

Abstract—Software birthmark is a unique characteristic of

program extracted from a program without source code.

Through the comparison of original program and modified

program, code similarity can be measured. Furthermore,

birthmark can be used to measure the similarity of existing

program to detect code theft or malware. Software birthmark

can be mainly divided into static method and dynamic method.

In the related works using dynamic method, birthmark was

extracted by using API function name, call frequency, grammar

structure, opcode, etc. If birthmark is extracted through API

function name or call frequency, resilience can be increased but

it could cause false-positive in similarity. In addition, extraction

method using grammar structure or opcode could increase

similarity but it decreases resilience, thereby causing different

extraction result even for program with same structure. This

paper proposes a method that can simultaneously satisfy

resilience and uniqueness by reflecting unique characteristics

while maintaining the meaning of instruction through the

categorization according to instruction function and the

removal of consecutive duplication for dynamic software

birthmark, which will also be verified through experiment.

Index Terms—Dynamic software birthmark, code theft

detection, information security, dynamic analysis.

I. INTRODUCTION

Definition of `birthmark' is a mark or speckle on the body

(from birth). In the area of computer science, this terms has

been used to indicate a unique characteristic of program.

Accordingly, software birthmark indicates unique

information of program extracted from program execution

file. The purpose of extracting birthmark from program is to

measure the similarity between programs. Accuracy of

similarity changes based on how well unique characteristic of

program has been reflected. However, resilience decreases

when only uniqueness is concentrated. Resilience of

birthmark refers to the fact that similarity should be same

when program written with same source code has been built

in different compile. Accordingly, effective birthmark

extraction method simultaneously satisfies uniqueness and

resilience. Software birthmark was first proposed to detect

software code theft. Currently, it is also being used in digital

forensic areas for finding similarity in metamorphic malware

by extracting birthmark from various viruses, Trojan horse,

worms programs, etc [1]-[3].

Software birthmark can be divided into static birthmark

Manuscript received April 5, 2014; revised June 24, 2014.

The authors are with the School of Information and Communication

Engineering, Sungkyunkwan University, Korea (e-mail:

dhlee@security.re.kr, yschoi@security.re.kr, jwjung@security.re.kr,

jykim@security.re.kr, dhwon@security.re.kr).

and dynamic birthmark according to extraction method.

Static birthmark is extracted in file state without executing

program code. Accordingly, it is dependent upon execution

file format such as x86 PE(portable executable). As for the

advantage of static birthmark, overhead is less during

extraction as it targets program in file state and it is not

dependent upon analysis tool. Accordingly, it allows

real-time automation system design. However, it is difficult

to extract birthmark through automated method since

recovery of code becomes difficult when packing or code

obfuscation has been applied in program [4]-[10]. That's why

related works on static birthmark have been conducted under

the supposition that packing or obfuscation has not been

applied. In addition, compilers that create byte code such as

JAVA can extract relatively more accurate static birthmark

compared to binary execution file, but it is difficult to extract

by accurately analyzing code since accurate distinction

between code and data is not possible with binary execution

file. That's why dynamic birthmark method has been studied

to extract birthmark in executed state of program [5], [6], [8],

[9].

Dynamic software birthmark refers to a method of

extracting unique information from program in executed

state. Since information is extracted in executed state of

program in dynamic method, relatively more accurate unique

information can be extracted compared to static method. It

also has the advantage of being able to analyze even

obfuscated execution file. However, it is difficult to design

through real-time automation system due to its more

overhead that occurs duri- ng analysis process compared to

static extraction method [11].

As for the elements for extracting dynamic birthmark, API

function name, opcode, etc. are used to measure call

frequency for extraction. In addition, there is a method of

extracting through other elements such as grammar structure

or branch processing sentence structure. Although call

frequency such as API function name or opcode satisfies

resilience, it does not effectively reflect the unique

characteristic of program. In addition, there is a need to

increase the specificity of birthmark since false-positive

could occur in similarity measurement since functions

performed accordingly have been set with API functions

provided by OS.

The approach through function name or syntax frequency

cannot be distinguished from static method even though it is

dynamic method. However, using instruction sequence

analysis for extraction is not effective since the extraction

scope becomes massive. Accordingly, this paper proposes

extraction through instruction categorization to simul-

taneously satisfy the resilience and uniqueness of birthmark.

The composition of this paper is as follows. Section II

An Efficient Categorization of the Instructions Based on

Binary Excutables for Dynamic Software Birthmark

Donghoon Lee, Younsung Choi, Jaewook Jung, Jiye Kim, and Dongho Won

International Journal of Information and Education Technology, Vol. 5, No. 8, August 2015

571DOI: 10.7763/IJIET.2015.V5.570

mailto:dhlee@security.re.kr
mailto:yschoi@security.re.kr
mailto:jwjung@security.re.kr
mailto:jykim@security.re.kr
mailto:dhwon@security.re.kr

discusses software birthmark and other works related to this

paper. Section III introduces tools for extracting birthmark in

executed state program, and proposes birthmark extraction

method through instruction categorization. Section IV

verifies the approach through experiment, and we conclude

in Section V.

II. RELATED WORKS

Software birthmark is a unique characteristic for

identifying program without source code with binary alone.

The representative methods of detecting the similarity of

code using execution file are software birthmark and

software watermarking. With software watermark, similarity

is determined by installing information in execution file in

the form of watermark for detecting code theft such as

copyright and ownership. With software birthmark, code is

analyzed for extraction without including additional

information in execution file, unlike software watermarking

[12]. With dynamic birthmark, it is difficult to extract

automated birthmark since contents of birthmark is extracted

while executing program. In addition, contents of birthmark

change according to the execution environment or input

value. The advantage of dynamic birthmark is that it is strong

against code obfuscation with superior accuracy of analysis

result compared to static birthmark. The representative

dynamic birthmark include Tamada's “Dynamic software

birthmarks to detect the theft of windows applications",

Myles's “Detecting Software Theft via Whole Program Path

Birthmarks" and Schuler's “Dynamic Java API Birthmark"

[1], [13], [14]. In related works, call frequency of particular

syntax was extracted in the program default state. Such

method was proposed strictly as a method of bypassing code

obfuscation without differentiation from static extraction

method [15]. The advantage of dynamic analysis is in the

For the purpose of improving the issues of related works, a

method of reducing the volume of birthmark extraction

contents while not damaging the meaning of sequence is

proposed in this study by removing consecutive duplication

through the categorization of instruction.

III. PROPOSED METHOD

In this section, a method of extracting birthmark in

executed state program is proposed.

A. DBI Tools

In this paper, DBI (dynamic binary instrumentation) tool is

used to extract birthmark of program in executed state. The

DBI refers to a technology for inserting random code in

executed program to collect execution information with

special purposes (debugging, monitoring, statistic, etc.).

DBI tools include Dynamic RIO, Pin and Valgrind for

LINUX OS. As shown in Table I, Dynamic RIO and Pin

support Windows, Linux and Max OS. Valgrind only

supports Linux environment [17]. Pin tool, in particular, is an

official DBI tool of Intel Corporation. In this paper, Pin will

be used as a DBI tool to extract birthmark of binary program

developed through C, C++ in Windows OS environment [18],

[19].

Pin provides efficient instrumentation by using a

just-in-time (JIT) compiler to insert and optimize code. It

supports the IA32, EM64T, Itanium, and ARM architectures

running Linux.

TABLE I: DBI TOOLS FOR OPERATION SYSTEMS

DBI WIN LINUX MAX OS X

PIN ○ ○ ○

Dynamic RIO ○ ○ ○

Valgrind ○

Pin compiles from one ISA directly into the same ISA (e.g.,

IA32 to IA32, ARM to ARM) without going through an

intermediate format, and the compiled code is stored in a

software-based code cache.

The Pin API makes it possible to observe all the

architectural state of a process, such as the contents of

registers, memory, and control flow. It uses a model similar

to ATOM, where the user adds procedures (as known as

analysis routines in ATOM’s notion) to the application

process, and writes instrumentation routines to determine

where to place calls to analysis routines. The arguments to

analysis routines can be architectural state or constants. Pin

also provides a limited ability to alter the program behavior

by allowing an analysis routine to overwrite application

registers and application memory [11].

 Routine (RTN_AddInstrumentFunction)

Add a function used to instrument at routine granularity.

 Image (IMG_AddInstrumentFunction)

Use this to register a call back to catch the loading of an

Image.

 Trace (TRACE_AddInstrumentFunction)

Add a function used to instrument at trace granularity.

 Instrumentation (INS_AddInstrumentFunction)

Add a function used to instrument at instruction

granularity.

In this paper, experiment will be conducted with module

developed with API of trace and routine of Pin. With routine

function, the state of program placed in virtual memory can

be extracted. With trace function, extraction can be

conducted from the entry point of program in instruction unit.

In Chapter 4, we experimented the difference of volume from

the birthmark extracted through two methods.

B. Categories of Functional Instructions

In the "Intel 64 and IA-32 Architectures Software

Developer’s Manual" provided by Intel Corporation, it

explains in details about instruction. Its categorization is as

follows according to the characteristics of instructions.

International Journal of Information and Education Technology, Vol. 5, No. 8, August 2015

572

executed instruction itself. With Lianhong's

“Instruction-words based Software Birthmark”, birthmark is

extracted through the frequency of instruction word [16]. In

addition, Bin's “A Software Birthmark Based on Dynamic

Opcode n-gram” is also a method of extracting birthmark

using opcode of program [2]. The birthmark extraction

method using instruction decreased resilience by only

reflecting unique characteristics of program while causing

overhead by analyzing massive amounts of instruction

sequence.

International Journal of Information and Education Technology, Vol. 5, No. 8, August 2015

573

TABLE II: CATEGORIES OF INSTRUCTIONS TO THE INTEL’S MANUAL AND PIN

GENERAL CATEGORY PIN’s CATEGORY INSTRUCTIONS

Data Transfer

DATAXFER mov, movsx, movzx, movd, movdqa, etc.

POP pop, popad, popfd, etc.

PUSH push, pushfd, pushad, etc.

Binary Arithmetic BINARY add, cmp, sub, imul, inc, dec, neg, adc, etc.

Decimal Arithmetic DECIMAL aas, aad, aam, daa, das, etc.

Logical LOGICAL xor, or, test, and, not, pxor, pandn, andpd, orpd

Shift and Rotate
ROTATE rcr, ror, rol, rcl, etc.

SHIFT shl, sar, shr, shrd, shld, etc.

Bit and Byte BITBYTE btr, bts, setz, setnz, bt, bsf, etc.

Control Transfer

COND_BR jnz, jz, jbe, jns, jnl, jb, jle, jnb, loop, jecxz, etc.

UNCOND_BR jmp

CALL call

RET ret, iret

INTERRUPT int, int3, int0, int1, bound, etc.

String STRINGOP lodsd, movsd, rep, stosd, scasb, scasd, lodsb, movsw, etc.

I/O
IO in, out

IOSTRINGOP outsb, insb, outsd, insd

Enter and Leave/Miscellaneous
MISC lea, leave, cupid, pause, enter, xlat, sfence, etc.

NOP nop

Flag Control (EFLAG) FLAGGOP std, cld, lahf, cli, sti, sahf, cmc, clc, etc.

Segment Register SEGOP les, lds

1) Data Transfer Instructions: The data transfer

instructions move data between memory and the

general-purpose and segment registers. They also

perform specific operations such as conditional moves,

stack access, and data conversion.

instructions: mov, push, pop, etc.

2) Binary Arithmetic Instructions: The binary arithmetic

instructions perform basic binary integer computations

on byte, word, and doubleword integers located in

memory and/or the general purpose registers.

instructions : add, sub, mul, div, etc.

3) Decimal Arithmetic Instructions: The decimal arithmetic

instructions perform decimal arithmetic on binary coded

decimal (BCD) data.

instructions : daa, das, aaa, aas, etc.

4) Logical Instructions: The logical instructions perform

basic AND, OR, XOR, and NOT logical operations on

byte, word, and doubleword values.

instructions : and, or, xor, not.

5) Shift and Rotate Instructions: The shift and rotate

instructions shift and rotate the bits in word and

doubleword operands.

instructions: shr, shrd, shld, ror, rol, etc.

6) Bit and Byte Instructions: Bit instructions test and

modify individual bits in word and doubleword

operands. Byte instructions set the value of a byte

operand to indicate the status of flags in the EFLAGS

register.

instructions : bt, bts, btr, sets, setns, test, etc.

7) Control Transfer Instructions: The control transfer

instructions provide jump, conditional jump, loop, and

call and return operations to control program flow.

instructions : jmp, je, jz, jne, jnz, loop, call, ret, etc.

8) String Instructions: The string instructions operate on

strings of bytes, allowing them to be moved to and from

memory.

instructions: movs, cmp, scas, lods, stos, rep, etc.

9) I/O Instructions: These instructions move data between

the processor’s I/O ports and a register or memory.

instructions : in, out, ins, outs, etc.

10) Enter and Leave Instructions: These instructions

provide machine-language support for procedure calls in

block-structured languages.

instructions : enter, leave, etc.

11) Miscellaneous Instructions: The miscellaneous

instructions provide such functions as loading an

effective address, executing a “no-operation,” and

retrieving processor identification information.

instructions : lea, nop, cupid, movbe, etc.

12) Flag Control (EFLAG) Instructions: The flag control

instructions operate on the flags in the EFLAGS register.

instructions : stc, clc, cmc, cld, std, sti, cli, etc.

13) Segment Register Instructions: The segment register

instructions allow far pointers (segment addresses) to be

loaded into the segment registers.

instructions : lds, les, lfs, lgs, lss.

In the “Intel 64 and IA-32 Architectures Software

Developer’s Manual", categorization of general-purpose

instruction is based on method of use and function [20]. This

instruction category can increase resilience during extraction

of software birthmark by being divided into wide range but it

could cause false-positive in similarity. Accordingly, it is

difficult to apply it in the method proposed in this paper.

Pin provides the INS_Category function of converting

instruction code into instruction category. As shown in Table

II, instruction category of Pin has been divided more

specifically than the general-purpose instruction of the

Intel's manual. What we want is to extract birthmark through

the level between the general-purpose instruction of the

Intel's manual and the instruction category of Pin. That's why

we are categorizing instruction categorization of Pin once

again in middle level to simultaneously satisfy resilience and

similarity.

C. Regrouping of Instruction Categories

In Table III, instruction categorization of Pin that has been

categorized relatively in specific was categorized once again

among categories with similar function. Category with clear

property such as DATAXFER, INTERRUPT and STRING

was applied without any change. In addition, category of

POP and PUSH will also be applied without any change since

it has important meaning of reading or writing value to stack

and it is a collection of frequently used commands. However,

COND_BR and UNCOND_BR will be merged as BRANCH

since they are same branch processing with difference in

existence of condition. In addition, CALL or RET category is

a collection of instructions that have significant effects on

program flow in spite of very small number of instructions.

Accordingly, this will also be applied without any change.

Such instruction categorization will consists of table in

source code for experiment. In addition, instruction set such

as MMX, SSE and X87 FPU was not dealt with in this paper

since it only applies to general-purpose instruction. In the

experiment, instruction category in addition to general

purpose instruction will be applied without any change in the

instruction categorization of Pin.

TABLE III: REGROUPING OF INSTRUCTIONS CATEGORIES

PIN PROPOSE

DATAXFER DATAXFER

POP POP

PUSH PUSH

BINARY
ARITHMETIC

DECIMAL

LOGICAL LOGICAL

ROTATE
ROTSFT

SHIFT

BITBYTE BITBYTE

COND_BR
BRANCH

UNCOND_BR

CALL CALL

RET RET

INTERRUPT INTERRUPT

STRINGOP STRING

IO
IO

IOSTRINGOP

MISC MISC

NOP NOP

FLAGGOP
FLAGSEG

SEGOP

D. Implementation

Fig. 1. The architecture of dynamic birthmark system.

Fig. 1 shows the process of creating software birthmark

through the instruction categorization proposed in this paper.

The creation process is divided into 5 steps. In addition,

extraction of instruction sequence in step b will be conducted

through the instrumentation APIs provided by Pin in the

user-defined module in step a. As discussed in Verse 3.1, we

will approach through the two methods of routine function

(RTN_AddInstrumentFunction) and trace function (TRACE_

AddInstrumentFunction). Fig. 2 shows the change in the

instruction sequence created in each step of b, c, and d.

Fig. 2. Column of text.

International Journal of Information and Education Technology, Vol. 5, No. 8, August 2015

574

 Start Step

Program to extract and module developed through

instrumentation API are entered into PIN’s engine for

execution.

 Step of extracting instruction sequence

One of routine method and trace method is selected to

extract instruction sequence.

IV. EXPERIMENT

For the purpose of extracting dynamic birthmark, we

discussed earlier about a method of simultaneously satisfying

resilience and similarity by reflecting unique characteristic

while not damaging its meaning from the sequence of

instruction through the categorization of instructions. In this

section, this will be verified through two types of

experiments. In the first experiment, we experimented the

decrease in volume of the extraction result of birthmark.

Massive collection of the instructions of program causes

much overhead in comparing similarity.

TABLE IV: EXPERIMENT OF SOFTWARE BIRTHMARK CAPACITY

Program Version File Size
Routine Trace

All Ins Categorization Ins All Ins Categorization Ins

7z.exe 9.20 160kb 29,832kb 45kb 848kb 31kb

DOSBox.exe 0.74 3640kb 77,259kb 80kb 2,820kb 156kb

Javac.exe 1.7 16kb 47,439kb 67kb 7,415kb 275kb

PEview.exe 0.9 66kb 77,515kb 94kb 10,680kb 417kb

qemu.exe 0.10 1,413kb 43,210kb 54kb 1,147kb 43b

Fig. 3. Compared the capacity of birthmark through Routine function.

Fig. 4. Compared the capacity of birthmark through trace function.

As shown in Table IV, we conducting benchmarking with

five execution files of different capacities. We were able to

reduce birthmark volume up to in the average of 95% through

our proposal, as shown in the experiment result. As the

volume decreased, it could be effective in measuring

similarity and the meaning of instruction sequence was not

damaged. In Fig. 3 and Fig. 4, we measured to compare our

proposed birthmark approach and all over instruction

sequences with both RTN_InstruemntFunction and TRACE_

InstrumentFunction. It is worth stating at this point that a

excutable program sequences is kept by semantically control

flow, even though it have removed for instructions with

consecutive duplication. In the second experiment, we

developed a simple program and the program source code

was slightly modified to compare the similarity of each

program that has been built.

Fig. 5. Similarities between simple programs.

As shown in Fig. 5, additionally modified area in its

meaning can be easily found even consecutive duplication is

removed through the categorization of instruction. Through

this experiment, we can estimate that more accurate similarity

can be measured than the syntax frequency measurement of a

certain element that already exists also in a more expanded

program or an entirely different program.

V. CONCLUSION

Software birthmark refers to a technology of extracting

unique characteristics of program. This can be used in

detecting software theft or malware by comparing the

similarity between programs. Software birthmark can be

divided into static birthmark and dynamic birthmark

International Journal of Information and Education Technology, Vol. 5, No. 8, August 2015

575

 Step of replacement through instruction categorization

table

Original instruction is replaced through instruction

categorization table.

 Step of removing consecutive duplication

When an instruction of instruction sequence occurs

consecutively for more than twice, duplication is removed by

removing it in instruction sequence.

 Step of creating birthmark

Result of removing consecutive duplication with

instruction categorization is created as birthmark.

International Journal of Information and Education Technology, Vol. 5, No. 8, August 2015

576

according to extraction method. Since information is

extracted in executed state of program in dynamic method,

relatively more accurate unique information can be extracted

compared to static method. However, birthmark was

extracted in related works through elements that are

insufficient in simultaneously satisfying the resilience and

uniqueness of program. In this paper, birthmark extraction

method through instruction categorization was proposed to

simultaneously satisfy resilience and uniqueness. This

proposal increased efficiency in measuring similarity by

reducing the massive amounts of instruction sequence up to

in the average of 95%. In addition, it was verified that

instruction sequence does not become damaged in its

meaning in spite of categorization through the comparison of

birthmark between programs. Software birthmark is an

advancing technology that is being widely used in the area of

digital forensic such as code theft. It is expected that program

uniqueness and resilience can be increased by extracting

birthmark through the method proposed in this paper.

ACKNOWLEDGMENT

This research was supported by Basic Science Research

Program through the National Research Foundation of Korea

(NRF) funded by the Ministry of Science, ICT and Future

Planning (2014R1A1A2002775).

REFERENCES

[1] H. Tamada, K. Okamoto, M. Nakamura, and A. Monden, “Dynamic

software birthmarks to detect the theft of windows applications,”

presented at International Symposium on Future Software Technology,

Oct. 004.

[2] B. Lu, F. Liu, X. Ge, B. Liu, and X. Luo, “A software birthmark based

on dynamic opcode n-gram,” in Proc. International Conference on

Semantic Computing (ICSC 2007), Sep. 2007, pp. 37–44.

[3] H.-I. L. S. Choi, H. Park, and T. Han, “A static api birthmark for

windows binary executables,” The Journal of Systems and Software,

vol. 82, no. 5, pp. 862–873, May 2009.

[4] G. Myles and C. Collberg, “Software theft detection through program

identification,” The University of Arizona, 2006.

[5] S. Choi, H. Park, H. I. Lim, and T. Han, “A static birthmark of binary

executables based on API call structure,” Advances in Computer

Science–ASIAN 2007, pp. 2–16, 2007.

[6] C. Linn and S. Debray, “Obfuscation of executable code to improve

resistance to static disassembly,” in Proc. the 10th ACM conference on

Computer and communications security, Oct. 2003, pp. 290–299.

[7] J. Kim, D. Lee, W. Jeon, Y. Lee, and D. Won, “Security analysis and

improvements of Two-Factor mutual authentication with key

agreement in wireless sensor network,” Sensors, vol. 14, no. 4, pp.

6443-6462, April 2014.

[8] Y. Choi, D. Lee, J. Kim, J. Jung, J. Nam, and D. Won, “Security

enhanced user authentication protocol for wireless sensor networks

using Elliptic curves,” Sensors, vol. 14, no. 6, pp. 10081-10106, Jun.

2014.

[9] J. Nam, K.–K. R. Choo, J. Kim, H.-K. Kang, J. Kim, J. Paik, and D.

Won, “Method for extracting valuable common structures from

heterogeneous rooted and labeled tree data,” Journal of Information

Science and Engineering, vol. 30, no. 3, pp. 787-817, May, 2014.

[10] W. Jeon, J. Kim, J. Nam, Y. Lee, and D. Won, “An enhanced secure

authentication scheme with anonymity for wirelessenvironment,”

IEICE Transactions on Communications, vol. E95-B, no. 7, pp.

2505-2508, July 2012.

[11] C. K. Luk, R. Cohn, R. Muth, H. Patil, and A. Klauser, “Pin: building

customized program analysis tools with dynamic instrumentation,”

Acm Sigplan Notices, vol. 40, no. 6, pp. 190–200, June 2005.

[12] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing,

and obfuscation-tools for software protection,” IEEE Transaction on

software engineering, vol. 28, no. 8, pp. 735–746, 2002.

[13] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for

java,” in Proc. the Twenty-Second IEEE/ACM International

Conference on Automated Software Engineering, pp. 274–283, Nov.

2007.

[14] G. Myles and C. Collberg, “Detecting software theft via whole program

path birthmarks,” Information Security, Berlin, Heidelberg: Springer,

pp. 404–415, 2004.

[15] T. H. S. Choi and W. Cho, “A functional unit dynamic api birthmark for

windows programs code theft detection,” Journal of KIISE, vol. 36, no.

9, pp. 767–776, Sep. 2009.

[16] L. Ma, Y. Wang, F. Liu, and L. Chen, “Instruction-Words based

software birthmark,” in Proc. 2012 Fourth International Conference

on Multimedia Information Networking and Security (MINES), Nov.

2012, pp. 909–912.

[17] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight

dynamic binary instrumentation,” ACM SIGPLAN Notices, vol. 42, no.

6, pp. 89–100, 2007.

[18] S. Berkowits. PIN - A Dynamic Binary Instrumentation Tool. [Online].

Available:

http://www.software.intel.com/enus/articles/pin-a-dynamic-binary-ins

trumentation-tool

[19] Intel Corporation. (2012). Pin 2.11 User Manual. [Online]. Available:

http://rogue.colorado.edu /Pin

[20] Intel Coporation, 64 and IA-32 Intel Architecture Software Developer’s

Manual Combined, June 2013.

Donghoon Lee received the B.S. degree of computer

science from National Institute for Lifelong

Education (NILE), Korea, in 2009 and the M.S.

degree in electrical and computer engineering from

Sungkyunkwan University, Korea, in 2011. He is

currently undertaking a Ph.D. course on electrical and

computer engineering in Sungkyunkwan University.

His current research interests include malware

detection, cryptography, software engineering and information security.

Younsung Choi received the B.S. degree in electrical

and computer engineering from Sungkyunkwan

University, Korea, in 2006 and the M.S. degree in

electrical and computer engineering from

Sungkyunkwan University, Korea, in 2007. He is

currently undertaking a Ph.D. course on electrical and

computer engineering in Sungkyunkwan University.

His current research interests include digital forensic,

cyber-crime, cryptography, authentication protocol, and mobile security.

Jaewook Jung received the B.S. degree in electrical

and computer engineering from Korea Aerospace

University, Korea, in 2010 and the M.S. degree in

electrical and computer engineering from

Sungkyunkwan University, Korea, in 2012. He is

currently undertaking a Ph.D. course on electrical and

computer engineering in Sungkyunkwan University.

His current research interests include cryptography,

forensic, authentication protocol, and mobile security.

Jiye Kim received the B.S. degree in Information

Engineering from Sungkyunkwan University, Korea,

in 1999 and the M.S. degree in Computer Science

Education from Ewha Womans University, Korea, in

2007. He is currently undertaking a Ph.D. course on

Electrical and Computer Engineering in

Sungkyunkwan University. His current research

interests include cryptography, forensic,

authentication protocol, and information security.

Dongho Won received his B.E., M.E., and Ph.D.

from Sungkyunkwan University in 1976, 1978, and

1988, respectively. After working at ETRI

(Electronics & Telecommunications Research

Institute) from 1978 to 1980, he joined

Sungkyunkwan University in 1982, where he is

currently a professor of the School of Information and

Communication Engineering. In the year 2002, he

served as the president of KIISC (Korea Institute of Information Security &

Cryptology). He was the Program Committee Chairman of the 8th

International Conference on Information Security and Cryptology (ICISC

2005). His current research interests include cryptology and information

security.

