

Abstract—It’s a challenging task to find a subset of node of

size k in a social network such that targeting them initially as

the seeds will maximize the influence spread. This problem is

proved to be a NP-hard problem. We solve this problem in two

aspects: 1) we improve the basic greedy algorithm, limiting the

influence spread in a neighbor space to reduce the running

time. We use the DAG and the recursion method to calculate

the influence spread of each node. Also we transform this

problem to a reachable probability query problem in an

uncertain graph; 2) we present a more accurate degree

discount heuristic algorithm which considers the relationship

between the node and its neighbors. Intensive experiments on a

large real-world social network show that: our improved

greedy algorithm and degree discount heuristic algorithm are

more efficient than the basic greedy algorithm and other

heuristic methods.

Index Terms—Classify-tree, DAG, degree heuristic, greedy,

influence spread maximization, sampling.

I. INTRODUCTION

There are many social networks such as Facebook,

Twitter, paper reference network, Skype communication

network, blog network and so on. They are very popular and

successful. They become a platform for people to spread

influence and expand relationship. Social network also

brings some new problems. In this paper, we attempts to

solve one of them, finding an initial seeds set of size k to

maximize the influence spread, which is called influence

spread maximization problem.

We use a scenario to illustrate its application. A company

developed a new product, and wants to expand this product

to society through social network. With limited budget, this

product could only be sent as some free sample for limited

number of people. This company wishes that these people

like their product, and spread the benefit of the product to

the public through their friends. In this way, the company

will achieve its aim. The problem arises how to choose the

initial people to maximize the number of people who will

receive the information of product in the social network.

This problem is called influence spread maximization. This

problem brings technical challenge. The major challenge is

that the size of social network is often very large with

complex structure. The solution of this problem should be

efficient and scalable.

A. Related work

Domingos and Richardson [1] first present a probabilistic

solution. However, Kempe etc. [2] are the first to formulate

Manuscript received May 8, 2013, revised July 19, 2013.

The authors are with the Massive Data Computing Research Lab,

Computer Science and Technology, Harbin Institute of Technology (e-mail:

xinfeishi@gmail.com, wangzh@hit.edu.cn, lijzh@hit.edu.cn).

this problem to a discrete optimization problem; they proved

this problem is NP-hard. Leskovec etc. [3] present an

optimal greedy algorithm which is called cost-effective lazy

forward (CELF) framework using the sub-modular

properties of influence spread to reduce the calculation for

the spread estimate of nodes. When a node update its

influence spread, its value will not bigger than the its current

value. So we can use this idea to update the influence spread

of nodes lazily. In [4], Chen etc. present NewGreedyIC

algorithm which is based on the greedy algorithm. When it

selects a new seed, it just random the graph one time, and it

uses the equivalent model as the IC model. And they present

a heuristic algorithm which is called DegreeDiscount. Its

main idea is that we choose the max-degree node as the seed

every time. And we reduce the degree of its neighbor nodes.

This heuristic algorithm is very fast and efficient, but it

requires very small propagation probability. There is another

direction. In [5], this paper presents a heuristic algorithm to

limit the size of node space be affected. With the varying of

the limit size of the local space, this algorithm can get a

trade-off between the efficiency and precision.

B. Our Contribution

In summary, current methods have two limitations: 1)

they require repeated compute of the spread function on the

entire graph; 2) the scan times are the quadratic to the

number of nodes. In this paper, we attempt to overcome the

shortcomings. At the same time, we get a trade-off between

efficiency and the precision. Thus we can plug our method

into the basic greedy algorithm.

We solve the problem in two directions.

In one direction, we design new schemes to further

improve the basic greedy algorithm under linear threshold

model. Our paper generates the DAG of induced

graph 𝐺1(𝑣) for every node v in the network to represent

the vertices that information from v can reach. We set the

weight of node and edge appropriately. To compute the

influence spread, we present a recursion back patch method

for every node in 𝐷𝐴𝐺(𝑣) under linear threshold model.

However, the dag loses many information of the original

graph. To address this problem, we use the graph theory

technique in 𝐺1(𝑣) . We transform this problem to a

reachable probability query problem in uncertain graph. We

introduce the possible graph, define the classify tree and

carry out the sampling in this tree. We get an

approximate 𝛿(𝑣) under linear threshold model.

For independent cascade model, we propose a new degree

discount heuristic method, DDH. When selecting a max

degree node as a seed, we reduce the degree of its one hop

neighbors which results in the reduction of the influence

spread of its neighbors. This heuristic method could get

more accurate result than existing methods.

We conduct extensive experiments on real-life social

Influence Spread Maximization in Social Network

Xinfei Shi, Hongzhi Wang, Jianzhong Li, and Hong Gao

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

660DOI: 10.7763/IJIET.2013.V3.357

mailto:xinfeishi@gmail.com
mailto:wangzh@hit.edu.cn
mailto:lijzh@hit.edu.cn

network. Experimental results show that our method

outperforms existing methods and has good scalability.

C. Paper Organization

Section II proposes the greedy algorithm and our

improved method under the linear threshold model. Section

III introduces the degree discount heuristic DDH under

independent cascade model. Section IV shows our

experimental result and analysis. Section V concludes our

paper. For the convenience of discussion, we summary the

symbols used in this paper in Table I.

II. GREEDY INFLUENCE SPREAD MAXIMIZATION

ALGORITHM

In this section, we introduce the definition of Influence

Spread Maximization and the basic greedy algorithm which

is the framework of our work. Then we introduce two flow

models to spread influence (Section A). Then we present

two methods to improve the greedy algorithm (Section B).

A. Problem Definition and the Greedy Algorithm

A social network is defined as a graph 𝐺 = (𝑉, 𝐸), where

V is the set of individuals in social network and E is the set

of relationships between the individuals. For example, in a

paper reference network, each node represents a paper. An

edge (𝑢 , 𝑣) represents paper u cites v. It is a problem how

the influence spreads through the network and what the

influence cascade model is. For these two problems, we

introduce the independent cascade model(IC) [2] and the

linear threshold model (LT) [2] below to describe the

influence spreading.

In a graph, each node has two states, active or inactive.

One node can be transmitted to active state from inactive

state, but cannot be transmitted in reversed direction. At

time t = 0, a set A of size k will be chosen as an initial seeds

set. IC or LT model describe the influence spread pattern.

IC model [2]

For every node v and its neighbor node w in V, there is an

edge 𝑒(𝑣, 𝑤), and 𝑝(𝑣, 𝑤) is the weight of this edge. It

means the probability of information spread from v to w. If

at time t, v is active, and w is inactive, then v tries to activate

w by probability 𝑝(𝑣, 𝑤). If this process succeeds, w is

active at time 𝑡 + 1. If all w’s seed neighbors fail, then w is

still inactive.

LT model [2]

For a node v, it has a threshold 𝜃𝑣. v has many neighbors.

For every neighbor w, there is a probability for the

edge 𝑒(𝑣, 𝑤) . And these probabilities satisfy a

condition 𝑝 𝑣,𝑤 ≤ 1𝑤∈𝑁 𝑣 , 𝑁(𝑣) is the neighbor node

set of v. If at time t, v is inactive and some neighbors of v are

active. If these neighbors satisfy

 𝑝(𝑤, 𝑣)𝑤𝜖𝑁 𝑣 𝑎𝑛𝑑 𝑤 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 ≥ 𝜃𝑣 , v will be active in

time 𝑡 + 1.

For example, Fig. 1 is an example of social network G. u

activates w with probability 0.3, and v is 0.4. Suppose at

time t = 0, u and v are active. In IC model, at time t = 1, u

and v activate w indecently. If both of u and v fail, w is

inactive. So w is active with the probability 1 − (1 −
0.3) × (1 − 0.4)=0.58. In LT model, it is supposed that w

has a threshold 𝜃𝑤 =0.5. Since 𝑝(𝑥,𝑤)𝑥𝜖𝑁 (𝑤) = 0.3 +

0.4 ≥ 𝜃𝑤 = 0.5, w is active at next following time.

Fig. 1. An example of social network G.

Problem definition: Influence Spread Maximization

Supposing 𝐴 is the initial seed set, we define 𝛿(𝐴) as

the expected number of node which is active in the final

state using the IC or LT model. 𝛿(𝐴) is the influence spread

of seeds set A. Given a graph 𝐺 = (𝑉, 𝐸) and a number k,

we should find an initial seeds set A of size k which satisfies

the condition that 𝛿(𝐴) ≥ 𝛿(𝐵), where B is any other initial

seeds set of size k. This problem has been proved to be

NP-hard [2]. To solve this problem, a greedy climb

algorithm has been proposed in [2], as in Algorithm 1.

Algorithm 1: 𝐆𝐀(𝑮,𝒌)

Input: G is the graph;

k is the number of seeds.

Output: A is target seeds set of size k.

1 Set initial seeds set 𝐴 = ∅;

2 while (𝐴 < 𝑘)

3 {

4 For every node v in set 𝑉\𝐴

5 Calculate ∆𝑣= 𝛿 𝐴 ∪ 𝑣 − 𝛿(𝐴)

6 Choose the node 𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∆𝑣 as the next seed: 𝐴 = 𝐴 ∪ 𝑣

7 }

8 return A

We use this algorithm as the framework. The following

two optimizers can be plug into Line 5.

To overcome the shortcomings of the greedy algorithm,

we attempt to speed up the estimation of 𝛿(𝐴) calculation

in Line 5 [6]. Consider the case that the probability of

spread influence from a node to its neighbor through many

hops (for example, one hundred hops) is very small. In

practice, we can ignore very small probability event. To get

a trade-off between the efficiency and precision, we use a

threshold 𝜂 to limit the size of this region. We can ignore

the paths whose probability is smaller than 𝜂.

We propose our algorithms with basic greedy algorithm

as the framework. In the section B, we limit the influence in

a local neighbor region. Then we present two methods to

calculate the influence spread. These two methods are both

based on the graph theory. The former one generates a

directed acyclic graph and utilizes the top-down recursion

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

661

TABLE I: SYMBOL TABLE

Symbols Descriptions

n Number of vertexes in G

m Number of edges in G

 Threshold of shortest path

G1 (v) A induces graph for v

DAG (v) A DAG graph of G1 (v)

G2 (v) A possible graph of G1(v)

T #number of total samples

dv Degree of vertex v

ddv Discount degree of v

process, which will be proposed in section 1) of B. The

latter one uses the query reachable probability technology

under uncertain graph, which will be introduced in section 2)

of B.

B. Speed up the Basic Greedy Algorithm under the LT

Model

To overcome the shortcomings of the greedy algorithm,

we suppose the influence spreads in neighbor region,

ignoring the paths whose probability is smaller than 𝜂.

For a special node, maybe there are many paths which can

reach its neighbor. We just use the shortest path (which

means the max spread probability). If the probability of that

path is greater than the threshold, we can keep this node.

Otherwise we will ignore it. Let 𝑝 𝑣, 𝑢 = (𝑝1 =
𝑣,𝑝2,𝑝3,……𝑝𝑛 = 𝑢), v is a special seed node, u is any

other node in V, and p is a simple no-cycle path from v to u.

Let 𝑃 𝑝 be the probability of the path p. 𝑃 𝑝 =
 𝑤(𝑝𝑖 ,𝑝𝑖+1). 𝑤(𝑝𝑖 , 𝑝𝑖+1) is the spread probability of the

edge 𝑒(𝑝𝑖 , 𝑝𝑖+1).

𝑠𝑝 𝑣,𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝 𝑃 𝑝 𝑝 𝜖 𝑝(𝑣,𝑢)} (1)

We keep the node u if 𝑃 𝑠𝑝 𝑣,𝑢 ≥ 𝜂. These nodes

form a node set 𝑉1(𝑣). And 𝐺1(𝑣) is the induced graph of

G with node set 𝑉1(𝑣). We will continue our calculation

in 𝐺1(𝑣).

In Line 5 of the greedy algorithm, the most costly step is

the computation of 𝛿(𝐴) . Hence we focus on how to

calculate 𝛿(𝐴). From [7], we have 𝛿 𝐴 = 𝛿𝑉−𝐴+𝑣 𝑣 𝑣𝜖𝐴 .

The spread of a set A is the sum of the spread of each node

𝑣𝜖𝐴 on sub-graph induced by 𝑉 − 𝐴 + 𝑣 . Hence we can

calculate the spread influence of each seed node, and sum

the result to get the final 𝛿 𝐴 .
In the following, we use two methods to calculate 𝛿(𝑣).

And these two optimizers can be plugged into the basic

greedy algorithm in Line 5. The first one generates a DAG

for 𝐺1(𝑣) to simplify the calculation. However, it loses

some information of original graph 𝐺1(𝑣), which possibly

causes some inaccuracy error. Hence we present the second

method to calculate the 𝛿(𝑣). This method transforms the

original problem to a reachable probability query problem.

We will discuss these two algorithms in section 1) and

section 2), respectively.

1) Using the DAG and recursion to calculate 𝛿 𝑣

With many cycles in 𝐺1(𝑣), the evaluation of 𝛿(𝑣) is

very difficult. As a comparison, in a no-cycle graph, we can

adopt the top-down recursion method to compute 𝛿 𝑣
efficiently. Hence we attempt to generate the spanning dag

of 𝐺1(𝑣) in section a) and then use the recursion method in

section b) to construct optimizer for basic greedy algorithm.

 Generate DAG and set weight

The task of this step is to generate the spanning dag

of 𝐺1(𝑣). The pseudo algorithm is shown in Algorithm 2. In

this algorithm, we first compute the strongly connected

components (SCC) of graph 𝐺1(𝑣) (Line 1). We collapse

each strongly connected component into one vertex with the

size of SCC. And we set the edge and the weight of edge

appropriately in line 3. Finally we get a directed acyclic

graph 𝐷𝐴𝐺(𝑣).

Algorithm 2: DAG(𝐺1(𝑣),𝑣)

Input: 𝑣 is a seed node in graph 𝐺.

 𝐺1(𝑣) is the induced graph of G with node set 𝑉1(𝑣)

Output: 𝐷𝐴𝐺(𝑣) is the dag of 𝐺1(𝑣)

1 Calculate SCC for 𝐺1(𝑣), collapse them.

2 𝑤 𝑆 = |𝑆| for every SCC 𝑆 in 𝐷𝐴𝐺(𝑣).

3 𝑤 𝑆𝑖 , 𝑆𝑗 = 𝑤 𝑥,𝑦 𝑥 ∈ 𝑆𝑖 ,𝑦 ∈ 𝑆𝑗 , 𝑒(𝑥,𝑦) ∈ 𝐸.

4 return 𝐷𝐴𝐺(𝑣)

We set the weight of 𝑆 to |𝑆|, which means the number

of nodes 𝑆 contains. If 𝑆 is active, we know there are |𝑆|
nodes are active. 𝑆𝑖 and 𝑆𝑗 are two SCCs. If 𝑆𝑖 contains a

node x, 𝑆𝑗 contains a node y, and x and y has link in

graph 𝐺1(𝑣), we sum the weight of 𝑒(𝑥, 𝑦) to the get

weight of 𝑒(𝑆𝑖 , 𝑆𝑗) in 𝐷𝐴𝐺(𝑣).

 𝛿(𝑣) Computation

In this step, we attempt to compute 𝛿(𝑣), using the dag

graph 𝐷𝐴𝐺(𝑣) of 𝐺1(v) which is generated in the last step.

Note that u may have more than one precursor and successor.

Array p[u] contains all the precursors of u. We use the

top-down recursion method to solve this problem.

The pseudo code of this algorithm is shown in Algorithm

3. It calculates the 𝛿(𝑣). We use a table array T to record the

𝛿(𝑢) for every node u.

Algorithm 3: IS(node 𝑢)

Input: 𝑢 is a node in 𝐺1(v).

Output: 𝛿 𝑢 is the influence spread of u

1 Initial the element of array T to invalid.

2 if (𝑇[𝑢] is valid) return 𝑇[𝑢];
3 if (𝑢 == 𝑣) return 1;

4 else return 𝑇 𝑢 = 𝐼𝑆 𝑥 × 𝑤 𝑥,𝑢 𝑥𝜖𝑝 𝑢

In this algorithm, Line 1 initializes every element of array

T to invalid. If 𝑇[𝑢] is valid and so 𝛿(𝑢) is calculated and

saved in 𝑇[𝑢] , we just return it to avoid the repeated

computation in Line 2. Otherwise, we calculate the

influence spread of all u’s precursors and sum the spread

probability from them to v. During this process, we record

the value in 𝑇[𝑢] (Line 4).

2) Query reachable probability in uncertain graph

under LT

The above algorithm DAGIS is based on DAG. It loses

some information of original graph 𝐺1(𝑣) . We present

another method based on the graph theory and sampling

technology to solve this problem in original graph 𝐺1(𝑣).

This algorithm converts the graph into an uncertain graph

and the problem of querying reachable probability. In the

uncertain graph, the seed node v is the source node and

every other node in graph 𝐺1(v) is considered as a sink

node. In this graph, the influence is flowing from the source

node to sink nodes in uncertain graph 𝐺1(𝑣). Thus the

problem becomes query reachable probability from single

source to multi-sinks in the uncertain graph. To avoid too

long spread path, we set a hop distance limit d. We will

discuss the solution of this problem in this section.

We will introduce the definition of uncertain graph and

the possible graph in section a); we define d-reachable paths

from source to sinks to construct all the possible graphs in

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

662

If we set the weight of every edge ݁ሺݏ, ሻݐ as െ݈݊ ݓ ሺݏ,
,ሻݐ we can see that the max probability path is the shortest
path from v to u. We define the shortest path as:

formula (3). In section b) we define the classify-tree

according to formula (3) to reduce the cost of searching;

finally we use the sampling technology to get the

approximate result of 𝛿(𝑣) to accelerate the processing.

 The uncertain graph and possible graph

In 𝐺1(𝑣), the event of influence spreading from one node

to another node is uncertain. Hence 𝐺1(𝑣) can be modeled

as an uncertain graph. In an uncertain graph 𝐺 = (𝑉,𝐸,𝑃),

P is the probability function of each edge, mapping 𝐸 →

Fig. 2. Uncertain graph G1(v).

In an uncertain graph, with the source node v, and the sink

node set Y, the problem is to calculate the reachable

probability from v to any nodes in Y. We denote the

reachable probability as 𝑅(𝑣,𝑌|𝑑). d is the distance limit of

path length. Then we have

 𝑅 𝑣,𝑌 𝑑 = 𝑅 𝑣, 𝑡 𝑑 𝑡 ∈ 𝑌 ∖ 𝑣 (2)

Then we focus on the computation of 𝑅(𝑣, 𝑡|𝑑).
As the basic model, we define possible graph and use it to

define the d-reachable probability.

If a graph 𝐺2 = (𝑉,𝐸′) satisfies 𝐸′ ⊆ 𝐸, we say 𝐺2 is a

possible graph of uncertain graph 𝐺. The probability of 𝐺2

is 𝑝𝑟 𝐺2 = 𝑝(𝑒)𝑒𝜖𝐸′ (1 − 𝑝(𝑒))𝑒𝜖𝐸 \𝐸′ . We set the

distance of two nodes v and t to the min-length of all the

simple path links these two nodes noted as 𝐷𝑖𝑠(𝑣, 𝑡). If we

have a distance threshold 𝑑 satisfying 𝐷𝑖𝑠(𝑣, 𝑡) ≤ 𝑑 in 𝐺2,

then 𝐺2 is d-reachable. The d-reachable probability from

source 𝑣 to sink 𝑡 is the sum of probability of all the

possible graphs which are d-reachable. That is 𝑅 𝑣, 𝑡 𝑑 =
 𝑝𝑟(𝐺2)𝐺2 𝑖𝑠 𝑑−𝑟𝑒𝑎𝑐 𝑎𝑏𝑙𝑒 .

Suppose 𝑝1 ……𝑝𝑟 are all the d-reachable paths from v

to t in 𝐺. 𝑝𝑖 and 𝑝𝑗 may share vertices. If path 𝑝1 exists

in 𝐺2, then v and t are d-reachable no matter whether 𝑝𝑖,𝑖≠1

exists. The probability of all this kind of possible graphs is

the probability of 𝑝1 (all the other paths and edges are not

related). Hence 𝑝1 generates a kind of possible graphs.

When 𝑝1 do not exist but 𝑝2 exists, v and t are d-reachable

no matter whether other paths exist. And the probability of

all this kind of possible graphs is the probability of 𝑝1 does

not exist and 𝑝2 exist. Thus we can get the union of all the

possible graphs:

𝑝1 represents all the possible graphs which contain path

𝑝1. 𝑝1𝑝2 represents all the possible graphs which contain

path 𝑝1 and don’t contain 𝑝2 and so on. This formula

generates the entire possible graphs. And it is the basic

theory of classify-tree which is defined in section b). We

will show how to construct the entire d-reachable paths and

hence to construct the entire possible graph.

To compute d-reachable probability, a straightforward

method is to enumerate all possible graphs generally. There

are 2|𝐸| possible graphs. Clearly, this cost is large. To

accelerate the process, we design sampling technology to

compute the approximate result of d-reachable probability.

For effective sampling, we construct classify tree according

to formula (3) and sampling through it in section b).

 Sampling in classify tree

Generally, we need to random generate the entire

uncertain graph and use the number of d-reachable graphs to

divide the total amount of graphs to get the reachable

probability. This naive random method has weakness

because it does not consider the relationship between edges

in the process of composing path. Hence we randomize

branches through the classify-tree which is defined as

below.

Fig. 3. Classify-tree for graph G (ac: accepted; fa: false; some false

branches are omitted).

𝑛𝑜𝑑𝑒 = Node(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑒𝑑𝑔𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑙𝑒𝑓𝑡𝐶𝑖𝑙𝑑,
 𝑟𝑖𝑔𝑡𝐶𝑖𝑙𝑑, 𝑠𝑡𝑎𝑡𝑒).

Where 𝑣𝑒𝑟𝑡𝑒𝑥 represents the current considered node;

𝑒𝑑𝑔𝑒 represents the current considered edge. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑜𝑠𝑡
means the cost of current search branch. 𝑙𝑒𝑓𝑡𝐶𝑖𝑙𝑑

represents the current considered edge 𝑛𝑜𝑑𝑒. 𝑒𝑑𝑔𝑒 is

selected into the simple search path. 𝑟𝑖𝑔𝑡𝑐𝑖𝑙𝑑 represents

𝑛𝑜𝑑𝑒. 𝑒𝑑𝑔𝑒 is not selected. Member 𝑠𝑡𝑎𝑡𝑒 including two

states: accepted and false. The 𝑠𝑡𝑎𝑡𝑒 is false if we find that

v to a sink t is not d-reachable through the edges we select.

Otherwise the 𝑠𝑡𝑎𝑡𝑒 is accepted which represents a

successful sample is got (the sampling process will be

introduced below). Every internal node’s state is accepted.

This classify-tree represents all the d-reachable paths. We

consider how to expand branch on such classify-tree. With

the current considered node denoted by 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒, all

the edges linked to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒. 𝑣𝑒𝑟𝑡𝑒𝑥 in the graph 𝐺

are candidates for the next step. When we consider an edge

e in this candidate set, if e satisfies a

condition 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 + 1 ≤ 𝑑, e is a valid

branch. Otherwise e is an illegal branch, and we abandon

this branch. The search process ends when we meet the leaf

Node.

During the search, we are not necessary to generate the

classify-tree explicitly, but construct it during searching.

When a no-leaf node is visited, current considered edge is

randomized by its probability. If this edge exists, we

traverse the 𝑙𝑒𝑓𝑡𝐶𝑖𝑙𝑑 branch. Otherwise we go to

𝑟𝑖𝑔𝑡𝐶𝑖𝑙𝑑 branch which means this edge does not exist.

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

663

𝑝1 ∪ 𝑝1𝑝2 ∪ ……∪ 𝑝1𝑝2 ……𝑝𝑟−1 𝑝𝑟 (3)

Definition 1 A classify-tree is a tree with the structure of

each node as follows [8], [9].

(0, 1].

We use DFS to expand branch. If we come across a node,

we get the node’ state which means a sample is obtained.

Then we use the amount of accepted samples and total

samples to estimate the d-reachable probability and also

get 𝛿(𝑣). We have T samples in total. With the amount of

accepted samples of t denoted by x, the probability of

d-reachable is approximately calculated as:

Algorithm 4: Sampling(Node 𝑣)

Input: v is root node

Output: influence spread of v: 𝛿(𝑣)

1 int[] acceptedSample = {0};

2 int[] totalSample = {0};

3 Generate root from v; path = ∅;

4 while (!(totalSample[u] >= T for all node u))

5 {

6 DFSSearching(root, path);

7 }

8 double result = 0;

9 for each t in 𝑉1(𝑣) ∖ 𝑣 result += acceptedSample[t]/T;

10 return result;

Algorithm 5: DFSSearching(𝑛𝑜𝑑𝑒,𝑝𝑎𝑡)
Input: node: current consider node

 path: current searching branch path

1 initialize:

2 x = node.vertex;

3 ex = node.edge;

4 cost = node.currentCost;

5 w = ex.endVertex; /* means ex = e(x, w), w is the end vertex of edge e

*/

6 𝐢𝐟 (totalSample[x] < T)

7 {

8 totalSample[x]++;

9 𝐢𝐟(node.state == accepted) acceptedSample[x]++;

10}

11 Random generate a number R in interval

 [0, 1];

12 𝐢𝐟(cost + 1 <= d and R <= p(x, w))

13 /* e is valid and e is random selected */

14 {

15 New leftNode = node(w, w.firstCandidate, cost + 1, null, null,

accepted);

16 /* there are many candidates edge from w, we select the first

candidate, and check the other edges in the after time. */

17 path += ex;

18 DFSSearching(leftNode, path);

19 path -= ex;

20 }

21 𝐞𝐥𝐬𝐞 //e is not valid or e is not random selected

22 {

23 New rightNode = node (v, nextCandidateEdge, cost, null, null, null);

24 DFSSearching(rightNode, path);

25 }

Consider the example in Fig. 3. We construct the

classify-tree for graph G of Fig. 2. At the root node v, we

have two choices, 𝑒1 and 𝑒2 . When we choose 𝑒1 with

probability 𝑝1, we go to node 𝑡1. At this time, we can choose

to continue our search process instead. If we do not

choose 𝑒2, we will not reach any node. Then we reach a

false (𝑓𝑎 for short) state. The construction of other branches

is similar.

The pseudo algorithm for Sampling is shown in

Algorithm 4, where the DFS starting at root node is shown

in Algorithm 5.

In Algorithm 4 Sampling, if we have not obtained all the

samples, we call the function DFSSearching to continue

our searching process in classify-tree (Lines 4-7). Line 9

calculates 𝛿(𝑣), and finally returns it (Line 10).

In Algorithm 5 DFSSearching, we check whether the

current considered vertex x has visited all its samples to

decide whether we should utilize current sample (Lines

6-9).Then in Lines 11-25, we randomize the branch using

DFS to construct the classify-tree implicitly.

III. DEGREE DISCOUNT HEURISTIC UNDER THE IC MODEL

In this section, we introduce the degree heuristic to speed

up the calculation of influence spread. First, we introduce

max degree method and its weakness. Then we drive a more

accurate degree heuristic method called DDH to overcome

the weakness. DDH can also be treated as an optimizer and

plugged into the basic greedy algorithm in Line 5 of

Algorithm 1.

It costs too much time even if we use the improved

greedy and graph algorithm when the size of graph is very

large. One possible improvement is to use heuristic method.

Degree heuristic strategy is usually used to estimate the

influence spread of a node in social network. Such heuristic

strategy [10] is effective in some cases, but the result of

influence spread is still not as large as the basic greedy

algorithm. They select a max-degree node each time. But

they ignore some problems. A pair neighbor node can also

have large degree, but their neighbor set may have many

overlapping. Therefore, their influence is not as big as the

optimal result. This motivates us to update the degree of v’s

neighbors to update their influence spread when we select v

as a seed.

With this consideration, we drive a more accurate degree

discount heuristic under IC model which is called DDH. In

this algorithm, we just consider one hop neighbors, and the

relationship between these neighbors to update their degree.

This makes our heuristic more accurate. And this idea forms

the guideline of our work.

Fig. 4. The relationship between v and its one hop neighbors.

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

664

ℛ 𝑣, 𝑡 𝑑 = 𝑥 𝑇 (4)

Thus, according to formula (2), influence spread 𝛿(𝑣) in

original graph 𝐺1(𝑣) can be calculated as:

𝛿 𝑣 = ℛ 𝑣,𝑌 𝑑 = ℛ 𝑣, 𝑡 𝑑 𝑡 𝜖 𝑉1 𝑣 ∖ 𝑣 (5)

𝑒6 with probability 𝑝6 . Then we can select 𝑒7 with

probability 𝑝7 to reach accepted (𝑎𝑐 for short) state which

means an accepted sample. When we do not choose 𝑒1 with

probability (1 − 𝑝1), we can choose 𝑒2 with probability 𝑝2

To illustrate the algorithm, we use a Fig. 4 to show the

relationship between v and its one hop neighbors. For a

node 𝑣, we define 𝑁 𝑣 = 𝑠 𝑒 𝑠, 𝑣 ∈ 𝐸 , in which the

set of one hop neighbors of v is. 𝑡𝑣 neighbors of v has been

selected as seeds, and they make up a set 𝑆 𝑣 = 𝑥 𝑥 ∈
𝑁 𝑣 , 𝑥 𝑖𝑠 𝑠𝑒𝑒𝑑}.

Fig. 5. An example of DDH.

So what’s the influence spread of v when set 𝑆(𝑣) has

been selected as seed? We consider how to calculate 𝛿(𝑣). v

has two states: (1) v is activated by its seed neighbors with

probability 𝐼 𝑣 = 1 − 1 − 𝑝 𝑥, 𝑣 𝑥 ∈ 𝑆(𝑣) . In this

case, selecting 𝑣 as the seed makes no contribution to 𝛿(𝑣).

(2) If 𝑣 is not influenced by its neighbors with the

probability 1 − 𝐼(𝑣), selecting 𝑣 as a seed will activate

other nodes, and this activation is regard as 𝛿(𝑣). This

activation contains two aspects: (I) 𝑣 is active with

probability 1; (II) We consider a node 𝑢 in 𝑁(𝑣) and u is

not a seed node, which means 𝑢 ∈ 𝑁(𝑣)\𝑆(𝑣). u may be

influenced by some seeds in 𝑆(𝑣). In this case, u cannot

make contribution to 𝛿(𝑣). Let 𝑇 𝑢 = 𝑁(𝑢) ∩ 𝑆(𝑣). 𝑢 is

not activated by 𝑇 𝑢 with the probability 𝐵 𝑢 =

 1 − 𝑝 𝑤,𝑢 𝑤 ∈ 𝑇(𝑢) . At the same time, u is

activated by v with the probability 𝑝(𝑣, 𝑢). Then we can

calculate the additional influence spread of v:

When we select a node as a seed, we must update the

degree of all its neighbors.

For example, in Fig 5, v has five neighbors including four

seeds: 𝑥1, 𝑥2, 𝑤1, 𝑤2. v is not activated by its seed neighbors

with the probability 1 − 𝐼(𝑣) = (1 − 𝑝1)(1 − 𝑝2)(1 −
𝑝3)(1 − 𝑝5). In this case, selecting v as seed will make

contribution to the influence spread. This contains two

aspects: (1) v is active by probability 1. (2) u is not activated

by 𝑤1,𝑤2 and activated by v with the probability 𝐵 𝑢 ×
𝑝 𝑣,𝑢 = (1 − 𝑝4)(1 − 𝑝6)𝑝7. Thus the influence spread of

v is

𝛿 𝑣 = (1 − 𝐼(𝑣))(1 + 𝐵 𝑢 × 𝑝 𝑣,𝑢) = (1 −
𝑝1)(1 − 𝑝2)(1 − 𝑝3)(1 − 𝑝5)(1 + (1 − 𝑝4)(1 − 𝑝6)𝑝7)

The pseudo code of DDH is shown in Algorithm 6.

Initially, v’s discount degree which also means 𝛿(𝑣) is

assigned to 𝑑𝑣 (Lines 2-4). Then in each iteration, we select

a node with the max influence spread (Line 7), add it to

seeds set A (Line 8) and update the discount degree of all its

neighbors as discussed above (Lines 9-15). Suppose the

average number of node’s neighbor is 𝑞. When we select a

new seed 𝑦, we should update all 𝑦’s neighbor 𝑣’s degree.

For the update of 𝑣, it should scan 𝑣’s neighbor 𝑢 and 𝑢’s

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

665

𝛿 𝑣 = 1 − 𝐼 𝑣 1 + 𝐵 𝑢 × 𝑝 𝑣,𝑢

𝑢 ∈ 𝑁 𝑣 \𝑆 𝑣
(6)

neighbor 𝑤. So we cost O(𝑞3) time. With the Fibonacci

heap, the running time of DDH is Ο(𝑘𝑞3𝑙𝑜𝑔𝑛).

Algorithm 6: DDH(𝐺,𝑘)
Input: G is the graph; k is the number of seeds.

Output: A is target seeds set of size k.

1 Initialize 𝐴 = ∅;

2 for each vertex v do

3 compute its degree 𝑑𝑣

4 𝑑𝑑𝑣 = 𝑑𝑣; /* 𝑑𝑑𝑣 means v’s discount degree and also its influence

spread.*/

5 end for

6 while (|𝐴| < 𝑘)

7 select 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑑𝑑𝑦 𝑦 ∈ 𝑉\𝐴 }

8 𝐴 = 𝐴 ∪ 𝑦
9 for each neighbor v of y do

10 𝐼 𝑣 = 1 − 1 − 𝑝 𝑥,𝑣 𝑥 ∈ 𝑆(𝑣)
11 for each u ∈ N(v)\S(v) do

12 B u = 1 − p w, u w ∈ T u = N(u) ∩ S(v)
13 end for

14 ddv = 1 − I v 1 + B u × p v, u u ∈ N(v)\S(v)
15 end for

16 end while

17 return A

IV. EXPERIMENTS

A. Experiments setup

All algorithms are written in C++ language. The running

environment is a PC with Intel i5 3.1 GHZ CPU, 4G main

memory and 500G disk. We use real social network to test

our algorithms. Dataset Amazon, the Amazon product

co-purchasing network [11], which is dated on March 2,

2003, where nodes are products and a directed edge from s

to t means product s is often purchased with product t. It has

262k nodes and 1.2M edges.

We compare algorithms with other algorithms in two

measures: influence spread and running time. For the LT

model, we compare our two algorithms (DAGIS and

Sampling) with the CELFGreedy [4] algorithm. For the IC

model, we compare our algorithm DDH with CELFGreedy

[4] and Degree [2] and Distance [2].

B. Experimental Results

Fig. 6. Influence spread of these algorithms under LT model (p=0.01).

Fig. 7. Running time of different algorithms under LT model (k=50, use log

function).

We provide the experimental results of different

algorithms for two influence cascade models. In the

experiments, without explicit explanation, we set k = 50, and

the spread probability p is same for every edge and p = 0.01

and η=10-20.

Fig. 8. Influence spread of these algorithms under IC model (p=0.01).

Fig. 9. Running time of different algorithms under IC model (k=50, use log

function).

1) LT model

For LT model, we compare the methods in two aspects.

For effectiveness, we vary k from 1 to 50. Different

algorithms are run to select k nodes and calculate the

influence spread of these k nodes. The experimental results

are shown in Fig. 6. For efficiency, k = 50, and we run these

three algorithms to compare their running time and the

experimental results are shown in Fig. 7. From the result, it

can be observed that even though the influence spread of

DAGIS and Sampling is a little lower than the CELFGreedy

algorithm (3.2% and 4.7% lower than the CELFGreedy),

they are much (25 and 12 times) faster than the greedy

algorithm because we limit the calculation in a smaller

region.

2) IC model

For IC model, we compare the methods in two aspects.

To test effectiveness, we vary k from 1 to 50. Different

algorithms are run to select k nodes and calculate the

influence spread of these k nodes. The experimental results

are shown in Fig. 8. For efficiency, we set k = 50, and run

these five algorithms to compare their running time and the

experimental results are shown in Fig. 9. The random

algorithm is the baseline, and its efficiency is very bad.

From the results, it is observed that the Degree and Distance

algorithm are much better than Random. But they are a little

worse than our DDH. Degree is 4.6% lower than the

CELFGreedy algorithm, and distance is 8.7%, and our DDH

is 3.5%. We can see that our heuristic save much time, and it

is 0.9 × 106 times faster than CELFGreedy. And its

influence spread is almost same as the CELFGreedy.

V. CONCLUDING AND FUTURE WORK

Influence Spread maximization is a very important, useful

and changeling task in social network. The size of social

network is often very large with complex structure.

Therefore, existing methods are not suitable for this problem

and efficient algorithm is in demand. In this paper, to

achieve high efficiency, we propose two improved greedy

algorithms and a heuristic algorithm. The extensive

experiments on the massive-size social network show that

we can get the accurate guarantee of influence spread. And

all our algorithms reduce the running time significantly. As

future work, we can deeply study the heuristic method to

adopt it to the linear threshold model. We can also consider

not only one-hop neighbors but also nodes in multiple hops

adaptively to get more accurate result.

REFERENCES

Xinfei Shi

was born in Anhui province

in

1990.

From 2007 to 2011, he received his

bachelor in

computer science and technology

in

Harbin Institute

of Technology, Harbin, Heilongjiang, China. From

2011

to

2013,

he was a

master candidate in computer

science and technology of Harbin Institute of

Technology. He is currently study

in Harbin Institute

of Technology. Current research interests: Massive

Data Computing Research.

Hongzhi Wang

was born

in Liaoning province in

1978.

In 2008, he got his Ph. D in computer science

and technology

in

Harbin Institute of Technology,

Harbin, Heilongjiang, China.

He is associate

professor in Harbin Institute of

Technology. His interests include data quality, xml

data management.

Jianzhong Li

was born in Heilongjiang province in

1950.

From March 1972

to August 1975,

he is with

Heilongjiang University department of

mathematics.

From September

1975

to June 1978,

he is with Tsinghua University department

of

electronic

engineering.

Professor

Li

is a Ph. D. and

supervisor in Harbin Institute of Technology. His

research interests include wireless sensor network,

cyber-physical systems, database, massive data processing etc.

Hong Gao

was born in Heilongjiang province in

1966.

He is a Ph. D in computer science and

technology of Harbin Institute of Technology.

She is a professor

and

supervisor in Harbin

Institute of Technology. Her research interests

include wireless sensor network, cyber-physical

systems, massive data management and data

mining.

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

666

[1] M. Richardson and P. Domingos, “Mining knowledge-sharing sites

for viral marketing,” in Proc. the 8th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, pp. 61–70, 2002.

[2] D. Kempel, J. Kleinberg, and E. Tardos, “Maximizing the spread of

influence through a social network,” ACM SIGKDD, pp. 137-146,

2003.

[3] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization

in social networks,” KDD, pp. 199-208, 2009.

[4] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and

N. S. Glance, “Cost-effective outbreak detection in networks,” in

Proc. SIGKDD, pp. 420-429, 2007.

[5] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization

in social networks under the linear threshold model,” ICDM 2010.

[6] R.-H. Li, J. X. Yu, and Z.-C. Shang, Estimating Node Influenceability

in Social Networks.

[7] A. Goyal, L. Wei, and L. V. S. Lakshmanan, “SIMPATH: An

Efficient Algorithm for Influence Maximization under the Linear

Threshold Model. in Data Mining (ICDM),” in R. P. Satorras and A.

Vespigni, Epidemics and immunization in scale-free networks,

Graphs and Networks from the genome to the Internet 2003.

[8] W. Zhang and Q. Y. Zhai, “Distance threshold based reacha- bility

queries in uncertain graphs,” Journal of Chinese Computer Systems,

vol.33, no. 10, pp. 2164-2169, 2012.

[9] R. Jin et al., “Distance-constraint reachability computation in

uncertain graphs,” in Proc. the VLDB Endowment, 2011, vol. 4, no. 9,

pp. 551-562.

[10] S. Wasserman and K. Faust, Social Network Analysis: Methods and

Applications, Cambridge University Press, 1994.

[11] Amazon product co-purchasing network. (March 02 2003). [Online].

Available: http://snap.stanford.edu/data/amazon0302.html.

http://snap.stanford.edu/data/amazon0302.html
app:ds:department
app:ds:of
app:ds:electronic
app:ds:engineering

