected, then it is added to solution

set and the graph G is further disconnected by removing cut

vertex.

Line 31 to Line 35: This is pre-processing module. The

Condition (δmin (g) ≥ [Ng / 2]) is checked. If the sub-graph

satisfies the condition, then the vertex connectivity of

sub-graph is calculated and added to the solution set. Then

the Sub-Graph is further disconnected by removing vertex of

Minimum degree.

Line 36 to Line 38: This is pruning module. This is based

on mechanism of detecting Tree, Cycle or Clique. If either of

above is detected then the sub-graph is added to solution set

by calculating its vertex connectivity.

Line 40 to Line 45: If none of the sub-graphs are detected

for tree, cycle or Clique then the Min Cut Decomposition

algorithm is carried out on the Sub-Graph. After every

iteration the vertex connectivity of the sub-graph is

calculated and added to solution set.

VI. EXPERIMENTAL RESULTS

Algorithm Dominating (H) has been implemented in Java

and all experiments have been performed on an Intel Core

Duo at 2.2GHz, with 2GB RAM running Windows Vista.

The performance evaluation study is based on real-life graph

data sets.

A. Real Life Graph Data Set 1

TABLE I: THE SOLUTION SET (DOMINATING (H)) FOR REAL LIFE GRAPH

DATA SET 1

To Total Number of Nodes 5242

Total Number of Edges 14478

Disconnected Graphs 69

Minimum Degree 1

Maximum Degree 81

Trees Detected 82

Cycles Detected 0

Cliques Deetcted 56

Dominating (H) 138

Time Taken 26.08 Secs

B. Real Life Graph Data Set 2

TABLE II: THE SOLUTION SET (DOMINATING (H)) FOR REAL LIFE GRAPH

DATA SET 2

To Total Number of Nodes 1379917

Total Number of Edges 3843320

Disconnected Graphs 80

Minimum Degree 1

Maximum Degree 56

Trees Detected 198

Cycles Detected 0

Cliques Deetcted 50

Dominating (H) 44

Time Taken 46.03 Seconds

C. Real Life Graph Data Set 3

TABLE III: THE SOLUTION SET (DOMINATING (H)) FOR REAL LIFE GRAPH

DATA SET 3

To Total Number of Nodes 7115

Total Number of Edges 100762

Disconnected Graphs 13

Minimum Degree 1

Maximum Degree 165

Trees Detected 57

Cycles Detected 1

Cliques Deetcted 0

Dominating (H) 57

Time Taken 38.07 Seconds

VII. PERFORMANCE EVALUATION

The software ―U-GIGA‖ project aims at providing

Graphical User Interface for various graph mining algorithms.

The software has been implemented in JAVA (jdk1.5.0 or

jdk1.6.0_12) and the graphs and their corresponding

attributes are displayed to the user using the JAVA

applet-viewer. All the graph algorithms have been

implemented in Java and all experiments have been

performed on an Intel Core Duo at 2.2GHz, with 2GB RAM

running Windows Vista. The software basically checks for

graph parameters such as order, size, etc. that are stored or

saved in a foreign source (i.e. in a text file) and using this

information about the graph, various graph attributes such as

vertex/edge connectivity, clique detection, time complexity,

etc. are calculated and displayed on the user interface. The

software aims at investigating performance by varying the

graph parameters and also keeps a track on the time taken to

evaluate a graph (i.e. the time complexity of the

software).The various phases of the software for evaluating

and displaying a particular graph scanned are as follows:

Scan the text file, which the user chooses on the interface (by

clicking the corresponding file link) and store the graph data

to the corresponding variables. Using these variables,

perform the following task and calculate the following graph

attributes:

Define and store a particular path in variables, so as to

draw and display the graph, using the information from these

variables, on the user interface.

1) Calculate the number of bridges present in the graph

2) Calculate the edge connectivity/vertex connectivity.

3) Calculate the cliques detected.

4) Check if the given graph is a tree or not.

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

559

5) Calculate the minimum and maximum degree of the

graph.

6) Check if the graph is monotonic, using information of

vertex connectivity, edge connectivity, cliques, tree

information.

These graph attributes are then displayed to the user.

VIII. CONCLUSION

In this paper we proposed a novel way to determine

dominating subgraph over vertex connectivity and order

constraint. We have developed an efficient algorithm

Dominating (H) which determines whether the given graph is

dominating over vertex connectivity and order constraint.

Software using Java Programming Language has been

designed, which assists in determining important

sub-graph .It also helps in determining the value of

Maximum Degree, Minimum Degree, vertex connectivity of

given graph (G) and Determine if there exist a clique in given

graph (G).

REFERENCES

[1] D. J. Cook and L. B. Holder, Mining graph data, London: Wiley, 2006.

[2] J. Chuzhoy and S. Khanna, ―Algorithms for single-source

vertex-connectivity,‖ in Proc. IEEE FOCS, October 2008, pp. 105-114.

[3] A. Hanneman and M. Riddle. Introduction to social network methods.

[Online]. Available: http://www.faculty.ucr.edu/ hanneman/nettext/.

[4] D. Gibson, R. Kumar, and A. Tomkins, Discovering large dense

subgraphs in massive graphs, in Proc. the 31st VLDB conference, 2005,

pp. 721–732.

[5] H. Hu, X. Yan, Y. Huang, J. Han, and X.-J. Zhou, ―Mining coherent

dense subgraphs across massive biological networks for functional

discovery,‖ Bioinformatics, vol. 21, no. 1, pp. i213–i221, 2005.

[6] F. Zhu, X. Yan, J. Han, and P. S. Yu, ―gPrune: a constraint pushing

framework for graph pattern mining,‖ in Proc. PAKDD conference,

2007, pp. 388–400.

[7] X. Yan, X. J. Zhou, and J. Han, ―Mining closed relational graphs with

connectivity constraints,‖ in Proc. ACM KDD conference, 2005, pp.

324–333.

[8] Y. Mansour and B. Schieber, ―Finding the edge connectivity of

directed graphs,‖ Journal of Algorithms, vol. 10, no. 1, pp. 76‐85, 1989.

[9] S. Even, ―An algorithm for determining whether the connectivity of a

graph is at least k,‖ SIAM Journal of Computing, vol. 4, no. 3, pp.

393‐396, 1975.

[10] D. J. Kleitman, ―Methods for investigating connectivity of large

graphs,‖ IEEE Trans. Circuit Theory, vol. 16, no. 2, pp. 232‐233, 1969.

[11] E. Hartuv and R. Shamir, ―A Clustering algorithm based on graph

connectivity,‖ Inform Process Letters, vol. 76, no. 4-6, pp. 175-181,

2000.

[12] Z. Wu and R. Leahy, ―An optimal graph theoretic approach to data

clustering: theory and its application to image segmentation,‖ IEEE

Trans Pattern Anal Machine Intell, vol. 15, no. 11, pp. 1101–1113,

1993.

[13] Z. Galil, ―Finding the vertex connectivity of graphs,‖ SIAM Journal of

Computing, vol. 9, no. 1, pp. 197‐199, 1980.

[14] Z. Galil and G. F. Italiano, ―Reducing edge connectivity to vertex

connectivity,‖ ACM SIGACT News, vol. 22, no. 1, pp. 57‐61, 1991.

[15] S. Borz sonyi, D. Kossmann, and K. Stocker, ―The Skyline operator,‖

in Proc. the 17th international conference on data engineering, 2001,

pp. 421–430.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ―Progressive skyline

computation in database systems,‖ ACM Trans Database System, vol.

30, no. 1, pp. 41–82, 2005.

[17] N. Papadopoulos, A. Lyritsis, and Y Manalopoulos, ―SkyGraph: an

algorithm for important subgraph discovery in relational graphs,‖

DMKD, Springer, vol. 17, no. 1, pp. 57-76, 23 June 2008.

[18] A. A. Bhamaikar and P. R. Rao, ―Detecting monotonic graph over edge

connectivity constraint,‖ International Journal of Innovative

Technology and Creative Engineering, vol. 1, no. 12, pp. 6-12, 2011.

[19] A. A. Bhamaikar and P. R. Rao, ―Mining important sub-graphs using

skyline approach over vertex connectivity constraint,‖ CiiT

International Journal of Data Mining Knowledge Engineering, May,

2012.

[20] A. A. Bhamaikar and P. R. Rao, ―Detecting cliques using degree and

connectivity constraints,‖ International Journal of Data Mining &

Knowledge Management Process, vol. 2, no. 2, pp. 39-45, 2012.

Abhay A. Bhamaikar was born in Panaji, the Capital

city of State of Goa, India. He has done his bachelors of

engineering in computers and masters of engineering in

internet technology from Padre Conceicao College of

Engineering, Verna – Goa, India. He is pursuing his

Ph.D from Department of Computer Science and

Technology, Goa University, India. His major field of study is Data Mining.

He is working as assistant professor, Department of Information

technology, Shree Rayeshwar Institute of Engineering and Information

technology, Shivshail, Karai, Shiroda – Goa, India .My Areas of Interest are

Data Mining, Graph Mining, Design and Analysis of Algorithm.

Mr. Bhamaikar is Life member of Computer Society of India.

Pralhad Ramchandra Rao is a professor and head, Department of

Computer Science and Technology, Goa University, Taleigao Plateau, Goa.

His areas of Interest is Data Mining, Graph Mining, Graph theory and

Databases.

	组合 1
	334-K046

