
  

 

Abstract—Concurrency control (CC) in distributed and 

multidimensional databases is becoming more important due to 

recent increase in high-volume data storage with increasing 

online transaction processing (OLTP) requirements for 

medium and large organisations.  This paper examines three 

concurrency control mechanisms commonly adopted and 

analyses their performance in distributed databases for OLTP 

operational systems of enterprises. The three CC mechanisms 

investigated are, two phase locking (2PL), wait depth limited 

(WDL) and optimistic concurrency control. These CC 

mechanisms have been studied well in disk-based systems. 

However, with the recent advances of cost-effective main 

memory or in-memory storage that can support much higher 

transaction rates than disk-based systems, there is sufficient 

motivation to re-investigate the performance of such CC 

mechanisms in diverse processor configurations. This paper 

presents a comparison of their behaviour and performance in 

terms of throughput rates achieved with varying transaction 

size and contention. The outcome of this study has resulted in 

further research proposals for improving the performance of 

these CC mechanisms for OLTP databases. 

 
Index Terms—Concurrency control, online transaction 

processing (OLTP), in-memory databases, performance.  

 

I. INTRODUCTION 

In today's enterprise computing environment, distributed 

and multidimensional data manipulation, processing and 

analysis play a vital component in a wide range of business 

applications. With recent developments to address scalability, 

bandwidth, privacy and multiple data owner issues, cloud 

computing and other distributed environments provide the 

need to investigate distributed data analysis methods and 

online transaction processing (OLTP) requirements for 

providing a highly reliable and real-time system [1]-[3]. Here, 

the main issue when attempting to manage and control 

distributed database systems is concurrent execution of 

transactions [4], [5]. Unlike centralised databases, distributed 

databases have additional factors such as data fragmentation, 

partitioning and replication to be considered [6], [7]. 

Conflicts may arise in transactions that lead to concurrent 

read and write operations on the same data item of 

multidimensional or distributed databases [8]-[10]. Hence, 

concurrency control (CC) in distributed databases becomes 

important to coordinate and serialise various concurrently 

executed transactions that require shared data access, without 

interfering with one another.  
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Concurrency control mechanisms have been researched 

for several years in the past with centralised databases 

[11]-[13]. However, the recent increased use of distributed 

databases in a wide range of business applications calls for 

their attention in database research [14]-[16]. In traditional 

distributed databases, each global transaction ensures that 

each sub-transaction runs at one of the nodes of the system 

with local data access. Hence, CC mechanisms should cater 

to additional complexity of information processing at every 

local level in the distributed databases apart from ensuring 

concurrency at global level of the system. In this paper, a 

review of CC mechanisms is conducted and their 

performance in distributed database environments that 

require high volume online transaction processing and 

data-intensive queries is investigated. 

With commodity servers offering terabytes of main 

memory and the continuing decline of memory prices, it 

becomes cost-effective to have majority of distributed and 

mutidimensional database transactions or OLTP databases to 

fit entirely within main memory or in-memory [2], [9], [17]. 

The largest working datasets for OLTP could be 

accommodated in memory, and only infrequent transactions 

could refer to external storage [18]. In addition, this would 

reduce the overheads and issues of disk-based distributed CC. 

Since in-memory storage provides a much higher transaction 

rate as compared to disk-based transactions, this study 

focuses on investigating the performance of CC mechanisms 

for in-memory databases.  

The rest of the paper is organized as follows. Section II 

describes the three CC mechanisms under study, namely two 

phase locking (2PL), wait depth limited (WDL) and 

optimistic CC. The experimental simulation conducted and 

performance results obtained are presented in Section III. 

Section IV provides an analysis and finally, Section V offers 

concluding remarks and future work. 

 

II. CONCURRENCY CONTROL MECHANISMS 

A. Two Phase Locking (2PL) 

The 2PL refers to the standard concurrency control policy 

where locks are applied by a transaction to data and released 

in two phases so that any conflict arising due to other 

transactions accessing the same data is addressed. In the first 

phase, 2PL allows for say n transactions into the system, 

acquiring locks for all its data objects, thereby blocking 

access to them. Here, mutual blocking between transactions 

results in a deadlock, which requires to be resolved by 

aborting a transaction or other means to release the lock and 

executing the transaction again. In the second phase, locks of 

completed transactions get released; thereby blocked 
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transactions get woken up acquiring locks from the point at 

which they were blocked. Apart from hardware 

considerations, the throughput of 2PL systems depends on 

how many transactions are successful in obtaining all their 

locks. This in turn, depends on the probability of conflict 

between transactions – or, as it is commonly known, 

contention and the length of time that transactions are 

allowed to remain blocked before they are timed out (that is, 

the cyclical behaviour of transactions). The main factors 

governing contention are – 

1) The size of the database – the smaller the database, the 

greater the likelihood of conflict between transactions 

requesting objects from this database.  

2) The number of objects required by transactions – the 

greater the number of objects required by transactions, 

the greater the probability of conflict between 

transactions.  

3) The number of transactions in the system (concurrency) 

either processing or blocked – for any level of contention 

above 0, the higher the concurrency, the greater the 

probability of conflict that eventually leads to a decrease 

in throughput.  

According to literature studies conducted [19], [20], 

assuming there are uniform transactions having  equal 

probability with n as the concurrency level and p as the level 

of contention,  the predicted transaction throughput is 

approximated by the following formula: 

 

n (1-p/2)(n-1) 

 

The cyclical behaviour of transactions in 2PL systems 

implies that unless some preventive action is taken, 

throughput will decrease every cycle since the proportion of 

transactions in the wait chain grows. We propose that for any 

equivalent total processing capacity, a greater throughput is 

achieved by increasing the number of cycles that can be 

completed in a given time than by increasing the number of 

concurrent transactions processing in the same period of time. 

Theoretically, our proposition holds for all levels of 

contention greater than 0 but becomes more pronounced as 

contention increases. 

In a distributed environment, 2PL concurrency control 

faces additional issues. When data are partitioned, automatic 

global deadlock resolution requires intensive research 

attention, and where data are not partitioned among atomic 

commitment protocol participants, distributed deadlocks 

need to be resolved with sophisticated and extended 2PL CC 

mechanisms. Since 2PL systems are susceptible to thrashing 

(degradation in system performance) in later cycles, CC 

methods that eliminate or reduce wait chains could increase 

throughput of transactions. We examine two well-known 

alternatives to 2PL next, namely, optimistic concurrency 

control and wait depth limited (WDL) by eliminating or 

reducing wait chains.  

B. Optimistic Concurrency Control 

Optimistic CC mechanism assumes that multiple 

transactions can complete without affecting each other and 

does not lock data objects until committing a transaction, 

when it verifies that no other transaction has modified its data. 

When conflicting modifications are identified then rollback 

occurs. There are two features of this system that help to 

improve its performance relative to 2PL. Firstly, because 

transactions that conflict with committing transactions are 

aborted and then restarted, there is no chain of transactions 

waiting behind locked transactions. Secondly is the fact that 

to be aborted, a transaction must not only conflict with 

another transaction, the transaction with which it conflicts 

must be a committed transaction. This property is known as 

essential blocking and the number of successful transactions 

is unbounded and increases logarithmically with concurrency 

[21], [22]. In [19] an upper and lower bound is provided for 

the number of successful transactions at each concurrency 

level. Where p is the level of contention and n the level of 

concurrency, these are defined by the two equations. The 

lower bound is defined as – 

 

      1 1 p)/ p  ln( p ( n - 1 ) + 1 ) 



while the upper bound is defined as – 

 

      1 1/ p  ln( p ( n - 1 ) + 1 ) 

 

An interesting consequence is that while they allow higher 

throughputs at higher concurrencies than does 2PL, they 

imply that as for 2PL, for any equivalent total processing 

capacity, a greater throughput is achieved by increasing the 

number of cycles that can be completed in a given time than 

by increasing the number of concurrent transactions 

processing in the same period of time. In other words, for any 

level of contention and concurrency, throughput will be the 

same in every cycle. Thus, in an in-memory system, doubling 

processor speed doubles the number of cycles completed in a 

given time period and thus doubles throughput. However, 

doubling concurrency only increases throughput 

logarithmically. This is based on the assumption optimistic 

systems in identical hardware capability will have the same 

throughput with same values of p and n. In reality, both 

variability in transactions size and contention have a 

significant impact on system performance. An alternative CC 

mechanism commonly used is the Wait Depth Limited 

(WDL), which is examined next. 

C. Wait Depth Limited (WDL) 

A class of novel set of algorithms based on running 

priority/wait depth limited (WDL) attempt to minimize the 

length of wait chains by aborting non-active transactions that 

are blocking other transactions [23]. Under WDL, longer 

transactions are given priority over shorter transactions, and, 

herein lays the major difference between WDL with a wait 

depth of 1 and running priority. This preference given to 

larger transactions reduces the quadratic effect that is, the 

tendency of longer transactions to suffer a disproportional 

rate of restarts relative to shorter transactions. Thus, under 

WDL, larger transactions do not suffer the disadvantages that 

they face in optimistic and running priority systems. This 

tends to reduce the problem of wasted work since large 

transactions have in general performed more work when 

aborted than have smaller transactions. As well, when 



  

compared to optimistic systems, since not all blocked 

transactions are restarted, one would expect less wasted work 

under both running priority and WDL than under optimistic 

systems.  The cost of wasted work is largely dependant on the 

speed at which the work can be done. An important factor in 

determining speed is the speed of the processor. The cost of 

wasted work is largely dependant on the speed at which the 

work can be done. An important factor in determining speed 

is the speed of the processor. 

 

III. EXPERIMENTAL DESIGN 

The experimental design of the system is composed of the 

following subsystems - a concurrency control subsystem, a 

database subsystem, a hardware subsystem a processing 

subsystem and a transaction subsystem. The specification of 

these subsystems are described below. 

A. Database and Transaction Subsystems 

There are two object stores available to transactions from 

which to choose their objects:- D1, which contains 1000 

objects, and D2, which contains a million objects. 

 

1) In each data store each object is unique. 

2) Data stores are disjoint. 

3) Given a data store D, any two objects Oi and Oj in that 

data store have an equal probability of being required in 

any access. Thus for D1 which contains 1000 objects, 

each object in D1 has a 1/1000 chance of being required 

in an access to D1. Similarly, any object in D2, which 

contains a million objects, has a 1/1000000 chance of 

being required in an access to D2. Each of our systems 

System contains four transaction types or classes - T1, T2, 

T3 and T4. These transaction types require 1, 2, 4 and 8 

objects respectively from D1 and 3, 6, 12 and 24 objects 

respectively from D2. T1 transactions represent 20% of 

transactions T2 transactions represent 20% of 

transactions , T3 transactions represent 35% of 

transactions and T4 transactions represent 25% of 

transactions. 

B. Hardware Subsystems 

OLTP applications minimise network overheads and lock 

contentions since they reduce round-trips between client and 

databases in a distributed environment.  OLTP in-memory 

databases could run on hardware subsystems consisting of a 

cluster of shared-nothing main memory-only nodes [2], [5]. 

Their salient features are that the transactions are short-lived, 

repetitive and require access to only a small subset of data 

objects.  Hence, the in-memory subsystems with processing 

power of 100 Mega instructions per second (MIPS), 200 

MIPS, 1 Giga instructions per second (GIPS) and 2 GIPS are 

used for performance evaluation of the three CC mechanisms 

under the following four different hardware subsystems:  

1) A subsystem containing 96 processors each operating at 

100 MIPS. 

2) A subsystem containing 96 processors each operating at 

200 MIPS. 

3) A subsystem containing 20 processors each operating at 

1 GIPS. 

4) A subsystem containing 10 processors each operating at 

2 GIPS. 

Besides measuring the relative performance of the three 

CC schemes, these four subsystems allow us to compare the 

performance of systems with fewer and faster processors as 

against those with more numerous but slower processors. In 

other words, with 96 processors, 20 processors and 10 

processors, we try to double the processing speed to see the 

effect in throughput. 

C. Concurrency Control Subsystems 

Three basic concurrency control subsystems are used in 

this chapter these are 2PL, wait depth limited (WDL) and 

optimistic.  

The 2PL subsystem is a standard 2PL system (including a 

deadlock breaking mechanism) except that for simplification, 

all requests for locks are requests for a write and the 

granularity of lock acquisition and release is a single lock. 

The WDL subsystem is as described in Section 2C with a 

depth of 1 and the length cost as described in [17]. As with 

the 2PL system, all requests for locks are requests for a write 

and the granularity of lock acquisition and release is a single 

lock.  

For testing the performance of Optimistic CC systems, we 

use a pure kill system since this minimizes the amount of 

wasted work by killing a transaction immediately, and 

assumes no access invariance. As with the previous systems, 

all objects are acquired for a write and the granularity of 

object acquisition is a single object. 

D. Processing Subsystem 

The processing system used for the experimental study has 

three stages, namely initialization, processing and 

completion. The initialization stage, whether for new or 

restarted transactions requires 100000 instructions per 

transaction regardless of the transaction’s size. This stage 

requires CPU processing only. Similarly, the completion 

phase requires 50000 CPU instructions per committing 

transaction. The four hardware subsystems described above 

are tested for one second at each concurrency level of the 

three CC mechanisms. All the results shown are based on the 

average taken over 40 simulation runs conducted at each 

concurrency level for each system. 

 

IV. PERFORMANCE RESULTS 

In this section we present and analyze the results of the 

tests outlined in the previous section to compare the 

performance of concurrency control mechanisms for 

in-memory OLTP databases. Given that under any 

concurrency management system, the proportion of 

successful transactions is determined solely by the level of 

contention and the level of concurrency, one would expect 

that for any level of concurrency and contention throughput 

should scale up in linear proportion to processor speed. For 

example, in an in-memory system, given a concurrency 

management scheme at a concurrency of 100, and a given 

contention and processor speeds of 100 megahertz, with a 

throughput of 1000 transactions per second, one would 

expect that by maintaining all other parameters but doubling 

the processor speed would also double throughput. In fact our 

simulations indicate that this is the case. Table I provides the 
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results of comparing the ratios of throughput for simulations 

performed for in-memory 2PL, Optimistic and WDL CC 

mechanisms. 

It should be noted that at the higher processor speeds, we 

only ran our simulations at lower concurrencies (5, 10, 15, 20 

for 1 GIPS and 5, 10 for 2 GIPS). This is because the large 

number of transactions that needed to be generated at the 

higher processor speeds made the simulations prohibitive 

with the available resources. However, given the constant 

relationships indicated above and implied by the contention 

equations, the data for the higher contentions can be safely 

constructed by simply scaling the data from the lower 

processor speeds. 
 

TABLE I: COMPARISON OF THROUGHPUT RATIOS WITH PROCESSOR SPEEDS 

Processor Speed  2PL Optimistic CC WDL 

100 MIPS vs  

200 MIPS 1.941734687 2.008265414 1.99466704 

100 MIPS vs 1 GIPS 9.561359765 9.74772916 9.90655507 

100 MIPS vs 2 GIPS 19.03805469 19.59558478 19.9423341 

200 MIPS vs 1 GIPS 4.915351509 4.891139981 4.9937712 

200 MIPS vs 2 GIPS 9.70587829 9.952051527 10.0702565 

 

A. Throughput with Varying Hardware Subsystems 

 

 
Fig. 1. Throughput of 2PL CC in fours hardware configurations. 

 

 
Fig. 2. Throughput of optimistic CC in fours hardware configurations. 

 

 
 

 

The charts given in Fig. 1, Fig. 2 and Fig. 3 show the 

throughputs of each concurrency management scheme by 

processor configuration of the four hardware subsystems 

describe above. As the charts show, increase in processor 

speeds is far more effective than increasing concurrency in 

increasing throughput under any concurrency management 

scheme. 

B. Throughput Comparison of CC Mechanisms  

The charts given in Fig. 4, Fig. 5, Fig. 6 and Fig. 7 provide 

the comparison of throughputs achieved by the three CC 

mechanisms for each of the four hardware configurations 

respectively. As shown in the data of these charts and as 

would be expected, at low concurrencies, the choice of 

concurrency management scheme does not have any 

significant impact on throughput. Thus, in our simulations, 

differences in performance only appear after a concurrency 

of 15.  At concurrencies between 15 and 50 WDL performs 

best followed by optimistic. However at higher concurrencies 

optimistic performs best.  
 

 
Fig. 4. Throughput comparison of CC mechanisms for 96 processor 100 

MIPS. 

 

 
Fig. 5. Throughput comparison of CC mechanisms for 96 processor 200 

MIPS. 

 

 
Fig. 6. Throughput comparison of CC mechanisms  for 20 processor 1 GIPS. 
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Fig. 3. Throughput of WDL CC in fours hardware configurations.



  

 
Fig. 7. Throughput comparison of CC mechanisms  for 10 processor 2 GIPS. 

 

V. CONCLUSION AND FUTURE WORK 

In-memory OLTP databases working with a local copy of 

distributed data schemas provide tremendous advantages 

over standard shared memory.  Apart from secure 

transactions there is enhanced throughput for high 

concurrencies.  These benefits outweigh their disadvantages 

of maintenance overhead and timeliness.  In addition, over 

the years, there has been a need to access and process 

heterogenous and distributed data in different formats 

warranting parallel or multidimensional high-speed  OLTP 

databases [4], [24], [25]. Optimising concurrency control 

mechanisms in such environments has been of research 

interest for more than a decade [26], [27].  In this paper, we 

investigated three commonly used concurrency methods, 

2PL, WDL and Optimistic CC mechanisms and examined 

their performance relative to each other under diverse 

hardware configurations for in-memory OLTP databases. 
The salient points raised by the results presented in this study 

are: 

1) In all our tests, WDL and optimistic concurrency control 

outperformed 2PL by a wide margin on equivalent 

hardware at concurrencies of 15 and over. This is 

consistent with the well-known observation that in 

systems with abundant hardware capacity, 2PL relatively 

does not perform well. 

2) The rates of throughput achievable by in-memory 

systems under 2PL, WDL and optimistic concurrency 

control are massive with throughputs of over 40000 

transactions per second being achieved in the fastest of 

our in-memory systems. 

3) While average throughput under 2PL concurrency 

control in the in-memory systems with fast processors 

was quite  high, this performance was subject to quite 

large variations even at low concurrencies. Indeed, in 

some runs, throughput in even the fastest systems was 

not very much greater than that achieved by the 

equivalent disk-based systems studied in previous work. 

4) Throughputs under all concurrency control mechanisms 

in the in-memory systems with speeds over 100 MIPS 

per CPU were well above the best results achieved by 

any concurrency control method in the disk-based 

systems tested in previous work. 

As the main memory prices are declining with even higher 

processing speed offered, the results of our paper indicate 

that for many organizations, the best way to improving the 

performance of their transaction processing systems lies in 

switching to in-memory systems rather than improving the 

performance of their disk-based systems. However, as more 

OLTP databases get stored almost entirely in memory, the 

performance of lock managers could become a bottleneck.  

Though much of existing work has predominantly 

investigated on single core machine [8], [12], [26], [27], 

studies on multiple cores competing for access to lock 

managers operating on very larger databases in multi-tenant 

cloud environment could be challenging to optimise the 

OLTP workloads [1], [4], [25], [28], [29]. Hence, this 

research work comparing three commonly used CC 

mechanisms with various multi core hardware configurations 

paves way for further studies in proposing novel CC 

mechanisms of the future.  

In our future work, we would work on investigating 

time-varying load on the various in-memory resources and 

perform comparative performance studies in different 

scenarios such as query-level, transaction-level and 

application-level.  
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