



Abstract—Recent advent of the new high-throughput

biological technologies has brought more challenges to the

computer science community in terms of the amount and

variety of biological data awaiting for analysis.

Computationally intensive techniques such as pattern

recognition and machine learning algorithms have been applied

to extract knowledge from several biological domains ranging

from genomics, proteomics to system biology and evolution

process. Learning techniques applied to the computational

biology are mostly in the category of classification. Therefore,

the sequence analysis problem has to be formulated as

classification task, which is quite difficult due to the unobvious

one-to-one mapping of the problem. In this paper, we propose a

different setting of sequence analysis formulation based on the

nucleotide patterns using a constraint logic programming

paradigm, in which the sequence alignment can be performed

through pattern matching techniques. With available

knowledge from the field of pattern mining, we can apply the

well-established techniques within the new framework of

constraint programming. However, to make the system

efficiently work, we need a new set of constraint solver

algorithms specifically designed for the sequence analysis

problem. The design and implementation of such algorithms are

thus the main focus of our research project. We propose in this

paper the design of a constraint-based system for genomic

sequence analysis including the algorithm for the constraint

solver, a major part of the proposed system.

Index Terms—Genomic sequence analysis, constraint-based

system, constraint solver algorithm, constraint programming.

I. INTRODUCTION

Living organisms contain multiples cells to perform

different functions. There are two basic types of cells:

prokaryote cells (found in bacteria) and eukaryote cells

(appeared in plants and animals). Contained within the cell

membrane are several organelles and thousands of different

types of molecules, the important one is DNA

(deoxyribonucleic acid) that carries the entire genetic

inheritance, or genes, of the cell. DNA is a long polymer

molecule that contains sugar, phosphate group, and a mixture

of four different nucleotide bases: adenine (A), cytosine (C),

guanine (G), and thymine (T).

In 1953, Watson and Crick [1] discovered the DNA double

helix structure in a complementary base pairing that A-T and

G-C units always occur together, they are thus referred to as

base pairs. In 1957, Crick [2], [3] described the flow of

Manuscript received November 28, 2013; revised March 14, 2014. This

work was supported in part by the National Research Council of Thailand

and Suranaree University of Technology through the funding of Data

Engineering Research Unit.

The authors are with the School of Computer Engineering. They are also

with Data Engineering Research Unit, Suranaree University of Technology,

111 University Avenue, Muang District, Nakhon Ratchasima 30000,

Thailand (e-mail: nittaya@sut.ac.th, kittisakThailand@gmail.com).

genetic information in biological systems (Fig. 1) that firstly

DNA is copied to more DNA in the replication process, then

DNA is transcribed into mRNA (or messenger-RNA) in a

transcription process and finally mRNA is translated (by

ribosome) into protein in a translation process.

This overall process of biological protein synthesis is

known as gene expression. Understanding the process of

gene expression in different types of cells and under different

conditions is one of the fundamental research aspects of

genomics, which is all the studies related to genes.

In prokaryotes, genetic information is encoded

continuously on a DNA strand. But in eukaryotes, regions

that code for protein (called exons) are interrupted by the

non-coding regions (called introns). During the transcription

of most eukaryotic genes, the primary RNA transcript (or

pre-mRNA) needs additional modification step called

splicing to remove introns and join exons together to make

one long continuous mRNA strand (Fig. 2). The ribosome is

an organelle that translates code on mRNA to different kinds

of amino acids.

Fig. 1. Flow of genetic information in biological systems.

Fig. 2. Removal of introns and joining of exons in the splicing process during

the DNA transcription.

Fig. 3. Structure of gene and genome.

Constraint-Based System for Genomic Analysis

Nittaya Kerdprasop and Kittisak Kerdprasop

International Journal of Information and Education Technology, Vol. 5, No. 2, February 2015

119DOI: 10.7763/IJIET.2015.V5.487

In multi-cellular organisms, the DNA in each and every

cell is identical. Different cells can perform different

functions because different portions of the DNA molecule

are active in different cells at different times. The entire DNA

sequence contained in a cell, including the genes (stretches of

DNA that code for a protein) and the control elements, is

referred to as genome. Sketch of genome structure is

presented in Fig. 3.

Genome is not only important to the life cycle of the cell,

but also represents a blueprint for the life of the organism.

Large genome sequencing projects have been set up by many

governments and commercial organizations. The

development of automated sequencing technologies such as

shotgun sequencing technique allows scientists to decode

genomes of many organisms at a significantly increasing rate.

After a genome is reconstructed from the pieces of

sequencing data, the next and most important step is to

understand the content of the genome. That is, to identify the

gene location and then annotate the function of each gene.

Since the announcement of the draft version of the human

genomic sequence in 2001 [4] and the completion of several

genome projects during the past decade, enormous amount of

raw biological sequence data has been stored and awaited for

interpretation. Dealing with large volume of data, efficient

computational methods and intelligent techniques are a real

need.

Sequence comparison is a fundamental operation in the

field of computational molecular biology to detect similarity

between biological sequences such as proteins and DNA

sequences. The optimal match in a comparison between two

sequences can be achieved through the dynamic

programming technique. But it is very slow when it has to

compare a sequence against many others, or compare among

a group of related sequences in large database. To solve the

computational time problem, approximate techniques tend to

be the method of choice.

Many search tools employ a sophisticated statistical-based

technique such as hidden Markov model (HMM). An HMM

is a stochastic model that characterizes a coding sequence by

computing probability of appearance of a nucleotide base (A,

C, G, or T) based on the k previous nucleotides in the

sequence. Computer scientists from the machine learning

field prefer the neural network and support vector machines

approaches rather than the statistical method of HMM.

However, to characterize reliable coding sequences, these

approaches require a large number of training sequences. The

significant impact of such requirement is a very large search

space. We, therefore, propose to tackle the sequence analysis

problem through the constraint-based setting in which the

search space could be reduced prior to the search for solution.

Our prototype implementation is based on the constraint

logic programming paradigm.

II. LITERATURE REVIEW

Genomic sequences are just raw biological data. To

understand biological process inherent in the genomic

sequences, computational and statistical techniques such as

pattern recognition and machine learning algorithms are

essential tools for the analysis of such large amount of

genetic sequences. The analysis task over DNA, RNA and

protein sequences includes several subtasks of

 searching for patterns within a sequence,

 searching for similarities between two sequences

including sequence alignment for a pairs of sequences,

 searching for similarities among many sequences and

performing multiple sequence alignment,

 constructing phylogenetic trees based on sequences,

 predicting and analyzing the secondary structures based

on the sequences, and

 predicting and analyzing tertiary structure and folding

patterns for protein and RNA sequences.

 In this research we concentrate on the first three subtasks

of analyses. That is, the problem of finding and parsing

eukaryotic protein-coding genes.

Gene finding is generally the detection of sequence

elements such as exons, introns, and the intergenic regions

that separate genes. Once gens are found, their internal

exon-intron structure can be predicted so that the encoded

protein may be deduced. The gene finding problem in

eukaryotes is difficult because the genes comprise less than

30% of the genome and once a gene is found, the locations of

introns within the gene must be precisely determined in order

to accurately deduce the protein product of the gene.

In the past, genes were identified with experimental

validation on living cells and organisms. It is the most

reliable method, but costly and labor intensive. At present,

most biologists rely on the computational methods to

automatically analyzed the uncharacterized genomic

sequences. Some of the frequently applied computational

techniques include dynamic programming, linear

discriminant analysis, linguistic methods, hidden Markov

model, and machine learning techniques such as neural

network, decision-tree induction, support vector machines.

Several successful gene-finding programs are based on the

hidden Markov model algorithms.

is a computing scheme of the Markov model of degree 5 (that

is, k = 5). To model the codon usage that appears as a triplet

of nucleotide bases, the degree k of the Markov model is

normally set to 2, 5, 8, and so on.

The oldest gene-finding method based on Markov model is

GeneMark [5]. From the success of GeneMark as an accurate

tool to recognize and annotate genes in genome projects, a

family of GeneMark programs have been developed

including GeneMark.hmm [6], GeneMarkS [7], GeneMarkE

[8], GenScan [9], EuGene [10], and GeneTack [11]. The

International Journal of Information and Education Technology, Vol. 5, No. 2, February 2015

120

A Markov model is a model of discrete stochastic process

that evolves through the states from the set S = {s1, s2, …, sn}.

The main assumption is that the probability of appearance of

any future state depends only on the k preceding states, for

some constant k. Given a learning set of sequences, a Markov

model can be built by computing the probability that a certain

nucleotide xi appears after a sequence si, for example,

< P(xi = A | si = TTGGA),

 P(xi = C | si = TTGGA),

 P(xi = G | si = TTGGA),

 P(xi = T | si = TTGGA) >

GeneMark family detects genes by identifying open reading

frames (the regions between start and stop codons) using

precomputed species-specific gene models as training data to

determine parameters of the protein-coding and non-coding

regions.

The major limitation of GeneMark family is the

fixed-order Markov model such that models of higher order

require exponentially more training data, which are usually

not available for new sequences. The Glimmer gene-finding

program [12] introduces a generalized hidden Markov model

with variable order called the interpolated Markov model.

Other gene-finding programs that based on the concept of

interpolated Markov model and generalized Markov model

include FGENESH [13], HMMGene [14], and AUGUSTUS

[15].

Machine learning and data mining methods have been

successfully applied to various kinds of prediction problems

such as exon prediction [16], start codon prediction [17], and

splice site prediction [18], [19]. More than 90% of

nucleotides can be correctly identified as either coding, or

non-coding. But the exact boundaries of the exons and their

assemblies into complete coding regions are much more

difficult to predict correctly using the classification-oriented

formulation. DNA sequences are rather parsing-oriented in

their nature.

We thus propose a novel setting of constraint logic

programming to formulate a computational method toward

the problem of gene searching and recognition in DNA

sequences. This new scheme of DNA sequence analysis has

just recently gained interest with some preliminary work

appeared in the literature [20]-[22].

III. METHOLOGY

A. Constraint Programming for Computational Genome

Analysis

Constraint programming is a programming paradigm

normally applied to solve combinatorial search problems

such as flight scheduling, crew rostering, logistic planning,

and many more of this kind. The main steps of constraint

programming are:

1) Users specify a problem by defining the variables

together with their associated domains and constraints on

these variables,

2) The search procedure and constraint solver find solutions,

which are values assigned to the specified variables such

that all constraints are satisfied.

It is obvious from the program structure that constraint

programming has been designed to solve constraint

satisfaction problems that have been extensively studied in

artificial intelligence. The efficiency of constraint programs

is basically due to the constraint propagator feature in a

constraint solver. The function of constraint propagator is to

reduce the domains of variables by inferring from the

existing constraints and then to prevent the search procedure

from visiting parts of the search tree that do not contain any

solution.

A constraint propagator takes as input a domain D from

which a variable can be assigned its value, and a set of

constraints C. The output of the propagator is a reduced

domain D. For instance, given that X, Y, Z are variables, the

domains

D(X) = {a, c, d},

D(Y) = {a, b, c, d},

D(Z) = {c},

and a set of constraints

C = { X=Y  YZ },

the output of the constraint propagator are

D(X) = D(Y) = {a, d}, and

D(Z) = {c}.

The repeated application of propagator can lead to

increasingly stronger (that is, smaller) domains. The

propagator continues until it reaches a fixed point in which

the domains cannot be further reduced. At this stage, the

search procedure (either global or heuristic-based) can

efficiently start assigning possible value to each variable. A

toy example of map coloring in Fig. 4 illustrates the

constrain-and-search strategy of constraint logic

programming (CLP), as opposed to the generate-and-test of

logic programming (LP) scheme.

%% CLP style: Constrain-and-search

:- lib(fd).

map_color_CLP([A,B,C,D]) :-

 % declare variables and domains

 [A,B,C,D]:: red,green,blue,yellow],

 % constrain

 alldifferent([A,B,C,D]),

 % then search

 labeling([A,B,C,D]).

%% LP style: Generate-and-test

color(red). color(green).

color(blue). color(yellow).

map_color_LP([A,B,C,D]) :-

 % generate solution

 color(A), color(B),

 color(C), color(D),

 % then test for constraints

 A \= B, A \= C, A \= D,

 B \= C, B \= D, C \= D.
Fig. 4. Constraint logic programming versus logic programming schemes.

At present, there are several constraint systems that

provide functions to specify (or model) the problems and

maintain the constraint consistency efficiently. They are

called constraint programming systems if they are based on

procedural languages. The systems are classified as

constraint logic programming systems if they are based on

logic programming languages. The focus of this research is

the development of constraint solvers (that is, the integration

of constraint propagators and search procedures) for a

specific application of genomic analysis using the constraint

logic programming paradigm. The main benefits of such

scheme are two folds:

1) the declarative style allows users to specify a problem

itself, instead of specifying how to solve the problem, and

International Journal of Information and Education Technology, Vol. 5, No. 2, February 2015

121

2) a high level of knowledge representation facilitates

genomic pattern specification and the inclusion of new

knowledge which is highly dynamic in the active area of

genomics and computational microbiology.

Most constraint logic programming systems provide a

large set of predefined constraints such as alldifferent

and powerful search commands such as labeling to solve

the combinatorial problems. The predefined constraints and

exhaustive depth-first search procedure aim at solving a

general class of constraint satisfaction problems. We argue

that for a specific problem of genomic sequence analysis, a

new set of built-in constraints that propagate with the already

known biological relations together with alternative

approximate search methods can more or less benefit the

sequence analysis tool.

B. A Framework of Constraint-Based System

The main purpose of our research is the design and

implementation of a computational system for genomic

sequence detection and recognition of its structure and

function using the declarative paradigm of constraint logic

programming. The advantage of such paradigm is its

powerful features to handle patterns within the DNA and

RNA sequences. In addition, the heuristic search such as

branch and bound, simulated annealing can be applied to

speed up the computation time. The design is sketched as

shown in Fig. 5.

A constraint-based approach to DNA sequence analysis

starts from the modeling of sequence search and gene finding

problems as constraint satisfaction problems, and also

constraint optimization problems if preferences are to be

numerically measured or when several solutions are

generated. We name this step as “Query reformulator.”

The constraints involved in the sequence analysis

problems could be symbolic and numeric constraints over

finite domains. The constraints formulated at this step can be

either local or global constraints. Local constraints are

restrictions over local patterns, whereas the global constraints

address restrictions over the whole set of solutions.

Fig. 5. Schematic overview of a constraint-based system for genomic

sequence analysis.

In a subsequent phase of constraint solving, local

constraints are handled prior to the global ones because local

patterns under constraints can be checked independently of

the other patterns holding in the data. The reduced domain of

data values is then passed over to the global constraint

propagator. The product of this step is the domain store to

collect variable domains that their sizes have been reduced by

the constraint propagators. The search procedure designed

for gene-finding task can now start its process and report

solutions to the user. The skeleton of constraint solver is

shown in Fig. 6.

1. Develop the problem’s model, in terms of variables and

constraints, as a constraint satisfaction problem (or constraint

optimization problem if some costs, distance measures, or

other measurable metrics are specified)

2. Initialize for all variable-value pairs as modeled in step 1

3. Repeat until a termination condition is reached (this can be a

maximum number of iteration, acceptable score range, or

other conditions)

 3.1 Call the local constraint propagator to constrain the domain

space of each variable and return a possibly smaller set

of domains

 3.2 Call the global constraint propagator to further constrain

the domain space

 3.3 Perform a search procedure (including a heuristic-based

method)

 3.3.1 Select a variable

 3.3.2 Select a value from the domain

 3.3.3 Instantiate the variable

 3.3.4 If the instantiation fails (because constraint is

violated), then backtrack to the step 3.3.2 and

select another value

 3.3.5 If the sets of variables and their values are not empty

yet, then repeat the steps 3.3.1-3.3.4

4. Return the solution (which is a set of variables and their values as

modeled in step 1) if it exists

Fig. 6. A constraint solver algorithm for the genomic sequence analysis

system.

IV. CONCLUSION

In the past, genes were identified with experimental

validation on living cells and organisms. It is the most

reliable method, but costly and labor intensive. At present,

most biologists rely on the computational methods to

automatically analyze the uncharacterized genomic

sequences. Gene finders are programs that analyze and

predict the exon-intron structures of genes using the

sequences of one or more genomes as their only input. Many

algorithms implement statistical and intelligent methods to

represent sequence patterns and output a model of the gene

structure. Some of the frequently applied techniques include

dynamic programming, linear discriminant analysis,

linguistic methods, hidden Markov model, and various

machine learning techniques such as neural network,

decision-tree induction, and support vector machines.

However, the insufficiency of known genes causes trouble

to many algorithms to produce accurate prediction model.

Some gene finders find most of the genes, but have a

significant number of false positives. We thus propose a

novel setting of constraint logic programming to formulate a

International Journal of Information and Education Technology, Vol. 5, No. 2, February 2015

122

computational method toward the problem of gene searching

and recognition in DNA sequences. This new scheme of

DNA sequence analysis has just recently gained interest with

some preliminary work appeared in the literature.

We concentrate our research study on the early biological

process of gene detection and prediction because the

understanding of gene structure and its function is important

to the subsequent knowledge of protein analysis. Most of

previous constraint-based work has based their constraint

implementation on the constraint handling rules. The

proposed techniques of our constraint solvers are mostly

constraint propagation and search procedures embedded in

the libraries of a finite and symbolic domains of the

logic-based constraint system. Upon completion of this

research project, we therefore expect to achieve some

advancement to not only the computational gene-finding

research area, but also to the constraint solving field.

ACKNOWLEDGMENT

This work has been supported by grants from the National

Research Council of Thailand (NRCT) and the authors are

supported by research funding from Suranaree University of

Technology.

REFERENCES

[1] J. Watson and F. Crick, “A structure of deoxyribose nucleic acid,”

Nature, 1953, pp.171, 737.

[2] F. Crick, “Nucleic acids,” Scientific American, vol. 197, 1957, pp.

188-200.

[3] F. Crick, “Central dogma of molecular biology,” Nature, vol. 227, 1970,

pp. 561-563.

[4] International Human Genome Sequencing Consortium, “Initial

sequencing and analysis of the human genome,” Nature, vol. 409, 2001,

pp. 860-921.

[5] M. Borodovsky and J. McIninch, “GeneMark: parallel gene

recognition for both DNA strands,” Computers & Chemistry, vol. 17,

no. 2, 1993, pp. 123-133.

[6] M. Borodovsky, A. Lomsadze, N. Ivanov, and R. Mills, “Eukaryotic

gene prediction using GeneMark.hmm,” Current Protocols in

Bioinformatics, 2003, pp. 4.6.1-4.6.12.

[7] J. Besemer, A. Lomsadze, and M. Borodovsky, “GeneMarkS: a

self-training method for prediction of gene starts in microbial genomes,

implications for finding sequence motifs in regulatory regions,”

Nucleic Acids Research, vol. 29, no. 12, 2001, pp. 2607-2618.

[8] J. Besemer and M. Borodovsky, “GeneMark: web software for gene

finding in prokaryotes, eukaryotes and viruses,” Nucleic Acids

Research, vol. 33, 2005, pp. W451-W454.

[9] C. Burge and S. Karlin, “Prediction of complete gene structures in

human genomic DNA,” Journal of Molecular Biology, vol. 268, 1997,

pp. 78-94.

[10] T. Schiex, A. Moisan, and P. Rouze, “EuGene: an eukaryoric gene

finder that combines several sources,” in Proc. JOBIM, 2001, pp.

111-125.

[11] I. Antonov and M. Bodorovsky, “GeneTack: frameshift identification

in protein-coding sequences by the Viterbi algorithm,” Journal of

Bioinformatics and Computational Biology, vol. 8, no. 3, 2010, pp.

535-551.

[12] A. Delcher, K. Bratke, E. Powers, and S. Salzberg, “Identifying

bacterial genes and endosymbiont DNA with Glimmer,”

Bioinformatics, vol. 23, 2007, pp. 673-679.

[13] A. Rust, E. Mongin, and E. Birney, “Genome annotation techniques:

new approaches and challenges,” Drug Discovery Today, vol. 7, no. 11,

2002, pp. S70-S76.

[14] A. Krogh, “Two methods for improving performance of an HMM and

their application for gene finding,” in Proc. Int. Conf. Intelligent

Systems for Molecular Biology, vol. 5, 1997, pp. 179-186.

[15] M. Stanke, O. Keller, I. Gunduz, A. Hayes, S. Waack, and B.

Morgenstern, “AUGUSTUS: ab initio prediction of alternative

transcripts,” Nucleic Acids Research, vol. 34, 2006, pp. W435-W439.

[16] T. Jaakkola and D. Haussler, “Exploiting generative models in

discriminative classifiers,” Advances in Neural Information Processing

Systems, vol. 11, 1999, pp. 487-493.

[17] A. Zien, G. Ratsch, S. Mika, B. Scholkopf, T. Lengauer, and K. Muller,

“Engineering support vector machine kernels that recognize translation

initiation sites,” Bioinformatics, vol. 16, 2000, pp. 799-807.

[18] N. Kerdprasop and K. Kerdprasop, “Recognizing DNA splice sites

with the frequent pattern mining technique,” International Journal of

Mathematical Models and Methods in Applied Sciences, vol. 5, no. 1,

Nittaya Kerdprasop is an associate professor at

the School of Computer Engineering, Suranaree

University of Technology, Thailand. She received

her bachelor degree in radiation techniques from

Mahidol University, Thailand, in 1985, master

degree in computer science from the Prince of

Songkla University, Thailand, in 1991 and

doctoral degree in computer science from Nova

Southeastern University, U.S.A, in 1999. Her research of interest includes

knowledge discovery in databases, artificial intelligence, logic programming,

and intelligent databases.

Kittisak Kerdprasop is an associate professor

and chair of the School of Computer Engineering,

Suranaree University of Technology, Thailand. He

received his bachelor degree in mathematics from

Srinakarinwirot University, Thailand, in 1986,

master degree in computer science from the Prince

of Songkla University, Thailand, in 1991 and

doctoral degree in computer science from Nova

Southeastern University, USA, in 1999. His current research includes data

mining, artificial intelligence, functional and logic programming languages,

computational statistics.

International Journal of Information and Education Technology, Vol. 5, No. 2, February 2015

123

2011, pp. 87-94.

[19] Y. Sun, X. Fan, and Y. Li, “Identifying splicing sites in eukaryotic

RNA: support vector machine approach,” Computers in Biology and

Medicine, vol. 33, no. 1, 2003, pp. 17-29.

[20] H. Christiansen, “Logic-statistic modeling and analysis of biological

sequence data: a research agenda,” in Proc. Int. Workshop Abduction

and Induction in Artificial Intelligence, 2007, pp. 42-49.

[21] C. Rigotti, I. Mitasiunaite, J. Besson, L. Meyniel, J. Boulicaut, and O.

Gandrillon, “Using a solver over the string pattern domain to analyze

gene promoter sequences,” in S. Dzeroski (ed.), Inductive Databases

and Constraint-Based Data Mining, Springer-Verlag, 2010, pp.

407-423.

[22] R. Yap, “Parametric sequence alignment with constraints,” Constraints,

vol. 6, 2001, pp. 157-172.

