

Abstract—We developed an Application Programming

Interface (API) tracing tool for Android-based mobile devices.

This tool has the capability of generating trace files by remotely

monitoring and recording API calls made by an app running on

a mobile device. In addition, the automatic feature of the tool

allows repeated tracing tasks to be conducted without user’s

intervention against a collection of apps. The trace data may be

effectively utilized in analyzing app’s behavior and intentions,

which will prove to be useful in several application domains.

For example, this tool may be adopted in developing malware

detection techniques based upon the API call patterns,

identifying resource usages in different app components,

building the tool for visualizing the app’s behavior, and

constructing efficient mobile forensics tools, etc. Also, different

components of this tool make use of various concepts covered in

core computer science courses such as Operating Systems,

Computer Networks, Compilers, Data Structures, Algorithms,

and Security and Forensics, which makes them to be suitable

candidate for a senior capstone project. We formulated

inter-related project modules based upon the components of

this tracing tool, and will adopt them into the senior capstone

course at Bowie State University.

Index Terms—Android, API tracing, mobile security, senior

capstone project, mobile forensics.

I. INTRODUCTION

Android has become a popular mobile operating system

for various devices including smartphones. Android is the

most widely used mobile operating system, with 81% of

smartphones and 37% of tablets worldwide running this

Google-made OS. To analyze Android apps behavior and

intentions, we may trace the API calls made by an Android

app at run time. This trace data may be utilized for a wide

range of problems including malware detection technique

development and mobile forensic schemes.

Even though Android is built based on Linux, the API

tracing techniques developed for desktops may not be

applied. Android has a different system architecture. At a

lower level each application is encapsulated into a separate

process and it is run by using the services provided by Linux

kernel. Within each application, a virtual machine, known as

Manuscript received April 15, 2014; revised June 17, 2014. This material

is based upon work supported by, or in part by, the U. S. Army Research

Laboratory and the U. S. Army Research Office under contract/grant number

W911NF1210060 and W911NF13110143, and by the Office of Naval

Research under grant number N00014-11-1-0471.

Seonho Choi and Michael Bijou are with the Department of Computer

Science, Bowie State University, Bowie, MD 20723 USA (e-mail:

schoi@bowiestate.edu, mike.bijou@gmail.com).

Kun Sun is with the Center for Secure Information Systems, George

Mason University, Fairfax, VA 22030 USA (e-mail: ksun3@gmu.edu).

Edward Jung is with the Department of Computer Science and Software

Engineering, Southern Polytechnic State University, GA USA (e-mail:

ejung@spsu.edu).

a Dalvik Virtual Machine (DVM), provides a run-time

environment for the Java components included in the

application (app). All apps contain both Java and native

components. Native components are simply shared libraries

that are dynamically loaded at runtime. In the Dalvik virtual

machine (DVM), a shared library named libdvm.so is then

used to provide a Java-level abstraction for the app’s Java

components. Application developers heavily make use of the

objects and methods provided by the Java Library included in

the DVM. To understand or grasp the intentions of the apps,

it will be more beneficial to trace/utilize the Java-level

semantics that comprehend the behaviors of the Java

components in the app rather than focusing on system call

histories captured at the lower level.

We developed an Application Programming Interface

(API) tracing tool for Android-based mobile devices. This

tool has the capability of generating trace files by remotely

monitoring and recording API calls made by an app running

on a mobile device. In addition, the automatic feature of the

tool allows repeated tracing tasks to be conducted without

user’s intervention against a collection of apps. The trace data

may be effectively utilized in analyzing app’s behavior and

intentions, which will prove to be useful in several

application domains. For example, this tool may be adopted

in developing malware detection techniques based upon the

API call patterns, identifying resource usages in different app

components, building the tool for visualizing the app’s

behavior, and constructing efficient mobile forensics tools,

etc. Also, different components of this tool make use of

various concepts covered in core computer science courses

such as Operating Systems, Computer Networks, Compilers,

Data Structures, Algorithms, and Security and Forensics,

which makes them to be suitable candidate for a senior

capstone project. We formulated inter-related project

modules based upon the components of this tracing tool, and

will adopt them into the senior capstone course at Bowie

State University.

The remainder of the paper is structured as follows. We

present the related works in Section II. Section III presents a

methodology. In Section IV experiments are explained.

Section 5 concludes the paper.

II. RELATED WORKS

In signature-based malware detection systems malwares

are detected by utilizing the sets of rules or policies [1]-[6]. If

an attack shows a signature exactly matching one of the

known signatures, then it can be easily detected. However,

this mechanism may not be effective against new malwares

with unknown signatures.

In anomaly detection approaches machine learning

algorithms are first used to obtain classifiers from the known

API Tracing Tool for Android-Based Mobile Devices

Seonho Choi, Michael Bijou, Kun Sun, and Edward Jung

International Journal of Information and Education Technology, Vol. 5, No. 6, June 2015

460DOI: 10.7763/IJIET.2015.V5.550

malware behaviors [3], [7]-[12]. Then, the classifier will be

used at run-time to detect malwares. Although anomaly

detection is able to detect new or evolved malwares more

effectively compared to the signature-based approaches, it

sometimes causes high false positive.

Malware detection techniques may also be classified into

two different categories, static vs. dynamic. In static

approaches the classifier or signatures will be obtained only

from the apps’ codes, which remove the necessity to collect

the data by running the apps [3], [6], [13]-[18]. These

approaches have limitations. Metamorphic and polymorphic

techniques may be applied to generate new signatures for the

same virus. If polymorphic techniques are used, due to the

encryption, it is difficult to generate the signatures; if

metamorphic techniques are applied, all the codes will be

obfuscated. In dynamic approaches, they obtain classifiers or

signatures only based upon data obtained at run-time [4], [7],

[9], [10], [12], [19]-[21]. They don’t have limitations as in

the static approaches, but it becomes critical how to design

and conduct app running experiments to capture their

behaviors or signatures in a comprehensive manner.

A few attempts were made to apply signal processing

techniques to the design of intrusion detection systems for

wired networks [22].

III. METHODOLOGY

The overview of our tracing tool is shown in Fig. 1.

Fig. 1. Overview of our tracing tool.

A. Decompiling of APK File into Source Codes

By using the Android apktool’s decode function we need

to decompile an Android APK into its constituent parts. It

uses baksmali, a disassembler for Dalvik executable (.dex)

files used by Dalvik Virtual Machine. Dex files themselves

are created from Java class files generated from Java source

code. After baksmaling completes, apktool loads the

application’s binary resource table, which stores or

references resources defined by the application, such as xml

files containing strings or layouts used by the application. It

uses the resource table to decode the application’s

AndroidManifest.xml, which contains essential information

necessary for execution of the app DVM such as the package

name, the activities, services, process, and permissions used

in the application. The end result of the decoding process is a

series of directories containing the assets, Android library

files, the application’s resources, a ―Smali‖ directory

containing decompiled Smali code files, similar to the

application’s original source for rebuilding the application.

Fig. 2 shows the detailed steps and output directory structure

after APK files are decompiled. Fig. 3 shows an example

Smali code obtained after the apktool is applied.

Fig. 2. APK file is decompiled into a directory-structured collection of source

codes.

Fig. 3. Example smali source codes obtained from the apktool with

decompilation option.

B. App Attribute Extraction and Modification

Next, various apk attributes are extracted mainly from the

AndroidManifest.xml file obtained in the previous decoding

step. The names of the package, activities, and services are

extracted along with the permission information. These will

be stored in a temporary file for later reference and the

AndroidManifest.xml file will be modified by introducing

Remote App Invocation & Tracing

(User Interacts with App)

Signing of New APK

Rebuilding of APK file

App Attribute Extraction & Modification

Decompilation

APK file

CSV File

Trace File

Source Codes

International Journal of Information and Education Technology, Vol. 5, No. 6, June 2015

461

necessary attributes such as ―android:debuggable‖ in some

of the xml elements. Fig. 4 shows an example

AndroidManifest.xml file.

Fig. 4. Example AndroidManifest.xml from which the app attributes are

extracted.

C. Rebuilding of APK File

Then the modified APK file is created by using the apktool

with ―build‖ option. It rebuilds the application by applying

the smali, the reverse of baksmali, to the previously extracted

and modified set of assets in the directory structure. The

detailed steps are given in Fig. 5.

Fig. 5. Rebuilding of APK fie.

D. Signing of New APK File

The Android system requires that all installed applications

be digitally signed with a certificate whose private key is held

by the application's developer [23]. The Android system uses

the certificate as a means of identifying the author of an

application and establishing trust relationships between

applications. The certificate is not used to control which

applications the user can install. The certificate does not need

to be signed by a certificate authority: it is perfectly allowable,

and typical, for Android applications to use self-signed

certificates.

The important points to understand about signing Android

applications are [23]:

 All applications must be signed. The system will not

install an application on an emulator or a device if it is not

signed.

 To test and debug your application, the build tools sign

your application with a special debug key that is created

by the Android SDK build tools.

 When you are ready to release your application for

end-users, you must sign it with a suitable private key.

You cannot publish an application that is signed with the

debug key generated by the SDK tools.

 You can use self-signed certificates to sign your

applications. No certificate authority is needed.

 The system tests a signer certificate's expiration date only

at install time. If an application's signer certificate expires

after the application is installed, the application will

continue to function normally.

 You can use standard tools — Keytool and Jarsigner —

to generate keys and sign your application APK files.

 The Android system will not install or run an application

that is not signed appropriately. This applies wherever the

Android system is run, whether on an actual device or on

the emulator.

We used jarsigner [24] to ―sign‖ the application. Jarsigner

is part of the basic Java Development Kit, distributed by

Oracle. In our experiment, we used a single, self-signed

certificate, generated through the Java SDK’s keytool, to sign

tested applications after decoding and rebuilding them.

All of the remaining steps in the androiddebug.bat process

will involve using the Android Debug Bridge [25]. The

Android Debug Bridge, or adb, is a command line tool that

lets a computer communicate with an instance of the Android

emulator or an Android device connected via USB. It

consists of a client and server, which run on the development

computer, and a daemon, which runs on an emulator instance

or Android device. The server manages communications

between the client and the daemon; the client executes adb

commands from command line; the daemon provides an

endpoint for the server to establish a connection to on the

device or emulator. Fig. 6 shows a typical debugging

environment for Android, and Fig. 7 provides the overview

of our tracing tool.

Fig. 6. Typical debugging environment for Android.

Android Debug Bridge (adb) has a variety of abilities that

can aid in Android development. It can install applications,

pull files from a device or emulator, push files to it, list

devices or emulators connected to the development computer,

or start a remote shell on the device or emulator to execute

commands directly on the operating system. adb is

commonly used by enthusiasts to install APKs downloaded

to their computers directly to their connected devices. It is

also used for testing and debugging during Android

application development and troubleshooting device issues.

International Journal of Information and Education Technology, Vol. 5, No. 6, June 2015

462

E. Remote App Invocation and Tracing

International Journal of Information and Education Technology, Vol. 5, No. 6, June 2015

463

The command adb shell will start a remote Unix shell on a

connected Android device or emulator instance, which will

allow a user to run commands on an emulator or device. The

shell can access binaries stored in the Android file system in

/system/bin/. The most commonly used binaries in this area

are the activity manager (am) and the package manager (pm).

Activity manager will allow a user to issue commands to start

activities, kill processes, broadcast intents, and other system

actions. Activity manager is quite heavily used in our batch

file to carry out the tracing and other tasks. Package manager

can be used to perform actions and queries on installed

applications on a device or emulator.

Fig. 7. Our tracing tool is interfacing with the ADB host daemon.

After an application being tested is decoded, edited, rebuilt,

and signed, adb install is used to install the modified

application onto a physical device connected by USB (for our

experiments, we used two types of device, the Samsung

SGH-i747 [Galaxy SIII] and the Samsung SGH-I857

[DoubleTime]). A remote shell is started on the device using

adb shell, and we use ―am start‖ option to start the newly

installed application, and use ―adb shell ps‖ to generate a list

of the running processes on the device, including the

spawned children processes by our modified application.

From this list of processes our tool selects the ones that were

generated by the application to be traced by using the

package name and class path names obtained in the attribute

extraction step. For each process id obtained, it will create a

remote profiling process by issuing the command START /b

adb shell am profile pid start.

This command will call the activity manager and instruct it

to start profiling for the given pid. Every START nvocation

runs the command given in its parameter and returns

immediately, thus allowing multiple invocations of adb

processes for multiple pids. This is typically utilized for

concurrent and asynchronous execution of commands.

Profiling process execution will allow us to monitor and

record the details on its execution including what methods

are invoked and what resources are being utilized at which

times. Each profiler process is run for user provided duration

– e.g., five minutes, during which time the user interacts with

the running app on the device, while recording the execution

details. After the profiling duration has elapsed, our tool

sends the ―adb shell am profile stop‖ command to stop

profiling, and wait another 60 seconds, to give enough time

for the device to flush out the buffered profiling data to a

trace file in a microSD card. The microSD card used in our

experience is a consumer-grade card, commonly used in

mobile phones, rated for speeds of 2 MB/s data transfer.

Since trace files can run anywhere from a few megabytes to

up to a hundred, we tested with different file sizes to find out

the safe delay, and found out that 60 seconds waiting time is

necessary. The trace file is a file containing the binary and

textual trace data itself and keys which provide a mapping

from identifiers in the binary to thread and method names

[25]. Fig. 8 shows the example of multiple processes created

from one App’s execution.

Fig. 8. Multiple processes are created from one App’s execution. Different

trace files will be created for the processes that were identified to belong to

the same application.

After the trace file has been generated and stored on the

microSD card, our tracing tool will use ―adb pull‖ to transfer

the file from the microSD card in the device to the computer.

―adb pull‖ and ―adb push‖ can be used to transfer any file

from the device or emulator to the computer and vice versa.

F. Traceview

Fig. 9. Method Stats section in the trace file showing summary of method call

related information.

Fig. 10. Call Times section in the trace file showing the method call history

made by the process. This data may be utilized in creating API call traces.

Traceview is a graphical viewer for execution logs that you

Our Tracing

Tool

Traceview

create by using the Debug class to log tracing information in

your code. Traceview can also help you debug your

application and profile its performance [26]. However, our

tool uses the ―traceview –r‖ command to convert the trace file

from its raw binary format to a human-readable text file,

which can be analyzed and operated on for the purposes of

our study. Our tool finishes up by uninstalling the application

from the device and deleting temporary files. Figure 9 shows

the Method Stats section in the trace file, and Figure 10 gives

an example Call Times section in the trace file.

G. Conversion of Trace File into CSV Format

CSV is a common, relatively simple file format that is

widely supported by consumer, business, and scientific

applications. Among its most common uses is moving tabular

data between programs that natively operate on incompatible

(often proprietary and/or undocumented) formats. This

works because so many programs support some variation of

CSV at least as an alternative import/export format [27]. We

decided to convert the trace files into CSV format files to

enhance the portability and usability of other library routines

that support csv format. Our tool utilizes various java classes

to implement this conversion process. Figure 11 shows the

example CSV file obtained by converting the original trace

file.

H. Automatic Repetition against a Collection of Apps

To automate the trace file generation process for a given

set of multiple apk files, we implemented another component

in our tool to iteratively visit each app and apply the entire

trace file generation process. It accepts the name of the

directory as an argument. It starts by searching the input

directory for subdirectories and file directories. It adds these

to a file tree created using the Java Collections framework.

The end result is a data structure with paths to every directory

and file under the input directory. This structure is then

recursively searched for files with the extension ―.apk,‖

which are Android package files, commonly referred to as

Android ―apps‖. And, for each of them it applies the

previously introduced steps to create trace files in CSV

format.

IV. EXPERIMENTS

We generated a set of trace files from the collection of

about 500 malware-infected apps obtained from malware

genome project database [28]. These infected apps are

classified into 50 different categories as is shown in Figure

12, and are stored in a hierarchically organized directory

structure. Fig. 12 shows the category of malwares tested with

our tracing tool.

Fig. 12. Malware categories.

As an example application of our tracing tool, normalized

API feature vectors were obtained by analyzing the trace files

created from the collection of malware infected apps that

belong to the same category. Normalized API feature vector

contains the most frequently invoked resource-critical APIs

along with their normalized frequencies obtained from the

aggregate frequencies. For example, we obtained a

normalized feature vector set for DroidKungfu3 malware

category. Data structure appropriate for dictionary style of

data needs to be employed in obtaining these, and we adopted

hash table in our implementation.

V. CONCLUSION

Our experiments’ goal was to develop an efficient API call

tracing tool for dynamic app behavior analysis. This tool may

be applied to a wide range of applications including

designing effective malware detection techniques on mobile

devices. Project modules developed from the different

components in this tool will be incorporated into the

department’s Senior Capstone course at Bowie State

University. In the future, visualization components will be

added to the experiment to make the data easier to interpret.

We will design and implement a malware detection technique

based upon the finite state machine-based pattern

recognition.

International Journal of Information and Education Technology, Vol. 5, No. 6, June 2015

464

Fig. 11. Trace files are filtered and converted into CSV format. Only relevant

APIs with proper prefix class paths are extracted to be included in the CSV

file.

REFERENCES

[1] A. Desnos and G. Gueguen, Android: From reversing to decompilation,

Blackhat, 2011.

[2] W. Enck, M. Ongtang, and P. McDaniel, ―On lightweight mobile phone

application certification,‖ in Proc. the 16th ACM conference on

Computer and communications security, CCS ’09, New York, NY,

USA, 2009. ACM, pp. 235–245.

[3] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, ―SCanDroid: Automated

Security Certification of Android Applications,‖ Technical Report

CSTR- 4991, Department of Computer Science, University of

Maryland, College Park, November 2009.

[4] H. Kim, J. Smith, and K. G. Shin. ―Detecting energy-greedy anomalies

and mobile malware variants,‖ in Proc. the 6th international

conference on Mobile systems, applications, and services, MobiSys ’08,

pp. 239–252, New York, NY, USA, 2008, ACM.

[5] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel,

―Semanticallyrich application-centric security in android,‖ in Proc. the

2009Annual Computer Security Applications Conference, ACSAC ’09,

pp. 340 349, Washington, DC, USA, 2009.

[7] L. Liu, G. Yan, X. Zhang, and S. Chen. Virusmeter: Preventing your

cellphone from spies,‖ in Proc. the 12th International Symposium on

Recent Advances in Intrusion Detection, RAID ’09, pp. 244–264,

Berlin, Heidelberg, Springer-Verlag.-2792-2 50, 2009.

[8] A.-D. Schmidt, J. H. Clausen, A. Camtepe, and S. Albayrak. ―Detecting

symbian os malware through static function call analysis,‖ March 2006,

pp. 15–22, IEEE, 2009.

[9] A. Shabtai and Y. Elovici, ―Applying behavioral detection on

androidbased devices,‖ Mobilware, pp. 235–249, 2010.

[10] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,

―Andromaly: A behavioral malware detection framework for android

devices,‖ J. Intell. Inf. Syst., vol. 38, no. 1, pp. 161–190, 2012.

[11] P. Teufl, S. Kraxberger, C. Orthacker, G. Lackner, M. Gissing, A.

Marsalek, J. Leibetseder, and O. Prevenhueber, ―Android market

analysis with activation patterns,‖ Mobisec, 2011.

[12] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, ―Antimaldroid: An efficient

svmbased malware detection framework for android,‖ in C. Liu, J.

Chang, and A. Yang, editors, Communications in Computer and

Information Science, vol. 243, pp. 158–166, Springer, 2011.

[13] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, ―A

methodology for empirical analysis of permission-based security

models and its application to android,‖ in Proc. the 17th ACM

conference on Computer and communications security, pp. 73–84,

New York, NY, USA, 2010, ACM.

[14] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. ―Analyzing

interapplication communication in android,‖ in Proc. the 9th

international conference on Mobile systems, applications, and services,

MobiSys ’11, pp. 239–252, New York, NY, USA, 2011.

[15] F. D. Cerbo, A. Girardello, F. Michahelles, and S. Voronkova,

―Detection of malicious applications on android os,‖ in Proc. the 4th

international conference on Computational forensics, pp. 138–149,

Berlin, Heidelberg, 2011, Springer-Verlag.

[16] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, ―Systematic detection of

capability leaks in stock Android smartphones,‖ in Proc. the 19th

Network and Distributed System Security Symposium (NDSS), Feb.

2012.

[17] S. Kim, J. I. Cho, H. W. Myeong, and D. H. Lee, ―A study on static

analysis model of mobile application for privacy protection,‖ in J. J. J.

H. Park, H.-C. Chao, M. S. Obaidat, and J. Kim, editors, Computer

Science and Convergence, Lecture Notes in Electrical Engineering, pp.

529–540, Springer Netherlands, vol. 114, 2012.

[18] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. ―Detecting repackaged

smartphone applications in third-party android marketplaces,‖ in Proc.

the second ACM conference on Data and Application Security and

Privacy, CODASPY ’12, pp. 317–326, New York, NY, USA, ACM,

2012.

[19] B. Dixon, Y. Jiang, A. Jaiantilal, and S. Mishra, ―Location based power

analysis to detect malicious code in smartphones,‖ in Proc. the 1st

ACM workshop on Security and privacy in smartphones and mobile

devices, SPSM ’11, pp. 27–32, New York, NY, USA, ACM, 2011.

[20] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth, ―Taintdroid: An information-flow tracking system for

realtime privacy monitoring on smartphones,‖ in Proc. the 9th USENIX

conference on Operating systems design and implementation, OSDI’10,

pp. 1–6, Berkeley, CA, USA, USENIX Association, 2010.

[21] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, ―Vision: Automated

security validation of mobile apps at app markets,‖ in Proc. the second

international workshop on Mobile cloud computing and services,

MCS ’11, pp. 21–26, New York, NY, USA, ACM, 2011.

[22] U. Mitra, A. Ortega, J. Heidemann, and C. Papadopoulos, ―Detecting

and Identifying Malware: A New Signal Processing Goal,‖ IEEE

Signal Processing Magazine, pp. 107-111, September 2006.

[23] Android Deveopers. (April 15, 2014). Signing Your Applications.

[Online]. Available:

http://developer.android.com/tools/publishing/app-signing.html.

[24] Oracle. (April 15, 2014). Jarsigner - JAR Signing and Verification Tool.

[Online]. Available:

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/jarsigne

r.html.

[25] Android Deveopers. (April 15, 2014). Android Debug Bridge. Web.

[Online]. Available: http://developer.android.com/tools/help/adb.html.

[26] Android Deveopers. (April 15, 2014). Profiling with Traceview and

dmtracedump. Web. [Online]. Available:

http://developer.android.com/tools/debugging/debugging-tracing.html

Seonho Choi is currently a professor in the Computer

Science Department at Bowie State University, USA.

His primary research interests lie in the computer and

network security. In 1991, he received a B.S. in

computer science and statistics from Seoul National

University in Korea and a Ph.D. in computer science in

1997 from the University of Maryland, College Park,

USA.

Michael A. Bijou Jr. was born in Arlington, Virginia

in June 1990. He is pursuing an undergraduate degree

in computer science at Bowie State University, in

Bowie, Maryland. Mr. Bijou is focusing on security

research while studying at Bowie State.

He is currently a participant in the U.S. Army’s

Undergraduate Research Apprenticeship Program,

while concurrently acting as a research assistant to Dr.

Seonho Choi at Bowie State. Mr. Bijou has published four papers for the

National BDPA IT Showcase, and has submitted a paper for the 2014

International Conference on Appropriate Technology. He is currently

interested in mobile security and communications research.

Mr. Bijou is a member of the National BDPA’s Washington, D.C. chapter.

He is a two time Johnson and Johnson Scholar.

Kun Sun is a research professor in Center for Secure

Information Systems (CSIS) at George Mason

University, and will join the Computer Science

Department at College of William and Mary in

August 2014. He received his Ph.D. in computer

science from North Carolina State University in

2006. Dr. Sun was a research scientist in Intelligent

Automation Inc. between 2006 and 2010. His current

research focuses on trustworthy computing environment, moving target

defense, smart phone security, cloud security, and wireless security. Dr. Sun

is a member of IEEE and ACM.

International Journal of Information and Education Technology, Vol. 5, No. 6, June 2015

465

–

[6] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, ―Hey, you, get off of my

market: Detecting malicious apps in official and alternative Android

markets,‖ presented at the 19th Annual Network & Distributed System

Security Symposium, Feb. 2012.

―

[27] Wikipedia. (April 15, 2014). Comma-separated values. [Online].

Available: http://en.wikipedia.org/wiki/Comma-separated_values

[28] Y. J. Zhou and X. X. Jiang, ―Dissecting android malware:

characterization and evolution,‖ presented at the 33rd IEEE

Symposium on Security and Privacy San Francisco, CA, May 2012.

Edward Jung received both a B.S. degree (1987)

and a Ph.D. degree (1994) in computer science from

the University of Minnesota, Minneapolis, USA.

From 1994 to 2007, he worked at R&D labs (Bell

Labs, Samsung Research) where he was a director

of a security research group at Samsung prior to

moving to academia. During 2008-2009, he was a

Murray visting professor of computer science at

Rutgers University, New Brunswick, New Jersey,

USA. Since 2009, he has been an assistanct professor with the Computer

Science and Software Engineering Department at Southern Polytechnic State

University, Marietta/Atlanta, GA, USA. His primary research interestes lie in

the foundations of computer security, nework security, IP and design

protection, and optimization of sequential systems. Mr. Jung is a senior

member of the IEEE and a member of the ACM.

http://developer.android.com/tools/debugging/debugging-tracing.html
http://en.wikipedia.org/wiki/Comma-separated_values

