

Abstract—The objective of this study is to use game based

programming to facilitate the teaching of debugging for novice

programmers. The programing errors which novice

programmers frequently committed were involved in the game

programs. Worksheets were designed to guide students how to

apply debugging strategies to find these errors and correct them.

The debugging practices include the programming concepts of

variable assignments, boolean statements, if statements and

loop statements. Forty-one senior high school students

participated in this experiment for six weeks including pre- and

post-achievement test. The data including programming

achievement test, debugging self-efficacy and questionnaire

results were collected and examined. Though students’

debugging self-efficacy wasn’t significantly enhanced after the

experiment, the paired-samples T test results show that this

model of debugging practices was effective in improving

students' programming concepts. Furthermore, students

showed positive attitudes to this learning model and

programming learning in the future.

Index Terms—Computer science education, debugging

practice, game-based programming, scratch.

I. INTRODUCTION

The difficulties faced by many novice programmers have

been documented in the literature. They usually don‟t know

how to solve the programming programs [1], or feel

disappointed when they see the incorrect program executing

results [2]. Besides, how to debug is also an important issue.

Novice programmers usually don‟t know how to find the

program errors and correct them [3]. In the research report of

[4], it mentioned that the time of debugging, testing and

verification usually takes 50% to 70% of the program

development process. Lahtinen, Ala-Mutka and Järvinen [5]

also indicated that finding errors is the third difficult work

when novice programmers learn programming, which is next

to using programming to solve particular task, and

recognizing the functionality of procedures. Though

debugging is an important skill of learning programming,

computer textbooks seldom provide related content [3].

Therefore, the design and development of learning content to

improve debugging skill needs to be taken more attention to.

If well-designed and interesting content can be provided to

support teaching and learning of debugging, it can not only

reduce the teaching load of the course instructors, but also

promote the learning motivation of novice programmers.

Manuscript received March 15, 2014; revised May 23, 2014. This work

was supported by the National Science Council of Taiwan, ROC, under the

Grant numbers NSC 102-2511-S-260-002.

The authors are with the Graduate Institute of Curriculum Instruction and

Technology, National Chi-Nan University, Taiwan (e-mail:

cfchiu@ncnu.edu.tw, s101435509@ncnu.edu.tw).

Learning how to debug programs has many advantages [6].

First, debugging involves problem-solving procedures. The

experiences of debugging can enhance learners‟

problem-solving ability which is also important to be applied

in other domains. The continuous sequences of finding errors

and correcting them provide learners the opportunities to

reflect on their thinking process that is useful to develop

higher order learning skills. However, unlike experienced

programmers who can quickly find out errors, novice

programmers usually don‟t plan the debugging strategies in

advance and lack correct debugging skills. As a result, it is

common that they often use trial-and-error approach to debug

so that it will waste more efforts. Systematic scaffolding is

needed to guide novice programmers on how to apply

debugging strategies.

Many researchers investigated the differences of

debugging behaviors among experienced and novice

programmers. Gugrty and Olson [7] indicated that

experienced programmers can propose more accurate

assumptions of the reasons and locations of errors than

novice programmers do. The debugging strategies which

experienced programmers usually apply are as follows: 1)

forward reasoning to grasp program‟s objective and current

program status, 2) backward reasoning to search and find out

the clues from program‟s outputs. Furthermore, making use

of previous debugging experiences to solve current program

errors is also important. Vessey [8] observed expert

programmers have a broader error-searching ability and

systemic thinking ability. In addition to the debugging

strategies mentioned above, other debugging techniques such

as using extra output statements in the program to produce

outputs, or using the single-step mode of the compiler's

debugging tool to trace execution of the program are also

valuable to be introduced to novice programmers [9]. It is

believed that novice programmers can gradually improve

their debugging skills if adequate debugging practices with

systematic scaffolding were conducted to them.

In addition to systematic scaffolding, the interest of the

novice programmers to learn debugging should also be taken

into consideration when designing debugging practices.

Many studies tried to improve the learning motivation and

effectiveness of programming teaching through building

games. In the coding to develop games, students can engage

in a game‟s virtual context and produce interesting

programming results when finishing. Apart from gaining

programming concepts, it also increases much more interest

[10]-[12]. The results of Cliburn and Milller‟s study [13]

revealed that students preferred game-based coding

assignments to traditional programming assignments.

Moreover, from the view point of constructivism pedagogy,

the creation and experiences of game programming also

provide opportunities for students to develop and enhance

Chiung-Fang Chiu and Hsing-Yi Huang

Guided Debugging Practices of Game Based Programming

for Novice Programmers

International Journal of Information and Education Technology, Vol. 5, No. 5, May 2015

343DOI: 10.7763/IJIET.2015.V5.527

their programming concepts more deeply. Seaborn, Ei-Nasr,

Milam, and Yung developed a game construction-based

curriculum for a high school computer science course [14].

Positive effect reveals that the curriculum was effective for

understanding computer science and game design concepts.

Similar responses to the high school curriculum that uses the

creation of computer games to integrate computer science, art,

and design instruction in a project-based learning model also

resulted in increased computer programming knowledge and

self-confidence for students [15]. Furthermore, Becker [16]

found that writing known games such as Minesweeper and

Asteroids can help students understand the concepts of object

inheritance more thoroughly. This teaching approach

provided a hook to capture students‟ imagination and energy.

Moreover, Leutenegger and Edgington proposed a game-first

approach to teach basic programming concepts via game

development in Flash and ActionScript as fundamental to

learn C++ later [17]. The result shows that this approach

improved students‟ understanding of basic concepts. These

previous works have evaluated the use and benefits of game

programming for understanding and interest in computer

science, programming skills and related concepts.

Nevertheless, little has been done to reach out to teach

debugging by using game programming. Thus, this study

tried to design game based examples in Scratch to facilitate

the teaching of debugging for novice programmers.

Scratch provides a visual programming environment

targeted for creation of interactive stories, animations, games,

art as well as music applications [18]-[20]. Although the

original design is for school children aged from 8 to 16, its

usage has been spread to any age level. Different from

traditional text-input programming, Scratch provides

drag-and-drop programming environment which eliminates

syntax errors and encourages experimentation. It can reduce

the cognitive load for novice programmers when

programming concepts are first introduced to them [21], [22].

Consequently, students can engage in problem solving and

algorithm design rather than focus on syntax issues. That

Scratch having interactive visual interface and media-rich

programming environment is suitable for novice

programmers. Due to its ease of use and understanding,

Scratch has been used as a lead-in course to other advanced

programming course. For example, Scratch was introduced to

students in an introductory computer science course at

Harvard before students learned Java programming [23].

Scratch was also used to facilitate the teaching of computer

science concepts or software engineering for high school

students [24], [25]. The above research results suggest that

Scratch might be chosen for novice programmers to study

programming debugging. Thus, this proposed debugging

practices guided by worksheets on Scratch game programs

involving frequently committed errors were conducted in

class to facilitate the programming learning.

II. RESEARCH METHOD

A. Learning Content

The errors involved in the buggy game programs to be

practiced and the debugging strategies guided to students in

each week were summarized in Table I. Students took

debugging practices by the scaffoldings of worksheets which

contained a sequence of steps to guide students on how to

apply the debugging strategies to find the program errors in

the buggy programs and how to correct them.

TABLE I: THE ERRORS INVOLVED IN BUGGY PROGRAMS IN EACH WEEK

Week no. Errors Debugging strategies

Week 1
If statements

Loop statements

Check program‟s structures

Show variable‟s value

Week 2
Variable assignments

Loop statements

Show variable‟s value

Extra output statements

Week 3
Variable assignments

If statements

Show variable‟s value

Predict program‟s output

Week 4
Boolean statements

Nested if statements

Predict program‟s output

Extra output statements

B. Procedure

This study was conducted at one senior high school‟s class.

Forty-one students who have learned basic Scratch

programming were involved in this study. These students had

few programming experiences before participating in this

experiment. The entire experiment lasted for six weeks. In the

first week, students took the pre-experiment achievement test.

Guided debugging practices were conducted for next four

weeks. Finally, students took the post-experiment

achievement test in the sixth week. The pre- and

post-achievements test were written exams designed to

measure the comprehension of program instructions and

program structures. The maximum score of the achievement

test was 100 points.

C. Programming Debugging Self-Efficacy Scale

Programming debugging self-efficacy scale adapted from

[26] was administered to students at the first week of the

experiment. Furthermore, the same scale was administered

again at the end of the experiment. The self-reported

responses of this instrument can range from “strongly

disagree” 1) to “strongly agree” 5).

III. RESULTS AND DISCUSSION

A. Achievement Test

Descriptions of means and standard deviations on pre- and

post-test on achievement were depicted in Table II.

Paired-samples T test was conducted to measure the

differences between the pre- and post-test scores of

achievement. The results depicted in Table III (t=2.88,

p=.006) reveal that there was a significant improvement in

assessment scores over time. Therefore, guided debugging

practices improved students‟ programming concepts.

TABLE II: DESCRIPTION OF MEANS AND STANDARD DEVIATIONS ON PRE-

AND POST-ACHIEVEMENT TEST (N=41)

 Mean S.D.

Pre-test 72.01 10.37

Post-test 80.59 16.15

International Journal of Information and Education Technology, Vol. 5, No. 5, May 2015

344

TABLE III: RESULTS OF PAIRED SAMPLES T-TEST ON ACHIEVEMENT TEST

(N=41)

Mean Difference S.D. t D.f. Sig. (2-tailed)

8.56 19.05 2.88 40 .006*

*p<.05

C. Students’ Responses on Questionnaire

At the end of the experiment, students were asked to fill

out a questionnaire to give subjective feedback on the study.

Table VI summarizes their responses of questionnaire. The

questionnaires were meant to gain insight into the following

issues:

1) About the guided debugging activities (Q1~Q3)

As regards the appropriateness of the buggy game

examples, most students indicated that the difficult degree of

debugging practices is appropriate (Q1, 79% agree and

strongly agree). Furthermore, 86% of students thought

debugging practices of game programming is very interesting

(Q2). In the open-ended question of the questionnaire, one

student wrote:

“Learning debugging strategies from Scratch game based

programming is much more interesting and easy than what I

had imagined at first.”

In terms of the time allotted for the debugging practices,

most students felt the time is just right (Q3: 74% agree and

strongly agree). Nevertheless, some students hoped to have

more time to debug. The possible explanation might be that

students with lower prior programming knowledge might

spend more time to find the errors and correct them. In the

open-ended question of the questionnaire, one student

indicated:

“Though the worksheets can guide me how to debug, I still

spend much time on trying the debugging strategies. More

time to practice is needed for me.”

Thus, designing different difficult degrees of buggy

programs for novices with different levels of prior knowledge

is worth to take into consideration in the future study.

2) About the helpfulness of worksheets (Q4~Q7)

With respect to the helpfulness of worksheets, a majority

of the students had positive responses. They agreed the

worksheets helped them find the errors in programs (Q4),

directed them to apply proper debugging strategies to solve

program errors (Q5), and helped them learn the debugging

skills in Scratch (Q6). Overall, students felt the worksheets

were well designed (Q7). In the open-ended question, one

student indicated:

“In fact, the buggy programs are difficult for me to debug

at first. After the guidance of worksheets and the assistance

of teacher, I gradually get familiar with the debugging

strategies.”

3) About the helpfulness of debugging practices for

debugging and programming (Q8~Q12)

When asked about the helpfulness of debugging practices

for debugging and programming, a majority of the students

agreed that guided debugging practices improved their

debugging skill (Q8) and enhanced their confidence to

debugging (Q9). This teaching model also brought them

more confidence to solve the program errors (Q10).

Meanwhile, they also felt their debugging skills have been

improved (Q11). After the debugging practices, they had the

willingness to find the program errors and solve them on their

own (Q12). Therefore, from the questionnaire results it can

be summarized that though students‟ debugging self-efficacy

wasn‟t significantly increased after the experiment, their

confidence in debugging and solve program errors was

improved. In the open-ended question of the questionnaire,

one student mentioned:

“I have never learned the debugging strategies

before. I learn a lot from these classes and like these game

programs. It's beneficial and interesting.”

4) About the attitudes toward programming learning

(Q13~Q15)

The changes of students‟ attitudes toward programming

learning were also examined in the questionnaire.

Seventy-five percentage of students agreed the debugging

practices enhance their programming ability (Q13). More

than 70% of students indicated that they had more confidence

to learn debugging skills in other programming language

after these debugging practices (Q14, 71% agree and strongly

agree). These positive experiences brought about by the

guided debugging practices increased their interest to learn

other programming language later (Q15). From these positive

responses, it can be observed that students had positive

attitudes toward programming learning after the experiment.

IV. CONCLUSION

This study proposed a teaching model for the learning of

programming debugging at the high-school level. Debugging

practices guided by worksheets on game programs involving

frequently committed errors were conducted in class to

facilitate the programming learning. The programming

concepts included in the debugging practices are as

followings: variable assignments, boolean statements, if

statements and loop statements. Meanwhile, debugging

strategies including predicting program‟s output, showing

variable‟s value, check program‟s structures and extra output

statements were introduced to novice programmers through

debugging game based programs in Scratch.

In summary, this study demonstrated a feasible approach

for the effective instruction of debugging skills to

International Journal of Information and Education Technology, Vol. 5, No. 5, May 2015

345

B. Students’ Responses on Programming Debugging

Self-Efficacy Scale

Descriptions of means and standard deviations on pre- and

post-test on programming debugging self-efficacy were listed

in Table IV. Paired-samples T-test was conducted to measure

the differences between the pre- and post-test scores of

programming debugging self-efficacy. The results depicted

in Table V (t=0.92, p=0.37) suggest that it didn‟t show

significantly difference between the pre and post-test scores

in self-efficacy for programming debugging.

TABLE IV: DESCRIPTION OF MEANS AND STANDARD DEVIATIONS ON PRE-

AND POST-TEST ON PROGRAMMING DEBUGGING SELF-EFFICACY (N=41)

Mean S.D.

Pre-test 3.79 0.81

Post-test 3.90 0.65

TABLE V: RESULTS OF PAIRED SAMPLE T-TEST ON PROGRAMMING

DEBUGGING SELF-EFFICACY (N=41)

Mean Difference S.D. t D.f. Sig. (2-tailed)

0.11 0.79 0.92 40 0.37

high-school student. Though guided debugging practices did

not have a significant effect on students‟ debugging

self-efficacy, positive responses and much more confidence

to debugging were revealed from the questionnaire results.

Therefore, it seems that students‟ confidence to learn

debugging did be promoted after the experiment, despite a

lack of statistical significance. Furthermore, students showed

positive attitudes to this learning model and programming

learning in the future.

TABLE VI: STUDENTS‟ RESPONSES OF QUESTIONNAIRE AND RESULTS

(N=41)

Question
(Strongly)

agree
Neutral

(Strongly)

disagree

1. The difficult degree of debugging

practice is appropriate.
79% 20% 2%

2. Debugging practices of game

programming is very interesting.
86% 12% 2%

3. The time allotted for the debugging

practices is just right.
74% 17% 10%

4. Worksheets helped me find the

errors in programs.
81% 17% 2%

5. Worksheets guided me apply proper

debugging strategies to solve

program errors.

81% 15% 4%

6. Worksheets helped me learn the

debugging skills in Scratch.
88% 7% 5%

7. Overall, I felt the worksheets were

well designed.
83% 15% 2%

8. Guided debugging practices

improved my debugging skill.
73% 22% 5%

9. Guided debugging practices

enhanced my confidence to

debugging.

71% 22% 5%

10. This teaching model brought me

more confidence to solve the

program errors.

81% 17% 2%

11. After the debugging practices, I felt

my debugging skills have been

improved.

83% 15% 2%

12. After the debugging practices, I am

willing to find the program errors

and solve them by myself.

71% 24% 5%

13. The debugging practices improve

my programming ability.
75% 15% 10%

14. After the debugging practices, I

have more confidence to learn

debugging skills in other

programming language.

71% 24% 5%

15. These guided debugging practices

increase my interest to learn other

programming language later.

78% 15% 7%

REFERENCES

[2] J. A. White, “Teaching adult novices to program with Visual BASIC,”

Journal of Computer Science Education, vol. 11, no. 2, pp. 15-19,

1997.

[3] R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L.

Thomas, and C. Zander, “Debugging: a review of the literature from an

educational perspective,” Computer Science Education, vol. 18, pp.

67-92, 2008.

[5] E. Lahtinen, H.-M. Järvinen et al., “A study of the difficulties of novice

programmers,” ACM SIGCSE Bulletin, vol. 37, no. 3, pp. 14-18, 2005.

[6] T. Lapidot and O. Hazzan, “Song debugging: merging content and

pedagogy in computer science education,” ACM SIGCSE Bulletin, vol.

37, no. 4, pp. 79-83, 2005.

[7] L. Gugerty and G. M. Olson, “Comprehension differences in

debugging by skilled and novice programmers,” in Empirical Studies

of Programmers, E. Soloway and S. Iyengar, Ed., Norwood, NJ: Ablex,

1986, pp. 13-27.

[8] I. Vessey, “Expertise in debugging computer programs: A process

analysis,” International Journal of Man-Machine Studies, vol. 23, no.

5, pp. 459-494, 1985.

[9] A. C. Benander and B. A. Benander, “An analysis of debugging

techniques,” Journal of Research on Computing in Education, vol. 21,

no. 4, pp. 447-455, 1989.

[10] K. Becker and J. R. Parker, “All I ever needed to know about

programming, I learned from re-writing classic arcade games,”

presented at the International Conference on the Future of Game

Design and Technology, Michigan State University, East Lansing,

Michigan, October 13-15, 2005.

[11] J. Bayliss, and S. Strout, “Games as a „flavor‟ of CS1,” in Proc. 2006

ACM Technical Symposium on Computer Science Education, 2006, pp.

500-504.

[12] M. Panitz, K. Sung, and R. Rosenberg, “Programming in CS0: A

scaffolded approach,” Journal of Computing Sciences in Colleges, vol.

26, no. 1, pp. 126-132, 2010..

[14] K. Seaborn et al., “Programming, PWNed: Using digital game

development to enhance learners‟ competency and self-efficacy in a

high school computing science course,” in Proc. 2012 ACM Technical

Symposium on Computer Science Education, pp. 93-98, 2012.

[15] J. Edgington, R. Fajardo et al., “Using game creating for teaching

computer programming to high school students and teachers,” in Proc.

of 2009 ACM 19th Annual Conference on Innovation and Technology

in Computer Science Education, 2009, pp. 104-108.

[16] K. Becker, “Teaching with games: The minesweeper and asteroids

experience,” Journal of Circuits, Systems and Computers, vol. 17, no.

2, pp. 23-33, 2001.

[17] S. Leutenegger and J. Edgington, “A games first approach to teaching

introductory programming,” SIGCSE Bulletin, vol. 39, no. 1, pp.

115-118, 2007.

[18] Scratch. [Online]. Available: http://scratch.mit.edu/
[19] J. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,

“Programming by choice: Urban youth learning programming with

scratch,” in Proc. 2008 ACM Technical Symposium on Computer

Science Education, pp. 367-371, 2008.

[20] J. Maloney et al., “Scratch: A sneak preview,” in Proc. 2004

International Conference on Creating, Connecting, and Collaborating

through Computing, pp. 104-109, 2004,.

[21] B. Kaucic and T. Asic, “Improving introductory programming with

Scratch?” in Proc. 2011 MIPRO International Conference, 2011, pp.

1095-1100.

[22] S. Garner, “Learning to Program from Scratch,” in Proc. 2009 IEEE

International Conference on Advanced Learning Technologies, 2009,

pp. 451-452.

[23] M. Armoni et al., “Learning Computer Science Concepts with

Scratch,” in Proc. 2010 International Workshop on Computing

Education Research, 2010, pp. 69-76.

[24] U. Wolz, H. Leitner, D. Malan, and J. Malony, “Starting with scratch in

CS 1,” in Proc. 2009 ACM Technical Symposium on Computer Science

Education, pp. 2-3, 2009.

[26] D. R. Compeau and C. A. Higgins, “Computer self-efficacy:

Development of a measuer and initial test,” MIS Quarterly, vol. 19, no.

2, pp. 189-211, 1995.

International Journal of Information and Education Technology, Vol. 5, No. 5, May 2015

346

[1] M. West and S. Ross, “Retaining females in computer science: A new

look at a persistent problem,” Journal of Computing Science in

Colleges, vol. 17, no. 5, pp. 1-7, 2002.

[13] D. C. Cliburn and S. M. Miller, “Games, stories, or something more

traditional: The types of assignments college students prefer,” in Proc.

of 2008 ACM Technical Symposium on Computer Science Education,

pp. 138-142, 2008.

[4] B. Hailpern and P. Santhanam, “Software debugging, testing, and

verification,” IBM Systems Journal, vol. 41, no. 1, pp. 4-12, 2002.

[25] P. A. Sivilotti and S. A. Laugel, “Scratching the surface of advanced

topics in software engineering: A workshop module for middle school

students,” in Proc. 2008 ACM Technical Symposium on Computer

Science Education, pp. 291-295, 2008.

Chiung-Fang Chiu received the B.S., M.S., and Ph.D.

degrees in information and computer education from

National Taiwan Normal University, Taiwan in 1994,

1997, and 2009, respectively. She is currently an

assistant Professor in the Graduate Institute of

Curriculum Instruction and Technology, National Chi

Nan University, Nantou, Taiwan. Her research

interests include computer science education,

educational technologies, and teacher education.

Hsing-Yi Huang received the B.S. degrees in

accounting from Feng Chia University, Taiwan in

1996. He is currently an undergraduate student in the

Graduate Institute of Curriculum Instruction and

Technology, National Chi Nan University, Nantou,

Taiwan. His research interests include computer

science education, teaching material design, and

educational technologies.

International Journal of Information and Education Technology, Vol. 5, No. 5, May 2015

347

