
  

 

Abstract—It’s a challenging task to find a subset of node of 

size k in a social network such that targeting them initially as 

the seeds will maximize the influence spread. This problem is 

proved to be a NP-hard problem. We solve this problem in two 

aspects: 1) we improve the basic greedy algorithm, limiting the 

influence spread in a neighbor space to reduce the running 

time. We use the DAG and the recursion method to calculate 

the influence spread of each node. Also we transform this 

problem to a reachable probability query problem in an 

uncertain graph; 2) we present a more accurate degree 

discount heuristic algorithm which considers the relationship 

between the node and its neighbors. Intensive experiments on a 

large real-world social network show that: our improved 

greedy algorithm and degree discount heuristic algorithm are 

more efficient than the basic greedy algorithm and other 

heuristic methods. 

 

Index Terms—Classify-tree, DAG, degree heuristic, greedy, 

influence spread maximization, sampling. 

 

I. INTRODUCTION 

There are many social networks such as Facebook, 

Twitter, paper reference network, Skype communication 

network, blog network and so on. They are very popular and 

successful. They become a platform for people to spread 

influence and expand relationship. Social network also 

brings some new problems. In this paper, we attempts to 

solve one of them, finding an initial seeds set of size k to 

maximize the influence spread, which is called influence 

spread maximization problem. 

We use a scenario to illustrate its application. A company 

developed a new product, and wants to expand this product 

to society through social network. With limited budget, this 

product could only be sent as some free sample for limited 

number of people. This company wishes that these people 

like their product, and spread the benefit of the product to 

the public through their friends. In this way, the company 

will achieve its aim. The problem arises how to choose the 

initial people to maximize the number of people who will 

receive the information of product in the social network. 

This problem is called influence spread maximization. This 

problem brings technical challenge. The major challenge is 

that the size of social network is often very large with 

complex structure. The solution of this problem should be 

efficient and scalable. 

A. Related work 

Domingos and Richardson [1] first present a probabilistic 

solution. However, Kempe etc. [2] are the first to formulate 
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this problem to a discrete optimization problem; they proved 

this problem is NP-hard. Leskovec etc. [3] present an 

optimal greedy algorithm which is called cost-effective lazy 

forward (CELF) framework using the sub-modular 

properties of influence spread to reduce the calculation for 

the spread estimate of nodes. When a node update its 

influence spread, its value will not bigger than the its current 

value. So we can use this idea to update the influence spread 

of nodes lazily. In [4], Chen etc. present NewGreedyIC 

algorithm which is based on the greedy algorithm. When it 

selects a new seed, it just random the graph one time, and it 

uses the equivalent model as the IC model. And they present 

a heuristic algorithm which is called DegreeDiscount. Its 

main idea is that we choose the max-degree node as the seed 

every time. And we reduce the degree of its neighbor nodes. 

This heuristic algorithm is very fast and efficient, but it 

requires very small propagation probability. There is another 

direction. In [5], this paper presents a heuristic algorithm to 

limit the size of node space be affected. With the varying of 

the limit size of the local space, this algorithm can get a 

trade-off between the efficiency and precision. 

B. Our Contribution 

In summary, current methods have two limitations: 1) 

they require repeated compute of the spread function on the 

entire graph; 2) the scan times are the quadratic to the 

number of nodes. In this paper, we attempt to overcome the 

shortcomings. At the same time, we get a trade-off between 

efficiency and the precision. Thus we can plug our method 

into the basic greedy algorithm. 

We solve the problem in two directions.  

In one direction, we design new schemes to further 

improve the basic greedy algorithm under linear threshold 

model. Our paper generates the DAG of induced 

graph 𝐺1(𝑣) for every node v in the network to represent 

the vertices that information from v can reach. We set the 

weight of node and edge appropriately. To compute the 

influence spread, we present a recursion back patch method 

for every node in 𝐷𝐴𝐺(𝑣) under linear threshold model. 

However, the dag loses many information of the original 

graph. To address this problem, we use the graph theory 

technique in  𝐺1(𝑣) . We transform this problem to a 

reachable probability query problem in uncertain graph. We 

introduce the possible graph, define the classify tree and 

carry out the sampling in this tree. We get an 

approximate 𝛿(𝑣) under linear threshold model.  

For independent cascade model, we propose a new degree 

discount heuristic method, DDH. When selecting a max 

degree node as a seed, we reduce the degree of its one hop 

neighbors which results in the reduction of the influence 

spread of its neighbors. This heuristic method could get 

more accurate result than existing methods. 

We conduct extensive experiments on real-life social 
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network. Experimental results show that our method 

outperforms existing methods and has good scalability.  

C. Paper Organization 

Section II proposes the greedy algorithm and our 

improved method under the linear threshold model. Section 

III introduces the degree discount heuristic DDH under 

independent cascade model. Section IV shows our 

experimental result and analysis. Section V concludes our 

paper. For the convenience of discussion, we summary the 

symbols used in this paper in Table I. 
 

   

 
 

II. GREEDY INFLUENCE SPREAD MAXIMIZATION 

ALGORITHM 

In this section, we introduce the definition of Influence 

Spread Maximization and the basic greedy algorithm which 

is the framework of our work. Then we introduce two flow 

models to spread influence (Section A). Then we present 

two methods to improve the greedy algorithm (Section B). 

A. Problem Definition and the Greedy Algorithm 

A social network is defined as a graph 𝐺 = (𝑉, 𝐸), where 

V is the set of individuals in social network and E is the set 

of relationships between the individuals. For example, in a 

paper reference network, each node represents a paper. An 

edge (𝑢 , 𝑣) represents paper u cites v. It is a problem how 

the influence spreads through the network and what the 

influence cascade model is. For these two problems, we 

introduce the independent cascade model(IC) [2] and the 

linear threshold model (LT) [2] below to describe the 

influence spreading.  

In a graph, each node has two states, active or inactive. 

One node can be transmitted to active state from inactive 

state, but cannot be transmitted in reversed direction. At 

time t = 0, a set A of size k will be chosen as an initial seeds 

set. IC or LT model describe the influence spread pattern. 

IC model [2] 

For every node v and its neighbor node w in V, there is an 

edge 𝑒(𝑣, 𝑤), and 𝑝(𝑣, 𝑤) is the weight of this edge. It 

means the probability of information spread from v to w. If 

at time t, v is active, and w is inactive, then v tries to activate 

w by probability 𝑝(𝑣, 𝑤). If this process succeeds, w is 

active at time 𝑡 + 1. If all w’s seed neighbors fail, then w is 

still inactive.  

LT model [2] 

For a node v, it has a threshold 𝜃𝑣. v has many neighbors. 

For every neighbor w, there is a probability for the 

edge  𝑒(𝑣, 𝑤) . And these probabilities satisfy a 

condition  𝑝 𝑣,𝑤 ≤ 1𝑤∈𝑁 𝑣 , 𝑁(𝑣) is the neighbor node 

set of v. If at time t, v is inactive and some neighbors of v are 

active. If these neighbors satisfy 

 𝑝(𝑤, 𝑣)𝑤𝜖𝑁  𝑣  𝑎𝑛𝑑  𝑤  𝑖𝑠  𝑎𝑐𝑡𝑖𝑣𝑒 ≥ 𝜃𝑣 , v will be active in 

time 𝑡 + 1. 

For example, Fig. 1 is an example of social network G. u 

activates w with probability 0.3, and v is 0.4. Suppose at 

time t = 0, u and v are active. In IC model, at time t = 1, u 

and v activate w indecently.  If both of u and v fail, w is 

inactive.  So w is active with the probability 1 − (1 −
0.3) × (1 − 0.4)=0.58. In LT model, it is supposed that w 

has a threshold  𝜃𝑤 =0.5. Since   𝑝(𝑥,𝑤)𝑥𝜖𝑁 (𝑤) = 0.3 +

0.4 ≥ 𝜃𝑤 = 0.5, w is active at next following time. 

 

 
Fig. 1. An example of social network G. 

 

Problem definition: Influence Spread Maximization 

Supposing 𝐴 is the initial seed set, we define 𝛿(𝐴) as 

the expected number of node which is active in the final 

state using the IC or LT model. 𝛿(𝐴) is the influence spread 

of seeds set A. Given a graph 𝐺 = (𝑉, 𝐸) and a number k, 

we should find an initial seeds set A of size k which satisfies 

the condition that 𝛿(𝐴) ≥ 𝛿(𝐵), where B is any other initial 

seeds set of size k. This problem has been proved to be 

NP-hard [2]. To solve this problem, a greedy climb 

algorithm has been proposed in [2], as in Algorithm 1. 

 
Algorithm 1: 𝐆𝐀(𝑮,𝒌) 

Input: G is the graph;  

k is the number of seeds. 

Output: A is target seeds set of size k. 

1 Set initial seeds set 𝐴 = ∅; 

2 while ( 𝐴 < 𝑘) 

3 { 

4   For every node v in set 𝑉\𝐴 

5   Calculate ∆𝑣= 𝛿 𝐴 ∪ 𝑣 − 𝛿(𝐴) 

6   Choose the node 𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣∆𝑣  as the next seed: 𝐴 = 𝐴 ∪ 𝑣 

7 } 

8 return A 

 
 

We use this algorithm as the framework. The following 

two optimizers can be plug into Line 5. 

To overcome the shortcomings of the greedy algorithm, 

we attempt to speed up the estimation of 𝛿(𝐴) calculation 

in Line 5 [6]. Consider the case that the probability of 

spread influence from a node to its neighbor through many 

hops (for example, one hundred hops) is very small. In 

practice, we can ignore very small probability event. To get 

a trade-off between the efficiency and precision, we use a 

threshold 𝜂 to limit the size of this region. We can ignore 

the paths whose probability is smaller than 𝜂. 

We propose our algorithms with basic greedy algorithm 

as the framework. In the section B, we limit the influence in 

a local neighbor region. Then we present two methods to 

calculate the influence spread. These two methods are both 

based on the graph theory. The former one generates a 

directed acyclic graph and utilizes the top-down recursion 
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TABLE I: SYMBOL TABLE

Symbols Descriptions

n Number of vertexes in G

m Number of edges in G

 Threshold of shortest path

G1 (v) A induces graph for v

DAG (v) A DAG graph of G1 (v)

G2 (v) A possible graph of G1(v)

T #number of total samples

dv Degree of vertex v

ddv Discount degree of v



  

process, which will be proposed in section 1) of B. The 

latter one uses the query reachable probability technology 

under uncertain graph, which will be introduced in section 2) 

of B. 

B. Speed up the Basic Greedy Algorithm under the LT 

Model 

To overcome the shortcomings of the greedy algorithm, 

we suppose the influence spreads in neighbor region, 

ignoring the paths whose probability is smaller than 𝜂. 

For a special node, maybe there are many paths which can 

reach its neighbor. We just use the shortest path (which 

means the max spread probability). If the probability of that 

path is greater than the threshold, we can keep this node. 

Otherwise we will ignore it. Let  𝑝 𝑣, 𝑢 = (𝑝1 =
𝑣,𝑝2,𝑝3,……𝑝𝑛 = 𝑢), v is a special seed node, u is any 

other node in V, and p is a simple no-cycle path from v to u. 

Let  𝑃 𝑝  be the probability of the path p. 𝑃 𝑝 =
 𝑤(𝑝𝑖 ,𝑝𝑖+1). 𝑤(𝑝𝑖 , 𝑝𝑖+1) is the spread probability of the 

edge 𝑒(𝑝𝑖 , 𝑝𝑖+1). 

    

 

 

𝑠𝑝 𝑣,𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝 𝑃 𝑝   𝑝 𝜖 𝑝(𝑣,𝑢)}             (1) 

   
We keep the node u if  𝑃 𝑠𝑝 𝑣,𝑢  ≥ 𝜂. These nodes 

form a node set 𝑉1(𝑣). And 𝐺1(𝑣) is the induced graph of 

G with node set 𝑉1(𝑣). We will continue our calculation 

in 𝐺1(𝑣). 

In Line 5 of the greedy algorithm, the most costly step is 

the computation of  𝛿(𝐴) . Hence we focus on how to 

calculate 𝛿(𝐴). From [7], we have 𝛿 𝐴 =  𝛿𝑉−𝐴+𝑣 𝑣 𝑣𝜖𝐴 . 

The spread of a set A is the sum of the spread of each node 

𝑣𝜖𝐴 on sub-graph induced by 𝑉 − 𝐴 + 𝑣 . Hence we can 

calculate the spread influence of each seed node, and sum 

the result to get the final 𝛿 𝐴 . 
In the following, we use two methods to calculate 𝛿(𝑣). 

And these two optimizers can be plugged into the basic 

greedy algorithm in Line 5. The first one generates a DAG 

for 𝐺1(𝑣) to simplify the calculation. However, it loses 

some information of original graph 𝐺1(𝑣), which possibly 

causes some inaccuracy error. Hence we present the second 

method to calculate the 𝛿(𝑣). This method transforms the 

original problem to a reachable probability query problem. 

We will discuss these two algorithms in section 1) and 

section 2), respectively. 

1) Using the DAG and recursion to calculate 𝛿 𝑣  

With many cycles in 𝐺1(𝑣), the evaluation of 𝛿(𝑣) is 

very difficult. As a comparison, in a no-cycle graph, we can 

adopt the top-down recursion method to compute  𝛿 𝑣  
efficiently. Hence we attempt to generate the spanning dag 

of 𝐺1(𝑣) in section a) and then use the recursion method in 

section b) to construct optimizer for basic greedy algorithm. 

 Generate DAG and set weight 

The task of this step is to generate the spanning dag 

of 𝐺1(𝑣). The pseudo algorithm is shown in Algorithm 2. In 

this algorithm, we first compute the strongly connected 

components (SCC) of graph 𝐺1(𝑣) (Line 1). We collapse 

each strongly connected component into one vertex with the 

size of SCC. And we set the edge and the weight of edge 

appropriately in line 3. Finally we get a directed acyclic 

graph 𝐷𝐴𝐺(𝑣). 

 
Algorithm 2: DAG(𝐺1(𝑣),𝑣) 

Input: 𝑣 is a seed node in graph 𝐺. 

 𝐺1(𝑣) is the induced graph of G with node set  𝑉1(𝑣) 

Output: 𝐷𝐴𝐺(𝑣) is the dag of  𝐺1(𝑣) 

1 Calculate SCC for 𝐺1(𝑣), collapse them. 

2 𝑤 𝑆 = |𝑆| for every SCC 𝑆 in 𝐷𝐴𝐺(𝑣). 

3 𝑤 𝑆𝑖 , 𝑆𝑗  =  𝑤 𝑥,𝑦     𝑥 ∈ 𝑆𝑖 ,𝑦 ∈ 𝑆𝑗 , 𝑒(𝑥,𝑦) ∈ 𝐸. 

4 return 𝐷𝐴𝐺(𝑣) 

 
We set the weight of 𝑆 to |𝑆|, which means the number 

of nodes 𝑆 contains. If  𝑆 is active, we know there are |𝑆| 
nodes are active. 𝑆𝑖  and 𝑆𝑗  are two SCCs. If 𝑆𝑖  contains a 

node x,  𝑆𝑗  contains a node y, and x and y has link in 

graph 𝐺1(𝑣), we sum the weight of 𝑒(𝑥, 𝑦) to the get 

weight of 𝑒(𝑆𝑖  ,  𝑆𝑗 ) in 𝐷𝐴𝐺(𝑣). 

 𝛿(𝑣) Computation 

In this step, we attempt to compute 𝛿(𝑣), using the dag 

graph 𝐷𝐴𝐺(𝑣) of 𝐺1(v) which is generated in the last step. 

Note that u may have more than one precursor and successor. 

Array p[u] contains all the precursors of u. We use the 

top-down recursion method to solve this problem.  

The pseudo code of this algorithm is shown in Algorithm 

3. It calculates the 𝛿(𝑣). We use a table array T to record the 

𝛿(𝑢) for every node u. 

 
Algorithm 3: IS(node 𝑢) 

Input:  𝑢 is a node in 𝐺1(v). 

Output:  𝛿 𝑢  is the influence spread of u 

1   Initial the element of array T to invalid. 

2   if (𝑇[𝑢] is valid) return 𝑇[𝑢]; 
3   if (𝑢 == 𝑣) return 1; 

4   else return  𝑇 𝑢 =  𝐼𝑆 𝑥 × 𝑤 𝑥,𝑢 𝑥𝜖𝑝  𝑢   
 

In this algorithm, Line 1 initializes every element of array 

T to invalid. If  𝑇[𝑢] is valid and so 𝛿(𝑢) is calculated and 

saved in  𝑇[𝑢] , we just return it to avoid the repeated 

computation in Line 2. Otherwise, we calculate the 

influence spread of all u’s precursors and sum the spread 

probability from them to v. During this process, we record 

the value in 𝑇[𝑢] (Line 4). 

2) Query reachable probability in uncertain graph 

under LT 

The above algorithm DAGIS is based on DAG. It loses 

some information of original graph  𝐺1(𝑣) . We present 

another method based on the graph theory and sampling 

technology to solve this problem in original graph 𝐺1(𝑣). 

This algorithm converts the graph into an uncertain graph 

and the problem of querying reachable probability. In the 

uncertain graph, the seed node v is the source node and 

every other node in graph 𝐺1(v) is considered as a sink 

node. In this graph, the influence is flowing from the source 

node to sink nodes in uncertain graph  𝐺1(𝑣). Thus the 

problem becomes query reachable probability from single 

source to multi-sinks in the uncertain graph. To avoid too 

long spread path, we set a hop distance limit d. We will 

discuss the solution of this problem in this section. 

We will introduce the definition of uncertain graph and 

the possible graph in section a); we define d-reachable paths 

from source to sinks to construct all the possible graphs in 
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If we set the weight of every edge ݁ሺݏ, ሻݐ as െ݈݊ ݓ ሺݏ,
,ሻݐ we can see that the max probability path is the shortest 
path from v to u. We define the shortest path as: 



  

formula (3). In section b) we define the classify-tree 

according to formula (3) to reduce the cost of searching; 

finally we use the sampling technology to get the 

approximate result of 𝛿(𝑣) to accelerate the processing. 

 The uncertain graph and possible graph 

In 𝐺1(𝑣), the event of influence spreading from one node 

to another node is uncertain. Hence 𝐺1(𝑣) can be modeled 

as an uncertain graph. In an uncertain graph 𝐺 = (𝑉,𝐸,𝑃), 

P is the probability function of each edge, mapping 𝐸 →

 

 
Fig. 2. Uncertain graph G1(v). 

 

In an uncertain graph, with the source node v, and the sink 

node set Y, the problem is to calculate the reachable 

probability from v to any nodes in Y. We denote the 

reachable probability as 𝑅(𝑣,𝑌|𝑑). d is the distance limit of 

path length. Then we have 

 

 𝑅 𝑣,𝑌 𝑑 =  𝑅 𝑣, 𝑡 𝑑        𝑡 ∈ 𝑌 ∖ 𝑣           (2) 

  
Then we focus on the computation of 𝑅(𝑣, 𝑡|𝑑). 
As the basic model, we define possible graph and use it to 

define the d-reachable probability. 

If a graph 𝐺2 = (𝑉,𝐸′) satisfies 𝐸′ ⊆ 𝐸, we say 𝐺2 is a 

possible graph of uncertain graph 𝐺. The probability of 𝐺2 

is  𝑝𝑟 𝐺2 =  𝑝(𝑒)𝑒𝜖𝐸′  (1 − 𝑝(𝑒))𝑒𝜖𝐸 \𝐸′ . We set the 

distance of two nodes v and t to the min-length of all the 

simple path links these two nodes noted as 𝐷𝑖𝑠(𝑣, 𝑡). If we 

have a distance threshold 𝑑 satisfying 𝐷𝑖𝑠(𝑣, 𝑡) ≤ 𝑑 in 𝐺2, 

then 𝐺2 is d-reachable. The d-reachable probability from 

source 𝑣 to sink 𝑡 is the sum of probability of all the 

possible graphs which are d-reachable. That is 𝑅 𝑣, 𝑡   𝑑 =
  𝑝𝑟(𝐺2)𝐺2  𝑖𝑠  𝑑−𝑟𝑒𝑎𝑐 𝑎𝑏𝑙𝑒 . 

Suppose 𝑝1 ……𝑝𝑟  are all the d-reachable paths from v 

to t in 𝐺. 𝑝𝑖 and 𝑝𝑗   may share vertices. If path 𝑝1 exists 

in 𝐺2, then v and t are d-reachable no matter whether 𝑝𝑖,𝑖≠1  

exists. The probability of all this kind of possible graphs is 

the probability of 𝑝1 (all the other paths and edges are not 

related). Hence  𝑝1  generates a kind of possible graphs. 

When 𝑝1 do not exist but 𝑝2 exists, v and t are d-reachable 

no matter whether other paths exist. And the probability of 

all this kind of possible graphs is the probability of 𝑝1 does 

not exist and 𝑝2  exist. Thus we can get the union of all the 

possible graphs: 

 

  

 

𝑝1 represents all the possible graphs which contain path 

𝑝1. 𝑝1𝑝2 represents all the possible graphs which contain 

path 𝑝1  and don’t contain 𝑝2  and so on. This formula 

generates the entire possible graphs. And it is the basic 

theory of classify-tree which is defined in section b). We 

will show how to construct the entire d-reachable paths and 

hence to construct the entire possible graph. 

To compute d-reachable probability, a straightforward 

method is to enumerate all possible graphs generally. There 

are 2|𝐸|  possible graphs. Clearly, this cost is large. To 

accelerate the process, we design sampling technology to 

compute the approximate result of d-reachable probability. 

For effective sampling, we construct classify tree according 

to formula (3) and sampling through it in section b). 

 Sampling in classify tree 

Generally, we need to random generate the entire 

uncertain graph and use the number of d-reachable graphs to 

divide the total amount of graphs to get the reachable 

probability. This naive random method has weakness 

because it does not consider the relationship between edges 

in the process of composing path. Hence we randomize 

branches through the classify-tree which is defined as 

below. 

 

 
Fig. 3. Classify-tree for graph G (ac: accepted;  fa: false;  some false 

branches are omitted). 

 

 

 

𝑛𝑜𝑑𝑒 = Node(𝑣𝑒𝑟𝑡𝑒𝑥, 𝑒𝑑𝑔𝑒, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡, 𝑙𝑒𝑓𝑡𝐶𝑖𝑙𝑑,  
                           𝑟𝑖𝑔𝑡𝐶𝑖𝑙𝑑, 𝑠𝑡𝑎𝑡𝑒). 

 

Where 𝑣𝑒𝑟𝑡𝑒𝑥 represents the current considered node; 

𝑒𝑑𝑔𝑒 represents the current considered edge. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑜𝑠𝑡 
means the cost of current search branch. 𝑙𝑒𝑓𝑡𝐶𝑖𝑙𝑑 

represents the current considered edge 𝑛𝑜𝑑𝑒. 𝑒𝑑𝑔𝑒  is 

selected into the simple search path. 𝑟𝑖𝑔𝑡𝑐𝑖𝑙𝑑 represents 

𝑛𝑜𝑑𝑒. 𝑒𝑑𝑔𝑒 is not selected. Member 𝑠𝑡𝑎𝑡𝑒 including two 

states: accepted and false. The 𝑠𝑡𝑎𝑡𝑒 is false if we find that 

v to a sink t is not d-reachable through the edges we select. 

Otherwise the  𝑠𝑡𝑎𝑡𝑒  is accepted which represents a 

successful sample is got (the sampling process will be 

introduced below). Every internal node’s state is accepted.  

This classify-tree represents all the d-reachable paths. We 

consider how to expand branch on such classify-tree. With 

the current considered node denoted by 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒, all 

the edges linked to 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒. 𝑣𝑒𝑟𝑡𝑒𝑥 in the graph 𝐺 

are candidates for the next step. When we consider an edge 

e in this candidate set, if e satisfies a 

condition 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡 + 1 ≤ 𝑑, e is a valid 

branch. Otherwise e is an illegal branch, and we abandon 

this branch. The search process ends when we meet the leaf 

Node. 

During the search, we are not necessary to generate the 

classify-tree explicitly, but construct it during searching. 

When a no-leaf node is visited, current considered edge is 

randomized by its probability. If this edge exists, we 

traverse the 𝑙𝑒𝑓𝑡𝐶𝑖𝑙𝑑  branch. Otherwise we go to 

𝑟𝑖𝑔𝑡𝐶𝑖𝑙𝑑 branch which means this edge does not exist. 
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𝑝1 ∪ 𝑝1𝑝2 ∪ ……∪ 𝑝1𝑝2 ……𝑝𝑟−1 𝑝𝑟 (3)

Definition 1 A classify-tree is a tree with the structure of 

each node as follows [8], [9].

(0, 1].



  

We use DFS to expand branch. If we come across a node, 

we get the node’ state which means a sample is obtained. 

Then we use the amount of accepted samples and total 

samples to estimate the d-reachable probability and also 

get 𝛿(𝑣). We have T samples in total. With the amount of 

accepted samples of t denoted by x, the probability of 

d-reachable is approximately calculated as: 

 

 

 

 

   

 

Algorithm 4: Sampling(Node 𝑣) 

Input: v is root node 

Output: influence spread of v: 𝛿(𝑣) 

1 int[] acceptedSample = {0}; 

2 int[] totalSample = {0}; 

3 Generate root from v; path = ∅; 

4 while (!(totalSample[u] >= T for all node u)) 

5 { 

6      DFSSearching(root, path); 

7 } 

8 double result = 0; 

9 for each t in 𝑉1(𝑣) ∖ 𝑣  result += acceptedSample[t]/T; 

10 return result; 

 

 

Algorithm 5: DFSSearching(𝑛𝑜𝑑𝑒,𝑝𝑎𝑡) 
Input: node: current consider node 

        path: current searching branch path 

1 initialize: 

2 x = node.vertex; 

3 ex = node.edge; 

4 cost = node.currentCost; 

5 w = ex.endVertex;    /* means ex = e(x, w), w is the end vertex of edge e 

*/ 

6 𝐢𝐟 (totalSample[x] < T) 

7 { 

8    totalSample[x]++; 

9    𝐢𝐟(node.state ==  accepted)  acceptedSample[x]++; 

10} 

11 Random generate a number R in interval 

 [0, 1]; 

12 𝐢𝐟(cost + 1 <= d and R <= p(x, w)) 

13   /* e is valid and e is random selected */ 

14 { 

15        New leftNode = node(w, w.firstCandidate, cost + 1, null, null, 

accepted); 

16        /* there are many candidates edge from w, we select the first 

candidate, and check the other edges in the after time. */ 

17        path += ex; 

18        DFSSearching(leftNode, path); 

19        path -= ex; 

20 } 

21 𝐞𝐥𝐬𝐞  //e is not valid or e is not random selected 

22 { 

23    New rightNode = node (v, nextCandidateEdge, cost, null, null, null); 

24    DFSSearching(rightNode, path); 

25 } 

 

Consider the example in Fig. 3. We construct the 

classify-tree for graph G of Fig. 2. At the root node v, we 

have two choices,  𝑒1  and  𝑒2 . When we choose 𝑒1  with 

probability 𝑝1, we go to node 𝑡1. At this time, we can choose 

  
 

  

   

to continue our search process instead. If we do not 

choose 𝑒2, we will not reach any node. Then we reach a 

false (𝑓𝑎 for short) state. The construction of other branches 

is similar.  

The pseudo algorithm for Sampling is shown in 

Algorithm 4, where the DFS starting at root node is shown 

in Algorithm 5. 

In Algorithm 4 Sampling, if we have not obtained all the 

samples, we call the function DFSSearching to continue 

our searching process in classify-tree (Lines 4-7). Line 9 

calculates 𝛿(𝑣), and finally returns it (Line 10).  

In Algorithm 5  DFSSearching, we check whether the 

current considered vertex x has visited all its samples to 

decide whether we should utilize current sample (Lines 

6-9).Then in Lines 11-25, we randomize the branch using 

DFS to construct the classify-tree implicitly. 

 

III. DEGREE DISCOUNT HEURISTIC UNDER THE IC MODEL 

In this section, we introduce the degree heuristic to speed 

up the calculation of influence spread. First, we introduce 

max degree method and its weakness. Then we drive a more 

accurate degree heuristic method called DDH to overcome 

the weakness. DDH can also be treated as an optimizer and 

plugged into the basic greedy algorithm in Line 5 of 

Algorithm 1. 

It costs too much time even if we use the improved 

greedy and graph algorithm when the size of graph is very 

large. One possible improvement is to use heuristic method. 

Degree heuristic strategy is usually used to estimate the 

influence spread of a node in social network. Such heuristic 

strategy [10] is effective in some cases, but the result of 

influence spread is still not as large as the basic greedy 

algorithm. They select a max-degree node each time. But 

they ignore some problems. A pair neighbor node can also 

have large degree, but their neighbor set may have many 

overlapping. Therefore, their influence is not as big as the 

optimal result. This motivates us to update the degree of v’s 

neighbors to update their influence spread when we select v 

as a seed. 

With this consideration, we drive a more accurate degree 

discount heuristic under IC model which is called DDH. In 

this algorithm, we just consider one hop neighbors, and the 

relationship between these neighbors to update their degree. 

This makes our heuristic more accurate. And this idea forms 

the guideline of our work. 

 

 
Fig. 4. The relationship between v and its one hop neighbors. 
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ℛ 𝑣, 𝑡 𝑑 = 𝑥 𝑇 (4)

Thus, according to formula (2), influence spread 𝛿(𝑣) in 

original graph 𝐺1(𝑣) can be calculated as:

𝛿 𝑣 = ℛ 𝑣,𝑌 𝑑 =  ℛ 𝑣, 𝑡 𝑑 𝑡 𝜖 𝑉1  𝑣 ∖ 𝑣 (5)

𝑒6 with probability 𝑝6 . Then we can select 𝑒7 with 

probability 𝑝7 to reach accepted (𝑎𝑐 for short) state which 

means an accepted sample. When we do not choose 𝑒1 with 

probability (1 − 𝑝1), we can choose 𝑒2 with probability 𝑝2

To illustrate the algorithm, we use a Fig. 4 to show the 

relationship between v and its one hop neighbors. For a 

node 𝑣, we define 𝑁 𝑣 =  𝑠  𝑒 𝑠, 𝑣 ∈ 𝐸 , in which the



  

set of one hop neighbors of v is. 𝑡𝑣 neighbors of v has been 

selected as seeds, and they make up a set  𝑆 𝑣 =  𝑥  𝑥 ∈
𝑁 𝑣 , 𝑥 𝑖𝑠 𝑠𝑒𝑒𝑑}. 

 

 
Fig. 5. An example of DDH. 

 

So what’s the influence spread of v when set 𝑆(𝑣) has 

been selected as seed? We consider how to calculate 𝛿(𝑣). v 

has two states: (1) v is activated by its seed neighbors with 

probability  𝐼 𝑣 = 1 −  1 − 𝑝 𝑥, 𝑣     𝑥 ∈ 𝑆(𝑣) . In this 

case, selecting 𝑣 as the seed makes no contribution to 𝛿(𝑣). 

(2) If 𝑣  is not influenced by its neighbors with the 

probability  1 − 𝐼(𝑣),  selecting 𝑣 as a seed will activate 

other nodes, and this activation is regard as  𝛿(𝑣). This 

activation contains two aspects: (I) 𝑣  is active with 

probability 1; (II) We consider a node 𝑢 in 𝑁(𝑣) and u is 

not a seed node, which means 𝑢 ∈ 𝑁(𝑣)\𝑆(𝑣). u may be 

influenced by some seeds in 𝑆(𝑣). In this case, u cannot 

make contribution to 𝛿(𝑣). Let 𝑇 𝑢 = 𝑁(𝑢) ∩ 𝑆(𝑣). 𝑢 is 

not activated by  𝑇 𝑢  with the probability 𝐵 𝑢 =

  1 − 𝑝 𝑤,𝑢     𝑤 ∈ 𝑇(𝑢) . At the same time, u is 

activated by v with the probability 𝑝(𝑣, 𝑢). Then we can 

calculate the additional influence spread of v: 

 

 

 
 

When we select a node as a seed, we must update the 

degree of all its neighbors.  

For example, in Fig 5, v has five neighbors including four 

seeds: 𝑥1, 𝑥2, 𝑤1, 𝑤2. v is not activated by its seed neighbors 

with the probability  1 − 𝐼(𝑣)  =  (1 − 𝑝1)( 1 − 𝑝2)(1 −
𝑝3)(1 − 𝑝5). In this case, selecting v as seed will make 

contribution to the influence spread. This contains two 

aspects: (1) v is active by probability 1. (2) u is not activated 

by 𝑤1,𝑤2 and activated by v with the probability 𝐵 𝑢 ×
𝑝 𝑣,𝑢 = (1 − 𝑝4)(1 − 𝑝6)𝑝7. Thus the influence spread of 

v is 

 

𝛿 𝑣 = (1 − 𝐼(𝑣))(1 +  𝐵 𝑢 × 𝑝 𝑣,𝑢 ) = (1 −
𝑝1)(1 − 𝑝2)(1 − 𝑝3)(1 − 𝑝5)(1 + (1 − 𝑝4)(1 − 𝑝6)𝑝7)  

 

The pseudo code of DDH is shown in Algorithm 6. 

Initially, v’s discount degree which also means 𝛿(𝑣) is 

assigned to 𝑑𝑣 (Lines 2-4). Then in each iteration, we select 

a node with the max influence spread (Line 7), add it to 

seeds set A (Line 8) and update the discount degree of all its 

neighbors as discussed above (Lines 9-15). Suppose the 

average number of node’s neighbor is 𝑞. When we select a 

new seed 𝑦, we should update all 𝑦’s neighbor 𝑣’s degree. 

For the update of 𝑣, it should scan 𝑣’s neighbor 𝑢 and 𝑢’s 
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𝛿 𝑣 =  1 − 𝐼 𝑣   1 +  𝐵 𝑢 × 𝑝 𝑣,𝑢  

𝑢 ∈ 𝑁 𝑣 \𝑆 𝑣 
(6)

neighbor 𝑤. So we cost O(𝑞3) time. With the Fibonacci 

heap, the running time of DDH is Ο(𝑘𝑞3𝑙𝑜𝑔𝑛).

Algorithm 6: DDH(𝐺,𝑘)
Input: G is the graph; k is the number of seeds.

Output: A is target seeds set of size k.

1 Initialize 𝐴 = ∅;

2 for each vertex v do

3    compute its degree 𝑑𝑣

4   𝑑𝑑𝑣 = 𝑑𝑣; /* 𝑑𝑑𝑣 means v’s discount degree and also its influence 

spread.*/

5    end for

6   while (|𝐴| < 𝑘)

7   select 𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑑𝑑𝑦  𝑦 ∈ 𝑉\𝐴 }

8   𝐴 = 𝐴 ∪ 𝑦
9   for each neighbor v of y do

10  𝐼 𝑣 = 1 −  1 − 𝑝 𝑥,𝑣  𝑥 ∈ 𝑆(𝑣)
11     for each u ∈ N(v)\S(v) do

12    B u =   1 − p w, u  w ∈ T u = N(u) ∩ S(v)
13     end for

14    ddv =  1 − I v   1 +  B u × p v, u  u ∈ N(v)\S(v)
15     end for

16     end while

17    return A

IV. EXPERIMENTS

A. Experiments setup

All algorithms are written in C++ language. The running 

environment is a PC with Intel i5 3.1 GHZ CPU, 4G main 

memory and 500G disk. We use real social network to test 

our algorithms. Dataset Amazon, the Amazon product 

co-purchasing network [11], which is dated on March 2, 

2003, where nodes are products and a directed edge from s

to t means product s is often purchased with product t. It has 

262k nodes and 1.2M edges.

We compare algorithms with other algorithms in two 

measures: influence spread and running time. For the LT 

model, we compare our two algorithms (DAGIS and 

Sampling) with the CELFGreedy [4] algorithm. For the IC 

model, we compare our algorithm DDH with CELFGreedy 

[4] and Degree [2] and Distance [2].

B. Experimental Results

Fig. 6. Influence spread of these algorithms under LT model (p=0.01).

Fig. 7. Running time of different algorithms under LT model (k=50, use log 

function).

We provide the experimental results of different 

algorithms for two influence cascade models. In the 

experiments, without explicit explanation, we set k = 50, and 

the spread probability p is same for every edge and p = 0.01

and η=10-20.



  

 
Fig. 8. Influence spread of these algorithms under IC model (p=0.01). 

 

 
Fig. 9. Running time of different algorithms under IC model (k=50, use log 

function). 

 

1) LT model 

For LT model, we compare the methods in two aspects. 

For effectiveness, we vary k from 1 to 50. Different 

algorithms are run to select k nodes and calculate the 

influence spread of these k nodes. The experimental results 

are shown in Fig. 6. For efficiency, k = 50, and we run these 

three algorithms to compare their running time and the 

experimental results are shown in Fig. 7. From the result, it 

can be observed that even though the influence spread of 

DAGIS and Sampling is a little lower than the CELFGreedy 

algorithm (3.2% and 4.7% lower than the CELFGreedy), 

they are much (25 and 12 times) faster than the greedy 

algorithm because we limit the calculation in a smaller 

region. 

2) IC model 

For IC model, we compare the methods in two aspects. 

To test effectiveness, we vary k from 1 to 50. Different 

algorithms are run to select k nodes and calculate the 

influence spread of these k nodes. The experimental results 

are shown in Fig. 8. For efficiency, we set k = 50, and run 

these five algorithms to compare their running time and the 

experimental results are shown in Fig. 9. The random 

algorithm is the baseline, and its efficiency is very bad. 

From the results, it is observed that the Degree and Distance 

algorithm are much better than Random. But they are a little 

worse than our DDH. Degree is 4.6% lower than the 

CELFGreedy algorithm, and distance is 8.7%, and our DDH 

is 3.5%. We can see that our heuristic save much time, and it 

is 0.9 × 106  times faster than CELFGreedy. And its 

influence spread is almost same as the CELFGreedy. 

 

V. CONCLUDING AND FUTURE WORK 

Influence Spread maximization is a very important, useful 

and changeling task in social network. The size of social 

network is often very large with complex structure. 

Therefore, existing methods are not suitable for this problem 

and efficient algorithm is in demand. In this paper, to 

achieve high efficiency, we propose two improved greedy 

algorithms and a heuristic algorithm. The extensive 

experiments on the massive-size social network show that 

we can get the accurate guarantee of influence spread. And 

all our algorithms reduce the running time significantly. As 

future work, we can deeply study the heuristic method to 

adopt it to the linear threshold model. We can also consider 

not only one-hop neighbors but also nodes in multiple hops 

adaptively to get more accurate result. 

REFERENCES 

 
 

 

 
  

 
  

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

Xinfei Shi
 

was born in Anhui province
 

in
 

1990. 
          

From 2007 to 2011, he received his
 

bachelor in 

computer science and technology
 
in

 
Harbin Institute 

of Technology, Harbin, Heilongjiang, China. From
 

2011
 
to

 
2013,

 
he was a

 
master candidate in computer 

science and technology of Harbin Institute of 

Technology. He is currently study
 
in Harbin Institute 

of Technology. Current research interests: Massive 

Data Computing Research.
 

 

Hongzhi Wang

 

was born

 

in Liaoning province in 

1978.

 

In 2008, he got his Ph. D in computer science 

and technology

 

in

 

Harbin Institute of Technology, 

Harbin, Heilongjiang, China. 

 

He is associate

 

professor in Harbin Institute of 

Technology. His interests include data quality, xml 

data management.

 

 

Jianzhong Li

 

was born in Heilongjiang province in 

1950.

 

From March 1972

 

to August 1975,

 

he is with 

Heilongjiang University department of 

mathematics.

 

From September

 

1975

 

to June 1978,

 

he is with Tsinghua University department

 

of

 

electronic

 

engineering.

 

Professor

 

Li

 

is a Ph. D. and 

supervisor in Harbin Institute of Technology. His 

research interests include wireless sensor network, 

cyber-physical systems, database, massive data processing etc.

 

 

 

Hong Gao

 

was born in Heilongjiang province in 

1966.

 

He is a Ph. D in computer science and 

technology of Harbin Institute of Technology.

 

She is a professor

 

and

 

supervisor in Harbin 

Institute of Technology. Her research interests 

include wireless sensor network, cyber-physical 

systems, massive data management and data 

mining.

 
 

 

 

 
 
 

 

International Journal of Information and Education Technology, Vol. 3, No. 6, December 2013

666

[1] M. Richardson and P. Domingos, “Mining knowledge-sharing sites 

for viral marketing,” in Proc. the 8th ACM SIGKDD Conference on 

Knowledge Discovery and Data Mining, pp. 61–70, 2002.

[2] D. Kempel, J. Kleinberg, and E. Tardos, “Maximizing the spread of 

influence through a social network,” ACM SIGKDD, pp. 137-146, 

2003.

[3] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization 

in social networks,” KDD, pp. 199-208, 2009.

[4] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and 

N. S. Glance, “Cost-effective outbreak detection in networks,” in 

Proc. SIGKDD, pp. 420-429, 2007.

[5] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization 

in social networks under the linear threshold model,” ICDM 2010.

[6] R.-H. Li, J. X. Yu, and Z.-C. Shang, Estimating Node Influenceability 

in Social Networks.

[7] A. Goyal, L. Wei, and L. V. S. Lakshmanan, “SIMPATH: An 

Efficient Algorithm for Influence Maximization under the Linear 

Threshold Model. in Data Mining (ICDM),” in R. P. Satorras and A. 

Vespigni, Epidemics and immunization in scale-free networks, 

Graphs and Networks from the genome to the Internet 2003. 

[8] W. Zhang and Q. Y. Zhai, “Distance threshold based reacha- bility

queries in uncertain graphs,” Journal of Chinese Computer Systems, 

vol.33, no. 10, pp. 2164-2169, 2012.

[9] R. Jin et al., “Distance-constraint reachability computation in 

uncertain graphs,” in Proc. the VLDB Endowment, 2011, vol. 4, no. 9, 

pp. 551-562.

[10] S. Wasserman and K. Faust, Social Network Analysis: Methods and 

Applications, Cambridge University Press, 1994.

[11] Amazon product co-purchasing network. (March 02 2003). [Online]. 

Available: http://snap.stanford.edu/data/amazon0302.html.

http://snap.stanford.edu/data/amazon0302.html
app:ds:department
app:ds:of
app:ds:electronic
app:ds:engineering

