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 

Abstract—Nowadays, customers are increasingly claiming 

not only for better quality products at the lowest possible cost, 

but also demanding customized solutions to satisfy their specific, 

sometimes unique, needs and wants. Due to this, manufacturing 

companies are seeking to adopt higher agile production models, 

such as mass customization strategies. In the quality control 

field, statistical process control (SPC) methods have been widely 

used to monitor process performance and detect abnormal 

situations in its behavior; however, traditional SPC approaches 

are usually not appropriate for small lot or batch sizes, for the 

start-up of a process, and for situations where a high variety of 

mixed products exist. Such situations are within the scope of the 

so called short production runs. Several SPC schemes have been 

proposed for short-run environments; all of them have their 

own advantages, shortcomings, and more suitable for certain 

production scenarios. This paper provides an up-to-date 

literature review on the topic, identifies classes of SPC 

short-run methods, and presents a decision-model that guides 

production managers in the choice of the most appropriate SPC 

short-run approach. The model was validated in a textile 

production company, and is being incorporated into a software 

package. 

 

Index Terms—Decision-model, short-run, statistical process 

control (SPC). 

 

I. INTRODUCTION 

The goal of statistical process control (SPC) is to make a 

process stable or predictable, by distinguishing common 

variation from special/sporadic variation. Capability analysis 

and process improvement actions shall only be put in place if 

the observable variability of the process is absent of special 
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causes of variation. Conventional SPC methods often do not 

work well in short-run situations, such as in the following: 

1) Job shop processes where a high diversity of custom or 

semi-custom parts are manufactured. Monitoring such 

high variety of products would require a large number of 

control charts, which is unpractical in most situations. 

2) Just-in-time (JIT) systems where low levels of inventory 

are required, thus demanding the manufacturing of 

smaller quantities of parts in shorter production runs. 

3) Start-up of a process or initiation of a new process, 

where insufficient number of subgroups is available, so 

the parameters of the process cannot be accurately 

estimated. 

As underlined in [1], [2], in order to manage these 

situations, various SPC short-run methods have been 

proposed in the literature. Several distinct approaches to 

monitor a short-run production process based on statistical 

principles do exist, with their own strengths and drawbacks. 

The selection of the best method in a short production run is 

rarely straightforward, because it relies on a set of important 

criteria and decision-made points; due to this, a new 

decision-model that enables a systematic selection of the best 

SPC method for different short-run manufacturing realities is 

herein proposed. 

This paper is organized in six sections. Section II contains 

a careful literature review on SPC for short-run situations, 

where the different approaches that have been suggested on 

the topic are discussed, compared, and classified according to 

their purpose. Based on such classification, Section III then 

presents the decision-model, its reasoning and it how it can 

be used by decision-makers to select the short-run SPC 

approach that best suits the nature and characteristics of the 

process to be controlled. Section IV illustrates the 

applicability of the model in a real factory environment, by 

showing how it was used to select the most suitable short-run 

SPC method. This section also discusses how the 

decision-model is being integrated into a software solution. 

Finally, the main conclusions of this paper are summarized in 

Section V. 

 

II. SPC FOR SHORT PRODUCTION RUNS – LITERATURE 

REVIEW 

Traditional control charts assume that data for estimating 

the process parameters are available during a production run 

[3]. However, many modern manufacturing systems do not 

satisfy these assumptions [4] due to the low-volume of parts 

produced and/or to a high variety of mixed products. 

Short-run processes imply the high frequency of process 

setups [5]. The following examples can be considered as 

short-run: 

Selection of the Most Suitable Statistical Process Control 
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 At the start-up stages of a production process, where little 

or no historical data is available [6]. 

 In job shop manufacturing processes, characterized by 

producing small quantities of a large variety of parts [7]. 

 In repetitive production industries where frequent setup 

changes occur [8] to accommodate different product 

types. 

 When the rate of production and/or inspection can impose 

constraints in the number of samples to be inspected [9]. 

 In low-volume production processes motivated by the 

adoption of JIT systems [10]. 

Numerous works on the use of short runs SPC procedures 

have been suggested to date. In this section, a careful 

literature review in order to identify, compare and classify the 

different existing approaches on the subject is performed. 

Hillier [11] was one of the first researchers to suggest 

solutions to use SPC in short-run cases, by developing a 

two-stage short-run theory for X-bar and R control charts, 

where X-bar and R are the mean and the range of a subgroup, 

respectively. Due to the lack of available data that is inherent 

to a short-run situation, the probability of a false alarm is 

exceedingly high when estimating the process parameters; for 

this reason, Hillier derived equations to adjust the standard 

control limits used in X-bar and R control charts, for both 

stages I and II. In stage I, m subgroups of size n are drawn to 

retrospectively determine in the control charts whether the 

process was stable or not; stage II only starts when the 

process is under control and is intended to monitor the future 

behavior of the process. Yang and Hillier [12] extended the 

two-stage reasoning by deriving equations to calculate the 

control limits for the (X-bar, ) and (X-bar,  ) charts, where  

is the variance of a subgroup. Elam and Case generalized and 

improved the two-stage theory; in their works referenced in 

[13]-[15], they address the problem of limited tabulated 

values for the control chart factors provided in [11], [12], by 

introducing computer programs to determine the chart factors 

more accurately. They also describe in detail the two-stage 

approach for the following control chart pairs: X-bar and  

charts [16]; X-bar and  charts [16]; X-bar and s charts 

(where s is the standard-deviation) [17]; X-bar and MR charts 

[18]. According to [18], the (X-bar, s) and (X-bar,  ) charts 

are similar, but the latter are more difficult to implement. 

A limitation of the two-stage procedures is that they 

require the availability of some amount of historical data to 

estimate the process parameters. To address this problem, 

Quesenberry proposed a set of short-run control charts, called 

Q-charts [19], which are intended to detect changes in the 

process parameters during the initiation of a process, since 

they do not require rich preliminary data [3]. The basic idea 

behind Q-charts is to construct a Q-statistics, by using a 

certain transformation, so data can be considered independent 

and identically distributed (i.i.d.) with known probability 

distribution when the process is in control [20]. Such 

transformations are explained in [19] for the case of 

continuous variables and in [21], [22] for attribute variables. 

The detection capability of a Q-chart is negatively affected 

when a mean shift occurs in the early phases of the charting 

[3]. To minimize this problem, Del Castillo and Montgomery 

[7] suggested modifications in the original Q-charts to 

enhance their statistical properties, by proposing the 

following two alternative approaches, which are valid when 

the process mean is considered known and the 

standard-deviation is assumed as unknown: 

1) An Exponentially Weighted Moving Average (EWMA) 

method, which is preferable when it is desirable to detect 

small shifts in the parameters of the process. 

2) An adaptive Kalman filtering method, which is also 

useful when the process mean cannot be considered 

known.  

Adaptive Q-charts that enable variable sample sizes and/or 

sampling intervals are discussed in [23], [24]. Kawamura et 

al. [25] used the Q-statistics for autocorrelated data cases. 

Q-charts are the most well-known and popular self-starting 

scheme to monitor a process in short production runs. A 

self-starting procedure permits real-time charting that can 

begin with the second sample, while the process parameters 

estimates are updated with each new observation. Other 

self-starting approaches have been proposed. Hawkins [26] 

introduced a self-starting CUSUM chart for detecting small 

shifts in both the location and dispersion parameters; Koning 

and Does [27] suggested a CUSUM chart for individual 

observations, to detect linear trends; Capizzi and Masarotto 

[6] presented a charting scheme able to detect small shifts in 

the process mean at the very beginning of a production run. 

An advantage of a Q-chart is that it enables the monitoring 

of many quality characteristics, eventually corresponding to 

different products, in a single chart. The use of a Q-chart in a 

product variety situation is appropriate when the variances of 

the different quality characteristics are unknown; when it is 

not the case, it is preferable to select a Deviation chart [28] or 

a Z-chart [29]; the former shall only be used when the 

variances of the different characteristics are not significantly 

different from each other. 

A recent SPC short-run approach also adopts a data 

transformation, where a T-statistic is obtained, which enables 

the drawing of a set of control charts, known as t-charts. 

These charts, intended to monitor the process mean were first 

proposed by Zhang et al. [30], by presenting an X-bar t-chart 

and a EWMA t-chart. The applicability of these two charts to 

short production runs was described by Celano et al. [9], who 

also studied their statistical properties. A t-chart does not 

require a preliminary estimation of the in-control process 

standard-deviation, so it also can be used to monitor the 

start-up of a process. However, t-charts assume that at the 

beginning of a production run, the in-control mean is 

perfectly set up on the process target, or that the initial setup 

error, shifting the mean away from the target, is known a 

priori [31]. Gu et al. [4] showed how t-charts can be 

successfully implemented in a multi-variety production run. 

Calzada and Scariano [32] introduced synthetic versions of 

the X-bar and EWMA t-charts to improve their statistical 

properties. Castagliola et al. [31] proposed an adaptive X-bar 

t-chart that permits the adoption of a variable sample size 

strategy. 

Change-point methods form another relevant class of 

approaches to deal with short-run situations for when both 

location and dispersion process parameters are unknown. 

They can detect persistent shifts in the values of the process 

location and/or dispersion parameters. Hawkins et al. [33] 

formulated a change-point model to monitor the process 
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mean, and Hawkins and Zamba [34] proposed a formulation 

to detect shifts in the process variance. The generalization of 

the change-point model to monitor both the in-control mean 

and the variance of a process is explained in [35]. 

Short-run SPC methods were also proposed for cases of 

multivariate and autocorrelated data. Zamba and Hawkins 

[36] extended the change-point model for multivariate data 

by presenting a model to monitor the mean vector (parameter 

of location) and/or the covariance structure (parameter of 

dispersion) of a process; Khoo and Gan [37] introduced a 

multivariate CUSUM chart for individual measurements that 

enables the control of both the mean vector and the covariance; 

Jaupi et al. [38] described a multivariate control chart for 

subgroups to monitor the mean vector and of the covariance; 

Makis [39] suggested a multivariate EWMA chart to control 

the mean vector in finite production runs using the Bayesian 

statistics. Snoussi [40] proposed a multivariate control chart 

for processes with i.i.d data (i.e. autocorrelated). Other SPC 

short-run approaches for autocorrelated data, using control 

charts were suggested by Snoussi et al. [41] and Snoussi and 

Limam [42]. Non-charting procedures for autocorrelated data 

have also been described: Wright et al. [43] recommended a 

joint-estimation method to detect four different types of 

special causes of variation in the process mean; Wu and Yu 

[44] presented a neural network model to detect and classify 

types of shifts in the mean and/or variance of a process; 

Tsiamyrtzis and Wright [45] came up with a  Bayesian 

EWMA procedure to detect shifts in the parameter of 

location in the early phases of a process start-up. 

To deal with non-Normal data in short-run processes, 

Zhou et al. [46] developed a nonparametric control chart 

inspired in the change-point model to control the parameter of 

location. Zou and Tsung [47] provided a solution to monitor 

both the location and dispersion parameters of a short-run 

process by employing a likelihood ratio-based 

distribution-free method. 
 

TABLE I: CLASSIFICATION OF THE SPC SHORT-RUN APPROACHES 

Category Description of the approach class 

Attribute data 

short-run 

Applied to cases where data is not continuous, but 

discrete. 

Multivariate data 

short-run 

Applied to cases where more than one quality 

characteristic needs to be monitored simultaneously. 

Autocorrelated data 

short-run 

Applied to cases where data is not independent 

neither identically distributed (i.i.d.). 

Fuzzy data 

methods 

Applied to cases when dealing with data that is not 

exact (e.g. linguistic, scales, degrees of conformity). 

Self-starting 

methods 

Useful for process start-ups, it updates parameters’ 

estimates with new observations. 

t-charts Enable the monitoring of the parameter of location; 

assume that the in-control mean is perfectly set up on 

the target, or that the initial setup error is known. 

Change-point 

methods 

This type of methods is advantageous when aiming to 

detect persistent shifts in the process parameters. 

Two-phase 

methods 

Useful when the process parameters can be estimated 

in the first phase, by using modified control limits. 

Methods for 

product variety 

Applied when the process parameters are known and 

data from different quality characteristics of one or 

more products is to be plotted in a single chart. 

Other approaches Grey predictive charts, neural network models, and 

specific Bayesian univariate charts are here included. 

 

Several other methodologies for short-run contexts were 

developed to monitor continuous variables. Guo and Dunne 

[48] presented three short-run control methods based on the 

grey differential equation theory: 1) Grey predictive 

Shewhart control chart; 2) Grey predictive CUSUM control 

chart, useful to detect small shifts in the process mean values; 

3) Grey fuzzy predictive control scheme, when the 

requirements for quality conformance are vague or imprecise. 

The grey predictive approach only enables the monitoring of 

the process mean, and its main advantage is that it enables 

out-of-control pattern recognition. Aminnayeri et al. [49] 

developed a control chart method based on non-conformity 

degree, ruled by the use of fuzzy membership function. 

Short-run SPC procedures have also been developed for 

attribute data, being divided into two classes: control charts 

for proportions of defectives and charts for counts of defects. 

For proportions, most of the methods are modifications of the 

p-chart to control the ratio of nonconforming items. 
 

TABLE II: ALLOCATION OF DIFFERENT SPC SHORT-RUN METHODS IN 

THEIR CORRESPONDING CLASS OF APPROACHES 

Category Method name(s) Ref. 

Attribute data 

short-run 

Binomial Q-chart [50] 

Geometric Q-chart; specially designed CUSUMQ 

and EWMAQ charts for proportions 

[51] 

Short-run -cut p-control chart [52] 

Qu and Qc charts; specially designed CUSUMQ 

and EWMAQ charts for counts 

[53] 

p-chart for small number of subgroups [54] 

Zu, Zc, and Zp control charts [28] 

Multivariate 

data short-run 

Spatial rank-based multivariate EWMA chart [20] 

Control chart based on the influence function [38] 

Multivariate CUSUM chart for individual 

observations using V statistic 

[37] 

Multivariate short-run Snapshot Q chart [55] 

Multivariate Bayesian for finite production run [39] 

Multivariate chart for process mean (V statistic) [56] 

Multivariate change-point model [36] 

Autocorrelated 

data short-run 

Bayesian EWMA method [45] 

Joint Estimation (JE) method [43] 

SCC Q-charts; EWMA Q-charts [41] 

Adaptive filtering method [57] 

Joint Estimation method (extended for n > 1) [58] 

Change-point model formulation (UU case) [42] 

Fuzzy data 

methods 

Non-conformity degree fuzzy control chart [49] 

Self-starting 

methods 

Q(Xbar), Q(R), Q(s2), and Q(MR) charts [19] 

EWMAQ and CUSUMQ charts [59] 

Self-starting CUSUM chart for mean and scale [26] 

Case III EWMA chart; Adaptive Kalman filtering [7] 

QI and QII charts [3] 

Adaptive CUSUM of Q chart [24] 

t-charts Xbar and EWMA t-chart [9] 

syn-t and synEWMA t-chart [32] 

VSS t-chart [31] 

Change-point 

methods 

Change-point model for shift in the mean [33] 

Change-point model for shift in the variance [34] 

Change-point model  (mean and variance) [35] 

Nonparametric chart based on change-point model [46] 

Two-phase 

methods 

Two-stage short run (Xbar, R) control charts [11] 

Two stage (X-bar,) and (X-bar,  ) charts [12] 

Two-stage (Xbar, s) charts [17] 

Two-stage (X, MR) charts [18] 

Methods for 

product variety 

Deviation charts [28] 

Z/W charts [29] 

 charts for short-runs [60] 

Other 

approaches 
Grey predictive charts [48] 

Neural network control for start-up processes [61] 

 

Quesenberry [50] proposed a binomial Q-chart to detect 

International Journal of Information and Education Technology, Vol. 5, No. 4, April 2015

305



  

moderate or large shifts in the proportion of defectives, 

whereas for detecting small shift sizes the author suggested 

specially designed CUSUM and EWMA Q-charts [51]. A 

geometric Q-chart, which is particularly useful to monitor 

high quality short-run processes, was also proposed in [51]; 

thus, geometric Q-charts are recommended when the required 

value for the parameter p is very small. When p is known a 

priori, Q-charts are not the best option, being preferable to 

make use the Zp chart suggested by Bothe [28]. For 

ambiguous or imprecise data, Fonseca et al. [52] presented a 

fuzzy -cut p-chart. For counts, when the process parameter 

cannot be estimated a priori, Bothe [28] proposed a Zc chart 

for monitoring the total number of defects (parameter c), and 

a Zu chart to control the number of defects per unit (parameter 

u). If the process parameter is unknown, the Qc (for the 

parameter c) or Qu (for the parameter u) charts are preferable. 
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Fig. 1. General framework of the decision-model. 
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Fig. 2. Flowchart of block B of the decision-model concerning SPC short-run methods for attribute data. 
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Fig. 3. Flowchart of block C of the decision-model concerning SPC short-run methods for multivariate data. 
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Fig. 4. Flowchart of block D of the decision-model concerning SPC short-run methods for autocorrelated data. 
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Fig. 5. High-level view of the flowchart corresponding to block A of the decision-model. 
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Table I organizes several of the existing approaches into a 

set of ten categories of SPC short-run methods. In Table II, a 

wide range of specific methods proposed in the literature are 

scoped in each of those 10 categories. To the exception of the 

first category mentioned on Table I and Table II, all the 

others concern the control of continuous variables. 

Some of the methods depicted in Table II could actually be 

scoped in more than one category. For instance, the method 

suggested in [36] that was included in the “multivariate data 

short-run” category, uses a change-point formulation. The 

reasoning behind the categorization established in Table I 

and Table II is embedded in the decision-model in the Section 

III. 

The literature review also revealed a lack of existing 

publications with methodologies or frameworks that provides 

systematic guidelines and/or criteria towards the selection of 

the most appropriate short-run SPC procedure. In this matter, 

the work carried out by Requeijo [62] should be highlighted, 

since the author develops a helpful flowchart that establishes 

a logical path that permits a decision-maker to choose the best 

SPC approach, including in short-run cases; however, the 

author did not include relevant SPC short-run approaches, 

such as two-phase models, change-point models, and 

t-charts. 

 

III. DECISION-MODEL 

The review of the relevant literature was the starting point 

to conceive the decision-model presented in this paper, which 

importance is justified by the following: 

 The relevance of the quality control procedures for 

monitoring short-run processes is increasingly growing. 

 The high-diversity of SPC short-run methods is likely to 

create confusion when one needs to decide which specific 

procedure to adopt if no objective criteria are available. 

 As long as the authors are aware, no decision-model to 

select the best SPC short-run method was ever proposed. 

The main goal for developing the decision-model was to 

provide a tool that could help any industry to determine 

which SPC short-run method would be most appropriate 

given the characteristics of their manufacturing processes. 

Fig. 1 depicts the general framework of the model, which 

comprises four blocks of flowcharts. The flowcharts 

contained in each block B, C, D and A are detailed in Fig. 

2-Fig. 5, respectively. The flowchart contained in block A 

guides in the choice of the most suitable SPC short-run 

procedure under the scope of the remaining classes of 

methods indicated in Table I and Table II. As Fig. 1 depicts, 

the decision-model was designed in a way that blocks B, C, 

and D derive from block A. 

Fig. 2-Fig. 4 show the flowcharts inherent to the 

decision-model for the cases of attribute (block B), 

multivariate (block C), and autocorrelated (block D) data, 

respectively. Due to its length, the whole detail of the 

flowchart in block A cannot be shown, so Fig. 5 only depicts 

the reasoning and the main criteria that govern the 

decision-making process in this block. 

 

IV. CASE STUDY 

The decision-model described in the previous section was 

tested in IDEPA, a textile industrial company, founded in 

1965, which main activity is the manufacture of woven labels 

and ribbons. Its manufacturing process, which high-level 

mapping is showed in Fig. 6, is characterized by the 

production of a high variety of items, generally done in small 

batches. The depicted process sequence is actually flexible, 

attending to the specificities of the customer requirements. 

From collected data, it was concluded that most of the 

defects are originated in the weaving operation (Fig. 7), 

namely the following two: 1) lines/stripes in the tissue; 

2) untied threads. Both correspond to characteristics that 

cannot be monitored through a continuous variable, so their 

control is based on attribute data that rely on visual 

inspection. 

Thus, the preferable short-run procedure in the IDEPA 

case study is somewhere contained in block B; so, one needs 

to go through the flowchart contained in this block (Fig. 2). 

IDEPA is interested in monitoring proportions of 

defectives resulting from the weaving operation; it means 

that the right side of the mentioned flowchart is the one that 

should be considered. The evaluation of the conformity of 

any produced item is not ambiguous and the decision of 

conformity is binary (i.e. defective or non-defective), so 

fuzzy data is not involved. Based on the cumulated 

experience, moderate to large shift in process parameters are 

expected to occur, in contrast with small shifts that are 

unlikely to happen. 
 

Inputs Process Outputs

- Ordered raw materials
- Inspection procedures
- Products testing procedures
- Product quality standards

- Raw materials inspected
- Sample of raw materials tested
- Raw materials accepted or rejected
- Raw materials warehoused

- Warf threads to be wrapped
- Rotation speed
- Predetermined number of threads
- Feeding tension of the threads
- Equipment adjustments (angle, etc.)

- Warp threads placed onto a beam
- Parallel threads composing the warp
- Warp checked for conformity
- Warp sent to weaving operation

- Tension of the warf and weft threads

- Uniformity of the warp threads tension

- Colours of the weft fibres

- Programming of the loom

- Product quality standards

- Woven pieces/parts
- Dimensional conformity checked
- Drawing/picture conformity checked
- Conformity of the tissue checked
- Conformity of the selvege cut checked

- Woven pieces/parts

- Variables of the seaming operation

  (type of sewing needle, etc.)

- Variables of the ironing operation

  (ironing temperature, positioning, etc.)

- Tissues seamed and ironed
- Visual inspection performed

- Finished products ready for shipment
  needing to be packed

- Finished products ready for shipment
- Visual inspection performed

- Woven pieces/parts
- Variables of the cutting operation
  (type of scissor, positioning, etc.)
- Variables of the bending operation
  (folding strength, bending cycle, etc.)

- Finish products packed
- Finish products shipped to customer

Reception and

monitoring of

raw materials

Warping

Weaving

Seaming and

ironing

Cutting and

bending

Packing and

expedition

 
Fig. 6. High-level manufacturing process mapping of IDEPA. 

 

 
Fig. 7. Weaving loom at IDEPA. 

 

Following the previous reasoning and since the proportion 

of defectives (parameter p) estimated using historical data is 

not very small, the flowchart depicted in Fig. 2 suggests two 

possible control charts for IDEPA: 1) Binomial Q-chart or; 2) 
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p-chart for small number of subgroups. The first was 

proposed by Quesenberry [50], while the latter was suggested 

by Nedumaran and Leon [54]. 
 

 
Fig. 8. Print screen of a decision-point of the software. 

 

The decision-model is currently being incorporated into a 

software solution developed by SisTrade company (Fig. 8). 

 

V. CONCLUSIONS 

This paper introduces a novel decision-model to help 

managers to select the best SPC approach to monitor the 

critical to quality characteristics in any type of short-run 

production process. To validate the model, it was applied to 

the case of a manufacturing process of a textile company; 

however, despite the successful implementation, the 

usefulness and applicability of the model need to be further 

tested in other kinds of processes, in order to take additional 

conclusions about its effectiveness to other situations. 

A critical foundation for developing this model was the 

literature review that was undertaken, and the identification 

of the different existing methods on SPC for short-run 

processes.  

As future research work, in addition of testing the model in 

other short-run contexts, it is our intention to incorporate the 

model within the Six Sigma framework, so the control and 

improvement initiatives can be properly linked. 
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