

Abstract—Concurrency control (CC) in distributed and

multidimensional databases is becoming more important due to

recent increase in high-volume data storage with increasing

online transaction processing (OLTP) requirements for

medium and large organisations. This paper examines three

concurrency control mechanisms commonly adopted and

analyses their performance in distributed databases for OLTP

operational systems of enterprises. The three CC mechanisms

investigated are, two phase locking (2PL), wait depth limited

(WDL) and optimistic concurrency control. These CC

mechanisms have been studied well in disk-based systems.

However, with the recent advances of cost-effective main

memory or in-memory storage that can support much higher

transaction rates than disk-based systems, there is sufficient

motivation to re-investigate the performance of such CC

mechanisms in diverse processor configurations. This paper

presents a comparison of their behaviour and performance in

terms of throughput rates achieved with varying transaction

size and contention. The outcome of this study has resulted in

further research proposals for improving the performance of

these CC mechanisms for OLTP databases.

Index Terms—Concurrency control, online transaction

processing (OLTP), in-memory databases, performance.

I. INTRODUCTION

In today's enterprise computing environment, distributed

and multidimensional data manipulation, processing and

analysis play a vital component in a wide range of business

applications. With recent developments to address scalability,

bandwidth, privacy and multiple data owner issues, cloud

computing and other distributed environments provide the

need to investigate distributed data analysis methods and

online transaction processing (OLTP) requirements for

providing a highly reliable and real-time system [1]-[3]. Here,

the main issue when attempting to manage and control

distributed database systems is concurrent execution of

transactions [4], [5]. Unlike centralised databases, distributed

databases have additional factors such as data fragmentation,

partitioning and replication to be considered [6], [7].

Conflicts may arise in transactions that lead to concurrent

read and write operations on the same data item of

multidimensional or distributed databases [8]-[10]. Hence,

concurrency control (CC) in distributed databases becomes

important to coordinate and serialise various concurrently

executed transactions that require shared data access, without

interfering with one another.

Manuscript received September 15, 2013; revised December 9, 2013.

The authors are with the Department of Higher Education (IT) - Business,

Northern Melbourne Institute of TAFE, VIC 3066 Australia (e-mail:

SamKaspi@nmit.edu.au, SitaVenkat@nmit.edu.au).

Concurrency control mechanisms have been researched

for several years in the past with centralised databases

[11]-[13]. However, the recent increased use of distributed

databases in a wide range of business applications calls for

their attention in database research [14]-[16]. In traditional

distributed databases, each global transaction ensures that

each sub-transaction runs at one of the nodes of the system

with local data access. Hence, CC mechanisms should cater

to additional complexity of information processing at every

local level in the distributed databases apart from ensuring

concurrency at global level of the system. In this paper, a

review of CC mechanisms is conducted and their

performance in distributed database environments that

require high volume online transaction processing and

data-intensive queries is investigated.

With commodity servers offering terabytes of main

memory and the continuing decline of memory prices, it

becomes cost-effective to have majority of distributed and

mutidimensional database transactions or OLTP databases to

fit entirely within main memory or in-memory [2], [9], [17].

The largest working datasets for OLTP could be

accommodated in memory, and only infrequent transactions

could refer to external storage [18]. In addition, this would

reduce the overheads and issues of disk-based distributed CC.

Since in-memory storage provides a much higher transaction

rate as compared to disk-based transactions, this study

focuses on investigating the performance of CC mechanisms

for in-memory databases.

The rest of the paper is organized as follows. Section II

describes the three CC mechanisms under study, namely two

phase locking (2PL), wait depth limited (WDL) and

optimistic CC. The experimental simulation conducted and

performance results obtained are presented in Section III.

Section IV provides an analysis and finally, Section V offers

concluding remarks and future work.

II. CONCURRENCY CONTROL MECHANISMS

A. Two Phase Locking (2PL)

The 2PL refers to the standard concurrency control policy

where locks are applied by a transaction to data and released

in two phases so that any conflict arising due to other

transactions accessing the same data is addressed. In the first

phase, 2PL allows for say n transactions into the system,

acquiring locks for all its data objects, thereby blocking

access to them. Here, mutual blocking between transactions

results in a deadlock, which requires to be resolved by

aborting a transaction or other means to release the lock and

executing the transaction again. In the second phase, locks of

completed transactions get released; thereby blocked

Performance Analysis of Concurrency Control

Mechanisms for OLTP Databases

Samuel Kaspi and Sitalakshmi Venkatraman, Senior Member, IACSIT

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

313DOI: 10.7763/IJIET.2014.V4.420

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

314

transactions get woken up acquiring locks from the point at

which they were blocked. Apart from hardware

considerations, the throughput of 2PL systems depends on

how many transactions are successful in obtaining all their

locks. This in turn, depends on the probability of conflict

between transactions – or, as it is commonly known,

contention and the length of time that transactions are

allowed to remain blocked before they are timed out (that is,

the cyclical behaviour of transactions). The main factors

governing contention are –

1) The size of the database – the smaller the database, the

greater the likelihood of conflict between transactions

requesting objects from this database.

2) The number of objects required by transactions – the

greater the number of objects required by transactions,

the greater the probability of conflict between

transactions.

3) The number of transactions in the system (concurrency)

either processing or blocked – for any level of contention

above 0, the higher the concurrency, the greater the

probability of conflict that eventually leads to a decrease

in throughput.

According to literature studies conducted [19], [20],

assuming there are uniform transactions having equal

probability with n as the concurrency level and p as the level

of contention, the predicted transaction throughput is

approximated by the following formula:

n (1-p/2)(n-1)

The cyclical behaviour of transactions in 2PL systems

implies that unless some preventive action is taken,

throughput will decrease every cycle since the proportion of

transactions in the wait chain grows. We propose that for any

equivalent total processing capacity, a greater throughput is

achieved by increasing the number of cycles that can be

completed in a given time than by increasing the number of

concurrent transactions processing in the same period of time.

Theoretically, our proposition holds for all levels of

contention greater than 0 but becomes more pronounced as

contention increases.

In a distributed environment, 2PL concurrency control

faces additional issues. When data are partitioned, automatic

global deadlock resolution requires intensive research

attention, and where data are not partitioned among atomic

commitment protocol participants, distributed deadlocks

need to be resolved with sophisticated and extended 2PL CC

mechanisms. Since 2PL systems are susceptible to thrashing

(degradation in system performance) in later cycles, CC

methods that eliminate or reduce wait chains could increase

throughput of transactions. We examine two well-known

alternatives to 2PL next, namely, optimistic concurrency

control and wait depth limited (WDL) by eliminating or

reducing wait chains.

B. Optimistic Concurrency Control

Optimistic CC mechanism assumes that multiple

transactions can complete without affecting each other and

does not lock data objects until committing a transaction,

when it verifies that no other transaction has modified its data.

When conflicting modifications are identified then rollback

occurs. There are two features of this system that help to

improve its performance relative to 2PL. Firstly, because

transactions that conflict with committing transactions are

aborted and then restarted, there is no chain of transactions

waiting behind locked transactions. Secondly is the fact that

to be aborted, a transaction must not only conflict with

another transaction, the transaction with which it conflicts

must be a committed transaction. This property is known as

essential blocking and the number of successful transactions

is unbounded and increases logarithmically with concurrency

[21], [22]. In [19] an upper and lower bound is provided for

the number of successful transactions at each concurrency

level. Where p is the level of contention and n the level of

concurrency, these are defined by the two equations. The

lower bound is defined as –

 1 1 p)/ p ln(p (n - 1) + 1)

while the upper bound is defined as –

 1 1/ p ln(p (n - 1) + 1)

An interesting consequence is that while they allow higher

throughputs at higher concurrencies than does 2PL, they

imply that as for 2PL, for any equivalent total processing

capacity, a greater throughput is achieved by increasing the

number of cycles that can be completed in a given time than

by increasing the number of concurrent transactions

processing in the same period of time. In other words, for any

level of contention and concurrency, throughput will be the

same in every cycle. Thus, in an in-memory system, doubling

processor speed doubles the number of cycles completed in a

given time period and thus doubles throughput. However,

doubling concurrency only increases throughput

logarithmically. This is based on the assumption optimistic

systems in identical hardware capability will have the same

throughput with same values of p and n. In reality, both

variability in transactions size and contention have a

significant impact on system performance. An alternative CC

mechanism commonly used is the Wait Depth Limited

(WDL), which is examined next.

C. Wait Depth Limited (WDL)

A class of novel set of algorithms based on running

priority/wait depth limited (WDL) attempt to minimize the

length of wait chains by aborting non-active transactions that

are blocking other transactions [23]. Under WDL, longer

transactions are given priority over shorter transactions, and,

herein lays the major difference between WDL with a wait

depth of 1 and running priority. This preference given to

larger transactions reduces the quadratic effect that is, the

tendency of longer transactions to suffer a disproportional

rate of restarts relative to shorter transactions. Thus, under

WDL, larger transactions do not suffer the disadvantages that

they face in optimistic and running priority systems. This

tends to reduce the problem of wasted work since large

transactions have in general performed more work when

aborted than have smaller transactions. As well, when

compared to optimistic systems, since not all blocked

transactions are restarted, one would expect less wasted work

under both running priority and WDL than under optimistic

systems. The cost of wasted work is largely dependant on the

speed at which the work can be done. An important factor in

determining speed is the speed of the processor. The cost of

wasted work is largely dependant on the speed at which the

work can be done. An important factor in determining speed

is the speed of the processor.

III. EXPERIMENTAL DESIGN

The experimental design of the system is composed of the

following subsystems - a concurrency control subsystem, a

database subsystem, a hardware subsystem a processing

subsystem and a transaction subsystem. The specification of

these subsystems are described below.

A. Database and Transaction Subsystems

There are two object stores available to transactions from

which to choose their objects:- D1, which contains 1000

objects, and D2, which contains a million objects.

1) In each data store each object is unique.

2) Data stores are disjoint.

3) Given a data store D, any two objects Oi and Oj in that

data store have an equal probability of being required in

any access. Thus for D1 which contains 1000 objects,

each object in D1 has a 1/1000 chance of being required

in an access to D1. Similarly, any object in D2, which

contains a million objects, has a 1/1000000 chance of

being required in an access to D2. Each of our systems

System contains four transaction types or classes - T1, T2,

T3 and T4. These transaction types require 1, 2, 4 and 8

objects respectively from D1 and 3, 6, 12 and 24 objects

respectively from D2. T1 transactions represent 20% of

transactions T2 transactions represent 20% of

transactions , T3 transactions represent 35% of

transactions and T4 transactions represent 25% of

transactions.

B. Hardware Subsystems

OLTP applications minimise network overheads and lock

contentions since they reduce round-trips between client and

databases in a distributed environment. OLTP in-memory

databases could run on hardware subsystems consisting of a

cluster of shared-nothing main memory-only nodes [2], [5].

Their salient features are that the transactions are short-lived,

repetitive and require access to only a small subset of data

objects. Hence, the in-memory subsystems with processing

power of 100 Mega instructions per second (MIPS), 200

MIPS, 1 Giga instructions per second (GIPS) and 2 GIPS are

used for performance evaluation of the three CC mechanisms

under the following four different hardware subsystems:

1) A subsystem containing 96 processors each operating at

100 MIPS.

2) A subsystem containing 96 processors each operating at

200 MIPS.

3) A subsystem containing 20 processors each operating at

1 GIPS.

4) A subsystem containing 10 processors each operating at

2 GIPS.

Besides measuring the relative performance of the three

CC schemes, these four subsystems allow us to compare the

performance of systems with fewer and faster processors as

against those with more numerous but slower processors. In

other words, with 96 processors, 20 processors and 10

processors, we try to double the processing speed to see the

effect in throughput.

C. Concurrency Control Subsystems

Three basic concurrency control subsystems are used in

this chapter these are 2PL, wait depth limited (WDL) and

optimistic.

The 2PL subsystem is a standard 2PL system (including a

deadlock breaking mechanism) except that for simplification,

all requests for locks are requests for a write and the

granularity of lock acquisition and release is a single lock.

The WDL subsystem is as described in Section 2C with a

depth of 1 and the length cost as described in [17]. As with

the 2PL system, all requests for locks are requests for a write

and the granularity of lock acquisition and release is a single

lock.

For testing the performance of Optimistic CC systems, we

use a pure kill system since this minimizes the amount of

wasted work by killing a transaction immediately, and

assumes no access invariance. As with the previous systems,

all objects are acquired for a write and the granularity of

object acquisition is a single object.

D. Processing Subsystem

The processing system used for the experimental study has

three stages, namely initialization, processing and

completion. The initialization stage, whether for new or

restarted transactions requires 100000 instructions per

transaction regardless of the transaction’s size. This stage

requires CPU processing only. Similarly, the completion

phase requires 50000 CPU instructions per committing

transaction. The four hardware subsystems described above

are tested for one second at each concurrency level of the

three CC mechanisms. All the results shown are based on the

average taken over 40 simulation runs conducted at each

concurrency level for each system.

IV. PERFORMANCE RESULTS

In this section we present and analyze the results of the

tests outlined in the previous section to compare the

performance of concurrency control mechanisms for

in-memory OLTP databases. Given that under any

concurrency management system, the proportion of

successful transactions is determined solely by the level of

contention and the level of concurrency, one would expect

that for any level of concurrency and contention throughput

should scale up in linear proportion to processor speed. For

example, in an in-memory system, given a concurrency

management scheme at a concurrency of 100, and a given

contention and processor speeds of 100 megahertz, with a

throughput of 1000 transactions per second, one would

expect that by maintaining all other parameters but doubling

the processor speed would also double throughput. In fact our

simulations indicate that this is the case. Table I provides the

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

315

Characteristics of objects in these data stores are:

results of comparing the ratios of throughput for simulations

performed for in-memory 2PL, Optimistic and WDL CC

mechanisms.

It should be noted that at the higher processor speeds, we

only ran our simulations at lower concurrencies (5, 10, 15, 20

for 1 GIPS and 5, 10 for 2 GIPS). This is because the large

number of transactions that needed to be generated at the

higher processor speeds made the simulations prohibitive

with the available resources. However, given the constant

relationships indicated above and implied by the contention

equations, the data for the higher contentions can be safely

constructed by simply scaling the data from the lower

processor speeds.

TABLE I: COMPARISON OF THROUGHPUT RATIOS WITH PROCESSOR SPEEDS

Processor Speed 2PL Optimistic CC WDL

100 MIPS vs

200 MIPS 1.941734687 2.008265414 1.99466704

100 MIPS vs 1 GIPS 9.561359765 9.74772916 9.90655507

100 MIPS vs 2 GIPS 19.03805469 19.59558478 19.9423341

200 MIPS vs 1 GIPS 4.915351509 4.891139981 4.9937712

200 MIPS vs 2 GIPS 9.70587829 9.952051527 10.0702565

A. Throughput with Varying Hardware Subsystems

Fig. 1. Throughput of 2PL CC in fours hardware configurations.

Fig. 2. Throughput of optimistic CC in fours hardware configurations.

The charts given in Fig. 1, Fig. 2 and Fig. 3 show the

throughputs of each concurrency management scheme by

processor configuration of the four hardware subsystems

describe above. As the charts show, increase in processor

speeds is far more effective than increasing concurrency in

increasing throughput under any concurrency management

scheme.

B. Throughput Comparison of CC Mechanisms

The charts given in Fig. 4, Fig. 5, Fig. 6 and Fig. 7 provide

the comparison of throughputs achieved by the three CC

mechanisms for each of the four hardware configurations

respectively. As shown in the data of these charts and as

would be expected, at low concurrencies, the choice of

concurrency management scheme does not have any

significant impact on throughput. Thus, in our simulations,

differences in performance only appear after a concurrency

of 15. At concurrencies between 15 and 50 WDL performs

best followed by optimistic. However at higher concurrencies

optimistic performs best.

Fig. 4. Throughput comparison of CC mechanisms for 96 processor 100

MIPS.

Fig. 5. Throughput comparison of CC mechanisms for 96 processor 200

MIPS.

Fig. 6. Throughput comparison of CC mechanisms for 20 processor 1 GIPS.

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

316

Fig. 3. Throughput of WDL CC in fours hardware configurations.

Fig. 7. Throughput comparison of CC mechanisms for 10 processor 2 GIPS.

V. CONCLUSION AND FUTURE WORK

In-memory OLTP databases working with a local copy of

distributed data schemas provide tremendous advantages

over standard shared memory. Apart from secure

transactions there is enhanced throughput for high

concurrencies. These benefits outweigh their disadvantages

of maintenance overhead and timeliness. In addition, over

the years, there has been a need to access and process

heterogenous and distributed data in different formats

warranting parallel or multidimensional high-speed OLTP

databases [4], [24], [25]. Optimising concurrency control

mechanisms in such environments has been of research

interest for more than a decade [26], [27]. In this paper, we

investigated three commonly used concurrency methods,

2PL, WDL and Optimistic CC mechanisms and examined

their performance relative to each other under diverse

hardware configurations for in-memory OLTP databases.
The salient points raised by the results presented in this study

are:

1) In all our tests, WDL and optimistic concurrency control

outperformed 2PL by a wide margin on equivalent

hardware at concurrencies of 15 and over. This is

consistent with the well-known observation that in

systems with abundant hardware capacity, 2PL relatively

does not perform well.

2) The rates of throughput achievable by in-memory

systems under 2PL, WDL and optimistic concurrency

control are massive with throughputs of over 40000

transactions per second being achieved in the fastest of

our in-memory systems.

3) While average throughput under 2PL concurrency

control in the in-memory systems with fast processors

was quite high, this performance was subject to quite

large variations even at low concurrencies. Indeed, in

some runs, throughput in even the fastest systems was

not very much greater than that achieved by the

equivalent disk-based systems studied in previous work.

4) Throughputs under all concurrency control mechanisms

in the in-memory systems with speeds over 100 MIPS

per CPU were well above the best results achieved by

any concurrency control method in the disk-based

systems tested in previous work.

As the main memory prices are declining with even higher

processing speed offered, the results of our paper indicate

that for many organizations, the best way to improving the

performance of their transaction processing systems lies in

switching to in-memory systems rather than improving the

performance of their disk-based systems. However, as more

OLTP databases get stored almost entirely in memory, the

performance of lock managers could become a bottleneck.

Though much of existing work has predominantly

investigated on single core machine [8], [12], [26], [27],

studies on multiple cores competing for access to lock

managers operating on very larger databases in multi-tenant

cloud environment could be challenging to optimise the

OLTP workloads [1], [4], [25], [28], [29]. Hence, this

research work comparing three commonly used CC

mechanisms with various multi core hardware configurations

paves way for further studies in proposing novel CC

mechanisms of the future.

In our future work, we would work on investigating

time-varying load on the various in-memory resources and

perform comparative performance studies in different

scenarios such as query-level, transaction-level and

application-level.

REFERENCES

[1] B. Mozafari, C. Curino, and S. Madden, “Resource and performance

prediction for building a next generation database cloud,” CIDR, 2013.

[2] B. Mozafari et al., “Performance and Resource Modeling in

Highly-Concurrent OLTP Workloads,” Technical report, MIT, 2013.

[3] M. Ahmad and I. T. Bowman, “Predicting system performance for

multi-tenant database workloads,” DBTest, 2011.

[5] S. Harizopoulos, D. J. Abadi, S. R. Madden, and M. Stonebraker.

“OLTP through the looking glass, and what we found there,” SIGMOD,

2008.

[6] A. Thomson, T. Diamond, P. Shao, K. Ren, S.-C. Weng, and D. J.

Abadi, “Calvin: Fast distributed transactions for partitioned database

systems,” SIGMOD, 2012.

[7] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. Patel, and M.

Zwilling, “High-performance concurrency control mechanisms for

main-memory database,” PVLDB, vol. 5, no. 4, pp. 298–309, 2011.

[8] S. Kaspi, “The use of contention-based scheduling for improving the

throughput of locking systems,” in Proc. ADBIS 2001, Vilnius,

Lithuania, September 2001.

[9] R. Johnson, I. Pandis, and A. Ailamaki. “Improving OLTP scalability

using speculative lock inheritance,” PVLDB, vol. 2, no. 1, pp. 479–489,

2009.

[10] C. Curino et al., “Workload-aware database monitoring and

consolidation,” SIGMOD, 2011.

[11] J. Gray, “Notes on database operating systems. Operating System,” An

Advanced Course, 1979, Berlin: Springer-Verlag.

[12] R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control

performance modeling: Alternatives and implications,” ACM

Transactions on Database Systems, vol. 12, no. 14, no. 609–654, 1987.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control

and Recovery in Database Systems, 1987, Addison-Wesley.

[14] P. A. Bernstein and N. Goodman, “Concurrency control in distributed

database systems,” ACM Computing Survey, vol. 13, no. 2, pp.

185–221, 1981.

[15] D. Agrawal and S. Sengupta. “Modular synchronization in distributed,

multiversion databases: Version control and concurrency control,”

IEEE TKDE, vol. 5, 1993.

[16] S. Kaspi, “Optimizing Transaction throughput in databases via an

intelligent scheduler,” in Proc. the 1997 IEEE International

Conference on Intelligent Processing Systems, Beijing, October, 1997,

pp. 1337–1341.

[17] V. Gottemukkala and T. Lehman, “Locking and latching in a

memory-resident database system,” VLDB, 1992.

[18] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki, “Data-oriented

transaction execution,” in Proc. PVLDB, vol. 3, no. 1, 2010, pp.

928–939.

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

317

[4] A. Pavl, E. P. C. Jones, and S. Zdonik “Modeling for Optimizing

transaction execution in parallel OLTP systems,” in Proc. the VLDB

Endowment, August 27th 31st 2012, Istanbul, Turkey, vol. 5, no. 2, pp.

85-96.

[19] P. Franaszek and J. T. Robinson, “Limitations of concurrency in

transaction processing,” ACM TODS, vol. 10, no. 1, pp. 1-28, 1985.

[20] A. Thomasian and K. Ryu, “Performance analysis of two-phase

locking,” IEEE Transactions on Software Engineering, vol. 17, no. 5,

pp. 386-402, 1991.

[21] P. Franaszek, J. T. Robinson, and A. Thomasian, “Concurrency control

for high contention environments,” ACM TODS, vol. 17, no. 2, pp. 304

- 345, 1992.

[22] A. Thomasian, “Checkpointing for optimistic concurrency control

methods,” IEEE Transactions on Software Engineering, vol. 17, no. 5,

pp. 386-402, 1995.

[23] A. Thomasian, “A performance Comparison of locking methods with

limited wait depth,” IEEE Transactions on Knowledge and Data

Engineering, vol. 9, no. 3, pp. 421-434, 1997.

[24] C. H. C. Leung, “Parallel paradigms for query evaluation and

processing,” in Proc. the Australasian Workshop on Parallel and

Real-Time Systems, PART’94, Melbourne, 1994, pp 1 -10.

[25] S. Venkatraman, “Transforming grid to cloud services for multimodal

biometrics,” Special Issue on: Urban Computing and Smart Grids',

International Journal of Computational Science and Engineering, vol.

8, no. 4, pp. 22-34, 2013.

[26] H. T. Kung and J. T. Robinson, “On optimistic methods for

concurrency control,” ACM Transactions on Database Systems, vol. 2,

no. 4, pp. 213-226, 1981.

[27] C. H. C. Leung and S. Kaspi, “A flexible paradigm for semantic

integration in cooperative heterogeneous databases,” presented at

FGCS '94, ICOT, Tokyo, December 1994.

[28] V. Ramanathan, S. Venkatraman, and S. R. Asaithambi, “A practical

cloud services implementation framework for e-businesses,” in K.

Tarnay, L. Xu, and S. Imre, Ed., Research and Development in

E-Business through Service-Oriented Solutions, 2013, IGI Global

Publishers, USA.

[29] B. Mozafari, C. Curino, A. Jindal, and S. Madden, “Performance and

resource modeling in highly-concurrent OLTP workloads,” presented

at SIGMOD’13, June 22–27, 2013.

Samuel Kaspi earned his PhD (computer science)

from Victoria University, a masters of computer

science from Monash University and a Bachelor of

Economics and Politics from Monash University. He is

a member of both the Australian Computer Society

(ACS) and Association for Computing Machinery

(ACM).

Sam is currently the Information Technology

Discipline Leader and senior lecturer of IT. at the Department of Higher

Education - Business in Northern Melbourne Institute of TAFE (NMIT),

Australia . Prior to joining NMIT, Dr Kaspi taught at Victoria University,

consulted privately and was the CIO of OzMiz Pty Ltd.

Sam has been active in both teaching and private enterprise in the areas of

software specification, design and development. As chief information officer

(CIO) of a small private company he managed the development and

submission of five granted and three pending patents. He also managed the

submission of a successful Federal Government Comet grant under the

Commercialising Emerging Technologies category. He has also had a

number of peer reviewed publications including the Institute of Electrical

and Electronics Engineers (IEEE).

Sitalakshmi Venkatraman obtained doctoral degree

in computer science, from National Institute of

Industrial Engineering, India in 1993 and MEd from

University of Sheffield, UK in 2001. Prior to this, she

had completed MSc in Mathematics in 1985 and

MTech in Computer Science in 1987, both from Indian

Institute of Technology, Madras, India. This author is

Member (M) of IAENG and Senior Member (SM) of

IASCIT.

In the past 25 years, Sita's work experience involves both industry and

academics - developing turnkey projects for IT industry and teaching a

variety of IT courses for tertiary institutions, in India, Singapore, New

Zealand, and more recently in Australia since 2007. She currently works as

Lecturer (Information Technology) at the Department of Higher Education -

Business in Northern Melbourne Institute of TAFE (NMIT), Australia. She

also serves as Member of Register of Experts at Austrlais's Tertiary

Education Quality and Standards Agency (TEQSA).

Sita has published seven book chapters and more than 80 research papers

in internationally well-known refereed journals and conferences that include

Information Sciences, Journal of Artificial Intelligence in Engineering,

International Journal of Business Information Systems, and Information

Management & Computer Security. She serves as Program Committee

Member of several international conferences and Senior Member of

professional societies and editorial board of three international journals.

International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

318

