

Abstract—This paper reports on an experimental approach

on teaching Software Engineering (SE) and the results recorded

during two years at Narvik University College. The course

described in this paper uses experimental pedagogy and

problem-based learning to give the students experience in close

to real-life work environment, demonstrating social and

problem complexity of Requirements Engineering (RE) and

Software Development (SD). The course uses social simulations

rather than software simulations, making the students learn

through interactions with real people and confronted with the

complexity of social relationships.

Index Terms—Requirements engineering, software

engineering, experimental learning, problembased learning.

I. INTRODUCTION

Traditional lecturing in SE tends to focus on the theoretical

aspects of SE, the different processes involved in SE, and the

different properties of these processes. “When students try to

understand a problem in only one way, especially when that

way conveys no conceptual information about the problem,

they do not understand the underlying systems in which they

are working” [1] p. 364. In traditional teaching methods that

use a linear presentation of materials (e.g. textbooks,

lectures), students gain knowledge at the most basic level and

memorize scientific facts without understanding the

underlying concepts [2]. As a result, misconceptions about

these concepts can develop. Misconceptions can be strongly

held ideas, and these ideas are often difficult to change with

traditional instructional methods.

Avoiding such misconceptions is an important endeavor,

both within RE and SD. It is important that RE practices and

RE education is emphasized because the industry has a

relatively poor understanding of RE practices and their

benefits. In an ideal world, a course in RE should be provided

at university level, before the students become software

developers. This is however not so in most cases [3]. When

they do, these courses are often given in the traditional

lecture/exercise format, and only few reports exist on other

types of pedagogy used in such courses, i.e. [4], [5], and [6].

It is a common understanding that requirements represent

the expression of peoples desires [7]. To understand the

desires of people and to be able to express these desires is

essentially a social construction. Consequently, much social

wisdom is packed into RE methods. Further on, it is

unrealistic to expect students with little organizational

experience to understand this body of knowledge and to

appreciate even the need for RE methods, much less to be

Manuscript received August 31, 2011; revised September 20, 2011.

Asbjørn S. Danielsen is with Faculty of Technology, Narvik University

College, Norway (email-asd@hin.no).

able to use them. In the software engineering discipline, it is

essential that software engineering students understand the

latest accepted methods and practices in use today in the

design of complex computing systems.

If we want to provide more than just a shallow

understanding of RE and SD to the students, we need to

provide more than just lectures about RE and SD methods

and academic problems. We need to create a platform in

which they can exercise the knowledge they have been

provided in our traditional teaching environment. The

experiences we seek to impart to students are directly linked

to the issues found in the workplace when we understand

what the business is about and what the desires of people are.

A short list of these issues is: dealing with ambiguity,

uncertainty, confusion, fear, time pressure, collaboration,

corporate politics etc. In sum, what some call the “messy”

part of organizations [8]. The messy part, recognized by

scientists and mathematicians as wicked problems, exemplify

the differences between classroom and workplace problems.

To be able to handle the messy part, one needs to combine

both emotions and techniques in one combined effort.

Whereas the use of specific techniques and algorithms can be

learned through lectures and exercises, emotions can only be

learned through real life experiences.

This paper describes the requirements engineering and

software development parts of a Software Engineering

course at Narvik University College. In this paper the reasons

for creating the course, its pedagogical features, and the

experiences giving the course will be presented. The course

is a 10 point course, spanning from spring to autumn, and is

now running in its second year. This paper mainly describes

the experiences during 2009 and 2010.

The course was a result of a major restructuring of the

computer science education program at Narvik University

College. It was designed to create a realistic organization in

order to provide the students with an opportunity to

experience the “messiness” they can expect in the workplace.

Situations which one may be faced with in a real workplace

was created, and framed the problems presented to the

students in an uncertain and confusing reality, often relying

only on verbal, word-of-mouth communication as this is an

important part of design and management information

transfer in reality.

The system the students were working on was a

stock-exchange game using close to real time data from the

Oslo Stock Exchange combined with locally defined stocks.

The approach was to immerse the students into a more

realistic social environment with real data instead of

simulated data, real events instead of simulated ones,

Asbjørn S. Danielsen

International Journal of Information and Education Technology, Vol. 1, No. 4, October 2011

333

Software Engineering Using Experimental Learning

mailto:email-asd@hin.no

TABLE I: DIFFERENCES BETWEEN CLASSROOM AND WORKSPACE EXPERIENCES.

interviewing real people, using real planning and reporting

tools.

In the next section of this paper a number of typical

education related challenges will be presented. Further on,

the basics of experimental learning, problem-based learning,

and how these theories were adopted into the course is

presented. Finally experiences lecturing the course are

presented, including student’s evaluation, before presenting

related work and summarizing the contribution to the area of

expertise.

II. CHALLENGES

Traditional education tends to be separated into separate

disciplines or courses. Few, if any, courses seek to integrate

disciplines. The result is that students going through the

educational system acquire much factual knowledge about

specific areas but little synthesis is provided. This pattern is

also present in courses where each course is divided into

topics which is lectured in a sequential manner, one by one,

with the implication that there is little, if any, relationship

between topics, and without any or just a few references to

other disciplines.

Another challenge is related to wicked problems and the

fact that these problems tend to be difficult to define, and the

definition, if it exists, tend to change over time. Their

solution is not known at the beginning and whether they were

correctly solved will not be known often until long after a

solution is proposed or implemented. Solving one problem

often brings about a number of other problems that could not

be foreseen before the solution was implemented, and so on.

Wicked problems have the following properties [9]:

1) cannot be easily defined so that all stakeholders agree on

the problem to solve

2) have no clear stopping rules

3) have better or worse solutions, not right and wrong ones

4) have no objective measure of success

5) require iteration – every trial counts

6) have no given alternative solutions

7) require complex judgments about the level of abstraction

at which to define the problem

8) often have strong moral, political or professional

dimensions which cannot be easily formalized.

The differences between the classroom experience and the

real time workspace are striking. [10] presents a number of

differences between the classroom and the real-life

workplace experience applicable to SE courses, where the

most common differences are summarized in TABLE I.

In addition to the problems in TABLE I, three additional

syndromes tend to occur. The first of these are the “free-rider

syndrome” [11]; when a group is graded as a whole, not all

students contribute equally and work equally hard.

The second is the “Wyatt Earp syndrome” [12], which

make collaboration more difficult and occur when a student

presents a new accomplishment or idea to the lecturer

without having first discussed it with the other members of

the group.

 Finally we have the all too familiar “student syndrome”

[11], i.e. many students does not engage themselves fully in

an assignment until the last possible moment before deadline.

III. PROBLEM BASED LEARNING

Problem-based learning (PBL) is generally based on ideas

from the early 20th century, and then nurtured by different

researchers such as Dewey [13], Piaget [14], and many others.

PBL, as it is known today, originated in the 1950s and 1960s,

and grew from frustrations and disagreements related to the

common medical education practices in Canada [15]. Today

PBL has developed and been implemented in a wide range of

domains. In spite of the many variations of PBL that have

evolved, a basic definition is needed to which other

educational methods can be compared. Six core

characteristics of PBL are distinguished in the core model

described by [15]. These are:

1) Learning is student-centered.

2) Learning should occur in small student groups under the

guidance of a tutor.

3) The tutor role is as a facilitator or guide.

4) Authentic problems are primarily encountered in the

Experience Classroom Workplace

Problem definition Well defined Ill-defined

Problem approach Strongly indicated by most recently presented classroom

material. Problems tend to be carefully designed to

reinforce specific methodologies.

Few hints as to how to approach the problem. May be required to

invent new methods.

Problem solution Professor always knows the solution. A solution to the problem will only be apparent when accepted

by management.

Problem scope Many problems are “scoped” so that they can be solved

by one person (student) in a few days or weeks.

The scope of the problem is unclear, and in general, problems

require a team of several people working over a period of many

months.

Social environment Working as an individual with implied competition. Working as a team member, cooperation being essential to

success.

Information levels Accurate, well defined, explicitly stated. Vague, unrecognizably ambiguous. Occasional hidden agendas.

Solution methods Given by an authority figure, usually to reinforce

material recently presented.

Veracity and efficacy never an issue.

May have to invent a new method as part of the problem solving

process.

Design team Same group of members from beginning to end of

project.

New members join the team and old, experienced members leave

the team.

Stability of problem

statement

Once stated, the problem statement is rarely, if ever

changed.

The problem statement changes frequently as new information

becomes available.

Information channels Heavy use of well-documented, written form. Some documentation exists, but most information is found

during informal conversations.

International Journal of Information and Education Technology, Vol. 1, No. 4, October 2011

334

learning sequence, before any preparation or study has

occurred.

5) The problems encountered are used as a tool to achieve

the required knowledge and the problem-solving skills

necessary to eventually solve the problem.

6) New information needs to be acquired through

self-directed learning. It is further generally recognized

that a seventh characteristic should be added:

7) Essential for PBL is that students learn by analyzing and

solving representative problems.

This definition makes PBL well suited to handle

ill-structured problems such as the problems which may be

found in a real-world related to software engineering. Further

on, PBL are related to experimental learning, and offers ideas

on how experimental learning may be conducted.

IV. EXPERIMENTAL LEARNING

The theory of experimental learning is generally attributed

to Kolb [6]. Kolb developed this theory based on the previous

pioneering work of educators such as Dewey [13], Piaget

[14], Lewin, and Freire. He proposed a model of the

underlying structures of the learning process based on

research in psychology, philosophy, and physiology, and

bases its typology of individual learning styles and

corresponding structures of knowledge in different academic

disciplines and careers on this structural model.

His model of experimental learning is divided into four

modes, usually assembled into the experimental learning

cycle presented in Fig. 1.

According to Kolb, the learners “must be able to involve

themselves fully, openly, and without bias in new

experiences (CE). They must be able to reflect on and

observe their experiences from many perspectives (RO).

They must be able to create concepts that integrate their

observations into logically sound theories (AC), and they

must be able to use these theories to make decisions and solve

problems (AE).”

Kolb notes that this cycle is an ideal that is difficult to

achieve because learners cannot easily reconcile these modes,

which require different ways of interacting with one’s

environment and thinking about it. Further on, in the model,

the modes are “dialectically” opposed along two dimensions.

The first dimension, pretension, opposes Concrete

Experience of events (apprehension) and Abstract

Conceptualization that seeks to make generalizations of these

events (comprehension). The second dimension,

transformation, opposes Reflective Observation about

experience (intension) and Active Experimentation that seeks

to make decisions about future experience (extension). For

Kolb, the level of learning is determined by the way the

learner can resolve the conflicts present in these two

dimensions.

Another important aspect of experimental learning has

been described by Lev Vygotsky as the zone of proximal

development (ZPD). ZPD is the difference between what a

learner can do without help and what he or she can do with

help, and is defined as “the distance between the actual

developmental level as determined by independent problem

solving and the level of potential development as determined

through problem solving under adult guidance, or in

collaboration with more capable peers” [16].

Concrete

Experience

G
ra

sp
in

g
 v

ia

a
p
p

re
h

e
n

si
o
n

Abstract

Conceptualization

Active

Experimentation

Reflective

Observation
Transformation

via extension

Transformation

via intension

G
ra

sp
in

g
 v

ia

co
m

p
re

h
e
n

si
o
n

Fig. 1. Kolbs model of the experimental learning cycle [6].

As already described in the previous sections, RE and SD

consists of a number of wicked problems that need an

iterative process to be gradually refined. During the process,

the students should become more familiar with the problem

domain in question, business rules and hopefully the students

should be able to comprehend the nature of RE, SD and

business problems through their apprehension of the concrete

classroom experience.

Instructional scaffolding is based on Vygotsky’s theory

where he defined scaffolding instruction as the role of

teachers and others in supporting the learner’s development

and providing support structures to get to that next stage or

level. An important aspect of scaffolding instruction is that

the scaffolds are temporary. As the learner’s abilities

increase the scaffolding provided by the more knowledgeable

is progressively withdrawn. Finally the learner is able to

complete the task or master the concepts independently [17].

Therefore the goal of the educator when using the scaffolding

teaching strategy is for the students to become independent

and self-regulating learners and problem solvers. As the

learner’s knowledge and learning competency increases, the

educator gradually reduces the supports provided until the

students complete the tasks without interference from the

teacher.

V. SCRUM

SCRUM is not a methodology. SCRUM is an iterative,

incremental framework for project management [18], often

used in agile software development.

SCRUM organizes the development process into a

predefined framework of a plan, a SPRINT, which should be

completed within a relatively short timeframe, usually 2–4

weeks. The SPRINT involves a number of meetings with

predefined purposes, such as the SPRINT Planning meeting,

the SCRUM meetings, and SPRINT review and the SPRINT

retrospective meetings. During the execution of the plan a

number of artifacts are produced and updated. These include

a product backlog (what should be built, ordered by

importance), a SPRINT backlog (list of work the team must

address during the SPRINT – not assigned to persons), and a

burn-down chart (updated every day and answers what

remains of the SPRINT). In addition to these artifacts,

SCRUM preaches a set of SCRUM core values of importance

to the development process; commitment, focus, openness,

respect and courage [18], pp. 147-154.

International Journal of Information and Education Technology, Vol. 1, No. 4, October 2011

335

The presented properties of SCRUM makes it well adapted

to be used in a Software Engineering course like the one

presented in this paper. SCRUM is agile and adaptable to

new requirements. It is a very good platform in which to

deploy experimental learning, problem-based learning, and

scaffolding strategies.

VI. THE COURSE

The Software Engineering course was designed following

the experimental learning cycle, incorporating the idea of

instructional scaffolding. The course grade was defined to be

Passed or Not Passed. First the class was divided into two

distinct categories; those with no prior knowledge of

software development, and those with some experience in

OO or programming. This separation was done because it

was expected that the student with no prior experience would

need more assistance than the other group.

The typical course session during spring-term consisted of

two times two periods of forty-five minutes every week. In

the beginning of the term, the course focused on initial

analysis and Business Process Modeling Notation (BPMN).

Then we started working with RE phase of the course. RE is

at the interface between the business understanding and the

product or service to be created, and the students need to

understand the business function before they can start on RE

process of conducting interviews, drafting requirements, etc.

 A typical lesson in the RE phase would include a

presentation of a number of real-life examples, e.g. business

game or a RE interview, followed by a discussion on

different social and technical issues of the examples. The

lesson would then be followed by a shuffle of people within

groups into teams of 3 – 7 people. The shuffling of people

within the group was done to provide a kind of uncertainty

related to people attending the group and to be able to reduce

the predictability of the working environment for the students.

Each team was given identical exercises in form of similar

activities as those being presented during lecture. The

exercise was usually in the form of a RE interview related to a

limited number of problems within a system. Most

experience sessions where followed by a 45 minute reflective

observation phase in which emotional and technical

debriefing was performed. After the debriefing was

performed, the groups exchanged documents developed

during the process and commented on the other groups work.

To finish the session off, a lesson to sum up the experiences

with the exercise was held. The typical week doing

RE-lessons looked as described in TABLE II.

P12e450

TABLE II: SPRING LECTURE SESSION SEQUENCE.

Session Seq. Subject

Session 1

4 Summary lecture and discussions

1
Introducing a RE subject, exemplifying with

real-life examples

Session 2

2
Shuffling group-members into work-groups

Perform exercise, create RE descriptions

3

Reflective Observation Phase

Emotional and technical debriefing

Change of RE work between groups

After having lectured after this model for five weeks, a

new shuffle of the members of the groups where performed

creating a project group which should be stable for the rest of

the course. Project management techniques were lectured and

the class was at a stage in which they could embark on a

journey into doing a larger RE exercise resulting in the

requirements for a stock-exchange game, and using

instructional scaffolding in the process. Each of the teams

was organized as different companies, competing in the same

market, developing competing systems.

The system to be developed was described as an

internet-based game which should be as close to real-life

experience as the real stock exchange. The game period

should be limited to a number of months after startup. All

buying and selling within the game should be done using

virtual money, and should include actual stocks on Oslo

Stock Exchange (OSE), real-time stock rates and availability.

The game should also support virtual companies and their

stocks which also should be tradable. All selling and buying

should be done using a broker. Further on the system should

incorporate some kind of security to minimize the problem

that a single user may hold several identities within the game,

making it possible to do illegal trades.

 All groups got the same information. Within the first two

weeks, the students had to deliver a business game document

on how stock trading is performed in Norway, different

techniques of stock trading, which stock types exist and what

is the difference, what laws apply, and to some extent give an

explanation on a number of financial and economical terms

used in stock trading. They also had to deliver the first project

plan, and their first project description.

As a result of severe time pressure, each group struggled to

understand the problem domain, describe and document it,

and create a project plan. It could be observed that in most

cases the students neglected the text given in the exercise,

and that there was no overall picture on what was going on.

Frustration and emotions surfaced quite often, and some

students even expressed doubts about the competence of the

lecturer. The planning aspect was put out until last minute

and some groups didn’t even manage to come up with a plan.

After this exercise, an emotional and a technical debriefing

were performed, evaluating the results. Then all groups

exchanged business game documents, and commented on

differences. This period was then followed by a 7 week

module focusing on RE and specifications. At the start of this

period the students got a document from the company’s

sales- and marketing departments about sales and marketing

problems, and the teams was instructed to deliver a simplified

Software Requirement Specification (SRS) using BPMN as

modeling notation where applicable. They were also

instructed that further information was available from the

CEO (lecturer), CIO (student assistant #1), customer (student

assistant #2) as well as one outside stakeholder (lecturer

imposing as an advertising interest). A document was

prepared for each role in the game, ensuring that the same

main messages and information were delivered to all groups

during interview. During the whole process, except during

interviews, the lecturer performed instructional scaffolding

as described.

After the first round of interviews, each group wrote its

own simplified version of the SRS and presented it to the

CEO of the company. The CEO did not approve the SRS, and

International Journal of Information and Education Technology, Vol. 1, No. 4, October 2011

336

the students was instructed to do further investigations,

especially into the feasibility and validity part of their SRS.

The students concluded they needed more interviews and a

second interviewing session was set up.

At the completion of the 7 week module, a new and

updated version of the SRS where delivered to the CEO,

which this time accepted and approved it. This document was

later used to design and implement a prototype of the system.

When autumn started, the student had lectures related to

project management, project reporting and project execution

in general, and SCRUM in particular. Further on lecturing

focused on the different phases of software development and

the relevant contexts in each phase. Finally different agile

software development methodologies was lectured, such as

extreme programming (XP), test-driven development (TDD),

lean software development (LD) and rapid application

development (RAD). All lecturing was completed within the

first 3 weeks of the autumn semester period (3 lectures per

week).

At this point the student groups used during the RE-phase

was revived, and each group was instructed to develop a first

version of the stock-trading game based on their own

SRS-document, using SCRUM and one or more agile

software methodologies (XP, TDD, LD, or RAD). Since

SCRUM suggests the development group to be

self-organizing and self-led, they had to decide the length of

each SPRINT (a minimum of 2 SPRINTs had to be

completed), and how the project group would organize and

decide on who should be the SCRUM Master. Final delivery

date of software was set 9 weeks into the future, and the team

where instructed that the lecturer would pose as Product

Owner as well as doing instructional scaffolding. Further on,

the project teams was informed that student assistants would

take on different roles as “chicken” and try to influence the

project in different ways.

The class was now at a stage in which they could embark

on a journey into doing a larger and more complex SD

exercise resulting in a first version of a stock-exchange game.

The first assignment during the autumn-term was to within

one week of startup deliver a project organization overview,

a project plan on how to execute the project – identifying

each SPRINT and delivery point, decide which agile

software development methodology (XP or some other) to

use and explain why, give a plan of the first SPRINT, decide

when to have the “daily SCRUM meeting”, create the

product backlog, do the first SPRINT Planning meeting, and

make a

Fig. 2. Overall midterm rating of the course.

SPRINT Backlog. Lecturer was present at all meetings,

changing roles between “Product Owner” and lecturer doing

instructional scaffolding, guiding the students through the

experience.

As a result of severe time pressure, each group struggled,

once more, to understand the problem domain and to perform

the tasks that had been defined as the first assignment. The

next assignments were tailored to fit each project group,

based on how many SPRINTs the group would perform.

During the execution of the development project,

debriefing sessions were held. They were partly related to

each groups SPRINT retrospective meetings (time for after

thoughts on what went well and what could be improved),

and partly in the form of separate sessions in which the

groups exchanged experiences and discussed the situations.

Further on, lecturer and student assistant attended most

SCRUM meetings, and some programming sessions.

VII. EXPERIENCES

The course was given two spring-terms with 15 and 18

students in each year. The course itself was mandatorily for

all students in the Bachelor of Engineering study of

Computer Science at Narvik University College, and the

course has been well evaluated during mid-term and

end-term in both years.

A. Course rating

In both years the course has been evaluated by the students.

The overall midterm evaluation performed at end of the

RE-part of the course, is presented in Fig. 2. Fig. 3 shows the

overall students evaluation at the end of the course, while Fig.

4 gives a student subjective overview on how much time the

students has invested in the course.

B. Learning Style

The course is problem-based and the approach towards

learning is completely different from other courses at campus.

This had to be explained frequently during the course. At the

beginning of the course several students found the course to

be disorganized and found it difficult to accept this kind of

pedagogy. However, at the end of the course most students

found the problem-based approach to be fruitful. No students

quit the course.

C. Syndromes

The “free-rider” and the “student” syndrome could be

observed to some extent in all groups. The “free-rider”

syndrome is indicated by Fig. 4 by those students that did not

invest much time in the course. The “student” syndrome was

observable as well since the project burndown increased

drastically when the SPRINT deadline came closer.

Fig. 3. Overall (endterm) rating of the course.

Minimizing the occurrences of the “free-rider” syndrome

may be done by defining a web based scoreboard where all

participants in the group could see the scores of everyone else

in the group. Each participant earns 5 points for every

International Journal of Information and Education Technology, Vol. 1, No. 4, October 2011

337

meeting and programming sessions he or she attended. In

addition, the student earns 10 points for every finished

backlog item, and -10 points for not being present at meetings

or programming sessions. At the end of a SPRINT or the

course, it will be evident who has attended and contributed

and who has not.

D. Group Dynamics

Group dynamics was challenging. Even though the work

was done in groups, the most common scenario was that two

or three persons in the group executed the work while the rest

observed. It was also evident that when all members of the

group worked on separate parts of the project, they did not

communicate well with the other parts of their group working

on related material. This resulted in incompatible models and

specifications. The latter situation occurred more often

during time pressure and was more evident earlier in the

course during RE.

The SCRUM meetings, performed 2 times a week in the

autumn-term, made the group communicate better. They

found the experience embarrassing at first, but after 3-4

meetings they learned to appreciate the information and the

openness expressed during the meetings.

Most groups used XP and pair-programming during the

start of the project, but tended to leave this strategy when the

end of the SPRINT got closer, partly due to the time boxing

SCRUM preaches, partly due to the overhead

pair-programming result in, and the “student syndrome”.

Frequent reporting on time used and progress had the

effect that all participants in the group became more

conscious of what they were doing, how much time they had

used and how unsecure they were about how much time had

to be used before they could complete the task at hand. This

situation also made the students more aware of how much the

other group members had left of their work.

Each student would get a grade in the course as Passed or

Not Passed, dependent on the work of the group, and how

much the student had participated in the groups work. Some

students found this to be unfair due to the fact that some

individuals contributed more than others (some degree of

“free-rider” syndrome). This challenge may be solved by

changing the grade to an A-F scale, making the completion of

the project mandatorily and having a final oral exam. Further

on, the use of a web based scoreboard may help document the

degree of contribution by each member of a team.

Fig. 4. Subjective student workload in course.

E. Credibility

It is of utmost importance that a course like this which

differs drastically from other university courses has

credibility. As the course puts the student in a stressful

situation, the student might infer that the course is

disorganized. With adequate communication, the students

eventually believe that the course puts them in a situation

related to the “real life” situation and learn from their

experience.

The following strategy was used to raise the credibility of

the course:

1) Used own industrial experience as examples

2) Used real-life project examples to demonstrate problems

3) Open discussions

4) Open scenarios based on student experiences

It is preferable to have guest speakers from the software

industry to do some talks on different aspects of software

development. It would also be preferable that more lecturers

shared a course like this, partly because of workload, but also

by increasing the industrial experience and by so broadening

the horizon of the students.

F. SCRUM Characteristics

The SPRINT definition was a problem during execution of

the project. The problem was twofold. Partly due the idea that

SCRUM presumes that system development is the single

process each SCRUM team member is involved in, and partly

due to the presumption that all members of the SCRUM team

has identical time schedules. This was not the case since the

course is a 10 point course spanning two semesters, from

spring to autumn and only being a small part of a student’s

schedule. Further on, differences in student time schedule

were present.

The SCRUM meetings should be held daily, but because of

student schedules, the meeting was performed twice a week.

Programming sessions was usually 2 – 4 times a week. The

effect was that the progress rhythm in the SPRINT varied.

G. Student Workload

Several students claimed that the course was

time-consuming related to other courses on site (Fig. 4).

Every student maintained a timesheet summing up hours

used in the project, defining which activity in the project the

student was involved in, and how much time the student had

spent.

In average, each student put 312 hours into the RE- and

SD-project in addition to lectures. The workload on each

student is larger than what should be expected in a 10-point

course. To adapt the workload to the course, an increase in

study points to 15 may be applicable.

H. Instructional Scaffolding

The student groups tended to delve into problems with

wrong focus, e.g. during the RE-phase they tended to focus

on descriptions on how some problem should be solved on an

object-level rather than specifying the properties of the

problem to be solved in relation to circumstances,

consequences, process, and so forth. Lecturer repeatedly had

to re-establish RE goals in the group, guiding the group out of

its OO-sphere and back into the game.

In this context, the lecturer and assistants need to be more

involved in the early stages of RE to establish focus on RE

rather than OO-specific modeling. Similar observations were

done during the SCRUM development phases.

VIII. RELATED WORK

There seems to be few publications on experimental

International Journal of Information and Education Technology, Vol. 1, No. 4, October 2011

338

pedagogy and problem based learning based on projects and

teamwork in software engineering. [19] report on student

teams which perform an industrial software development

project and presents the main educational problems

encountered in such real-life projects. [20] reports on project

based learning and how scaffolding may be used within the

project management body of knowledge, while [21] focuses

on a global software development project where extended

teams of students distributed across two to three countries

experienced the roles of developers, auditors and testers.

Carnegie Mellon’s West Coast Campus offers a Software

Engineering course [22] which in many aspects seems to be

the closest fit to the course lectured at Narvik University

College.

There seems to be few publications on experimental

pedagogy related to RE as well. Some publications were

published at the REET 2005 workshop, e.g. [3], [4], and [5].

[4] discuss challenges encountered teaching across

universities, different cultures and time zones, while [5]

focus on an investigation-based approach towards RE. [10]

presents an immersive and problem based approach closely

related to instructional scaffolding. It further on use low-tech

and social simulations rather than computer based.

IX. CONCLUSION

In this paper an experimental approach toward teaching

software engineering has been presented with its theoretical

foundation. The course was designed with two major

objectives in mind; prepare the students for the real-world

experience in which they will embark after a completed study,

and, create an arena in which the students may place their

functional knowledge obtained during their studies.

Doing a course like this require more planning and more

resources than a standard course. It is also more difficult to

teach since it involves wicked problems and consequences of

such problems. The course uses more man-hours than other

courses.

The effect of the course is evident in the student

evaluations of the course, and it is possible to see the effect in

B.Sc. theses of students completing the course. The B.Sc.

thesis of students who has completed the course seems to

have a more balanced approach towards software

engineering in general. The main component contributing to

this is most likely the experience each student gets by

working with wicked problems and agile software

development in the course discussed.

We think we have succeeded with providing a context in

which the students may place their functional knowledge

obtained during their studies.

REFERENCES

[1] D. H. Jonassen, “Designing research-based instructions for story
problems”, Educational Psychology Review, vol. 15, no. 3, pp. 267-296,
2003.

[2] S. Cepni, E. Tas, and S. Kose, ”The effects of computer-assisted
material on students’ cognitive levels, misconceptions and attitudes
towards science”, Computers and Education, vol. 46, pp. 192-205,
2006.

[3] B. Berenbach, “A hole in the curriculum”, in Proceedings 1st
International Workshop on Requirements Engineering Education and
Training (REET 2005), Paris, 2005.

[4] D. Damian, B. Al-Ani, D. Cubranic, and L. Robles, “Teaching
Requirements Engineering in Global Software Development: A
three-University Collaboration”, in Proceedings 1st International
Workshop on Requirements Engineering Education and Training
(REET 2005), Paris, 2005.

[5] N. H. Madhavji and J. Miller, “Investigation-based Requirements
Engineering Education”, in Proceedings 1st International Workshop
on Requirements Engineering Education and Training (REET 2005),
Paris, 2005.

[6] G. Regev, D.C. Gause, and A. Wegmann, “Requirements Engineering
Education in the 21st Century, an Experimental Learning Approach”,
in Proceedings of the 2008 16th IEEE International Requirements
Engineering Conference, Washington, DC, 2008, pp. 85-94.

[7] D. Gause and G. Weinberg, Exploring Requirements: Quality Before
Design, New York, NY, Dorset House Publishing, 1989.

[8] P. Checkland and S. Holwell, Information, Systems and Information
Systems – making sense of the field, New York, NY, John Wiley and
Sons Ltd, 1997.

[9] S. J. B Shum, A. MacLean , V.M.E. Bellotti, N.V. Hammond,
“Graphical Argumentation and Design Cognition”, Human-Computer
Interaction, vol. 12, no. 3, pp. 267-300, 1997.

[10] G. Regev, D. C. Gause, and A. Wegmann, “Requirements Engineering
Education in the 21st Century, an Experimental Learning Approach”,
in Proceedings of the 2008 16th IEEE International Requirements
Engineering Conference, Washington, DC, 2008, pp. 85-94.

[11] E. M. Goldratt, Critical Chain, Great Barrington, MA, North River
Press, 1997.

[12] Boehm B.W. and Port D., “Educating software engineering students to
manage risk, in Proceedings of the 23rd International Conference on
Software Engineering, Toronto, ON, 2001, pp. 591-600.

[13] J. Dewey, How we think, Boston, Health and Co, 1910

[14] J. Piaget, The construction of reality in the child, New York, NY, Basic
Books, 1954

[15] H. S. Barrows . (August 1996). Problem-Based Learning in Medicine
and Beyond: A Brief Overview, New directions for teaching and
learning term. [Online]. 68, pp. 3-11, Available:
http://onlinelibrary.wiley.com/doi/10.1002/tl.37219966804/pdf

[16] L. S. Vygotsky, Mind in Society: The Development of Higher
Psychological Processes, Harvard University Press, 1978, p. 86.

[17] K. Chang, I. Chen, and Y. Sung, “The effect of concept mapping to
enhance text comprehension and summarization”, The Journal of
Experimental Education, vol. 71, no. 1, pp.5-23., 2002.

[18] K. Schwaber and M. Beedle, Agile Software Development with
SCRUM, Prentice Hall, 2001

[19] L. van der Duim, J. Andersson, and M. Sinnema, "Good Practices for
Educational Software Engineering Projects", in Proceedings of the
29th International Conference on Software Engineering(ICSE 2007),
Washington, DC, 2007, pp. 698-707

[20] S. W. van Rooij. (January 2009). “Scaffolding project-based learning
with the project management body of knowledge”, Computers and
Education. [Online]. 52(1), pp. 210-219, Available:
http://www.sciencedirect.com/science/article/pii/S0360131508001139

[21] C. Scharff, “Guiding global software development projects using
Scrum and Agile with quality assurance”, in Proceedings of the 24th
IEEE Conference on Software Engineering Education and Training
(CSEEandT), Waikiki, Honolulu, 2011, pp. 274-283.

[22] R. Bareiss and M. Griss, “A story-centered, learn-by-doing approach to
software engineering education”, in Proceedings of the 39th SIGCSE
technical symposium on Computer science education, Portland, OR,
2008, pp. 221 – 225.

Asbjørn S. Danielsen holds a cand.scient. degree from University of Oslo,

Institute of informatics from 1999 in computer science.

 He is an Associate Professor at Narvik University College where he

teaches Software Engineering and Open Distributed Systems.

International Journal of Information and Education Technology, Vol. 1, No. 4, October 2011

339

