

Abstract—Achieving high performance without proper

scheduling of application tasks is impossible in a heterogeneous

environment. To solve such an issue, in this paper, a new static

scheduling algorithm is proposed called expected completion

time based scheduling (ECTS) algorithm, which is used to

effectively schedule application tasks on to the heterogeneous

processors. The ECTS algorithm finds the task sequence for

execution by assigning priority and then maps the selected task

sequence on to the processors. In order to give the comparison

of proposed algorithm over the existing algorithms, a real Fast

Fourier application graphs are considered as experimental test

case. The results show the effectiveness of the proposed

algorithm to those presented previously. The algorithm is

mainly focused on producing minimum makespan.

Index Terms—Directed acyclic graph, heterogeneous

distributed systems, heuristic algorithm, static task scheduling.

I. INTRODUCTION

The availability of high speed networks and diverse sets of

resources lead to a new platform, called as heterogeneous

platform. Such a platform contains interconnected resources

with different computing capabilities and different

computing speeds. To run an application in this

heterogeneous environment, several issues need to be

considered such as partitioning the application, scheduling

the tasks, etc. Task scheduling is one of the key factors for

achieving high performance in heterogeneous environment

since an improper schedule of tasks can fail to exploit the

computing capability of available resources in that platform.

So the efficiency of executing applications on heterogeneous

systems depends on the method we used to schedule tasks

onto the available processors. The main objective of task

scheduling is to map the tasks onto the available processors

and order their execution without violating the precedence

constraints and with the aim of producing minimum schedule

length [1].

Generally the task scheduling algorithms are classified into

two classes, static and dynamic. In static scheduling,

decisions can be made at compile-time, since the application

characteristics such as execution time of tasks, data

dependencies between the tasks and the amount of data to be

transferred between the tasks are known priori, whereas in

the dynamic scheduling decisions are made at run time [2].

The static task scheduling for a heterogeneous distributed

computing system is an NP-complete problem [1], which

means that there is no known algorithm that finds the optimal

Manuscript received November 11, 2011; revised November 27, 2011.

Authors are with Department of Computer Applications, National

Institute of Technology, Tiruchirappalli - 620015, Tamilnadu, India (e-mail:

eswari@nitt.edu; nickolas@nitt.edu).

solution in polynomial time. Several heuristics algorithms

have been proposed for homogeneous and heterogeneous

systems for finding sub-optimal solutions. These heuristics

are categorized into several groups, such as list-based

algorithms, clustering algorithms, guided random search

algorithms, and duplication-based algorithms. Among these

algorithms, the list-based scheduling algorithms provide

good quality of schedules and performance [3].

In list scheduling heuristics, a priority list is generated

from the given graph, which contains ordered list of tasks

with its priority. The tasks are selected based on its priority

and are assigned to the best processors which minimize its

execution time. Some well known list scheduling algorithms

are heterogeneous earliest finish time algorithm (HEFT) [1],

critical path on a processor (CPOP) [1], and Performance

Effective Task Scheduling (PETS) [4] algorithm.

In clustering heuristics, a set of tasks that communicate

among themselves are grouped together to create a cluster. If

the number of created clusters is greater than the number of

available processors, then clusters are merged so that the

remaining number of clusters equals the number of

processors. Finally, clusters are mapped to the available

processors and task ordering within each processor is

determined. If two tasks are assigned to the same cluster, they

will be executed on the same processor. Mobility directed

(MD) [5] and clustering for heterogeneous processors (CHP)

[6] are examples of clustering algorithms.

Duplication based scheduling algorithms schedule a task

graph by executing the tasks redundantly that have high

number of dependent tasks, which reduces the interprocess

communication overhead. These algorithms can be applied

for an unbounded number of processors but they have much

higher scheduling complexity than the algorithms in other

group. Heterogeneous n-predecessor decisive path (HNPD)

[7], task duplication based scheduling (TDS) [8], and

heterogeneous economical duplication (HED) [9] are some of

the examples of duplication based scheduling algorithms.

Guided random scheduling algorithms make use of the

principles of evolution and natural genetics to evolve near-

optimal task schedules. Genetic Algorithms [10] are most

popular and widely used technique for task scheduling

problem.

In this paper a new heuristic algorithm is proposed, called

Expected Completion Time based Scheduling Algorithm for

a bounded number of heterogeneous processors and is based

on list-scheduling heuristics. The motivation behind this

algorithm is to generate a high quality task schedules that are

necessary to achieve high performance in heterogeneous

environment. The paper is organized as follows: Section II

describes the task scheduling problem. Section III gives an

overview of the related work. Section IV presents the

A Level-wise Priority Based Task Scheduling for

Heterogeneous Systems

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

371

R. Eswari and S. Nickolas, Member IACSIT

proposed algorithm with example. Section V discusses the

comparative and experimental analysis and Section VI

concludes with future work.

II. PROBLEM DESCRIPTION

In a distributed environment, an application is decomposed

into multiple tasks with data dependencies among them. It

can be represented by a directed acyclic graph (DAG), G (T,

E), where T is the set of „n’ tasks and E is the set of „e’ edges

between the tasks. Each task ti є T represents a task in the

distributed application, and each edge (ti, tj) є E represents a

precedence constraint, such that the execution tj starts after

the execution of ti. A task without any parent is called an

entry task (tentry), and a task without any child is called an exit

task (texit). Each edge (ti, tj) є E has a value that represents the

communication overhead when data is transferred from task ti

to task tj. A task can start execution on a processor only when

all data from its parents become available to that processor.

A heterogeneous distributed environment consists of a set

Q of m processors connected in a fully connected topology.

The following assumptions are made:

1) All inter-processor communications are performed

without contention.

2) Computation can be overlapped with communication.

3) Task execution of a given application is non-preemptive.

 The communication cost of the edge ei,j, which represents

the cost of transferring µi,j units of data from task ti scheduled

on processor pm to task tj scheduled on processor pn, is

defined as

 (1)

where Sm is the communication startup time of pm, µi,j is the

amount of data transferred from task ti to task tj, and Rm,n is

the communication time per transferred unit from pm to pn.

The average communication cost of sending data from task

ti to task tj is defined by

 (2)

where is the average communication startup costs over all

processors, is the average communication cost per

transferred unit over all processors. If ti and tj are on the same

processor then = 0 since intraprocessor communication is

negligible.

EST(ti, mj) and EFT(ti, mj) [1] are the earliest execution

start time and earliest execution finish time of task ti on

processor mj.

 (3)

 (4)

where is the actual finish time of a task tk on the

processor mj, avail[j] is the time that the processor mj is free

and it is ready to execute task ti. The inner max block in

equation (4) returns the ready time, i.e., the time when all data

needed by ti, has arrived at processor mj.

To compute EFT of a task ti, all immediate predecessor

tasks of ti must have been scheduled.

 (5)

where is the computation cost of task ti on processor mj.

After all tasks in a graph are scheduled, the schedule length

(overall execution time) will be the AFT of the exit task .

The schedule length also called makespan [1] is defined as

The objective function of task scheduling problem is to

assign tasks onto the available processors in such a way to

produce minimum schedule length.

III. RELATED WORK

This section presents two existing task scheduling

algorithms for heterogeneous systems, taken for comparison,

namely, heterogeneous-earliest-finish-time (HEFT) [1]

algorithm, and Performance Effective Task Scheduling

(PETS) [4] algorithm.

A. The Heterogeneous-Earliest-Finish-Time (HEFT)

Algorithm

HEFT algorithm has two phases: The task prioritizing

phase assigns value to each task called upward rank, ranku,

which is based on mean computation and mean

communication costs. The task list is then generated by

sorting the tasks in decreasing order of ranku. In processor

selection phase the unscheduled task which has the highest

upward rank is selected and assigned to the processor that

minimizes its finish execution time, using the insertion-based

scheduling policy.

B. The Performance Effective Task Scheduling (PETS)

Algorithm

This algorithm starts with level sorting phase in which

tasks at each level are sorted in order to group the tasks that

are independent of each other. The priority is computed and

assigned to each task using the attributes such as Average

Computation Cost which finds average computation cost of

each task on all processors, Data Transfer Cost which finds

the amount of communication cost incurred to transfer the

data from a task to all its immediate successors tasks and the

Rank of Predecessor Task calculates the highest rank of all

immediate predecessor tasks for any particular task. The

tasks are selected and assigned to the processor which gives

minimum finish time.

IV. PROPOSED ALGORITHM

The proposed Expected Completion Time based

Scheduling (ECTS) algorithm [11] is given in Fig.1. It

consists of two phases namely, Task Prioritization phase and

Processor Selection phase. The first phase consists of two

stages. The first stage is called as level wise task priority in

which the priority of each task at each level is computed and

the second stage is called as task selection in which the tasks

are selected from all levels based on their priority. And in the

second phase, the selected tasks are assigned to the best

processor, which minimizes its completion time.

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

372

A. Task Prioritization Phase

The optimized schedule length depends on the order in

which tasks are generated. In this phase an ordered task list is

generated for execution by two stages.

Fig. 1. ECTS algorithm

Stage 1 – Level-wise Task Priority: In this first stage, the

priority of all tasks at each level is computed based on their

average computation cost and maximum data arrival cost.

The Average Computation Cost of all tasks for the given

graph is calculated using the equation (7).

Definition 1. Given a DAG with n tasks and m processors,

the Average Computation Cost (ACC) of a task (ti) is

computed by dividing the sum of computation cost of the task

on each processor by the number of available processors.

 (7)

where is the estimated execution time to complete task ti

on processor mj.

A task can have more than one parent. Hence, the

Completion time of any task depends on the highest Data

Arrival Cost among its parents in addition to its average

computation, as given in definition 2.

Definition 2. Given a DAG with n tasks and e edges, the

Maximum Data Arrival Cost (MDAC) of a task (tj) is the

highest amount of time that the task needs to spend to receive

data among its parents.

 (8)

where ti is the set of predecessors of task tj.

For the given graph, the MDAC value for the first task at

level-1 is 0, since it is an entry task. The MDAC value for all

tasks at level-2 and the first task (t7) of level-3 is their data

arrival cost, since they have only one parent, whereas the

second task (t8) of level-3 has three parents such as t2, t4, t6

and their data transfer costs are 19, 27, and 15 respectively.

The highest data arrival cost (MDAC), 27 is assigned to task

t8 from its parent t4. In this way the MDAC value for all tasks

for the given graph is assigned by definition 2.

The Expected Completion Time of all tasks is calculated as

per the definition 3.

Definition 3. The Expected Completion Time (ECT) of a

task (tj) is computed by summing the average computation

cost of that task and maximum data arrival cost of the same

task.

 (9)

Fig. 2. Sample DAG

TABLE I: COMPUTATION COST MATRIX

Task M1 M2 M3

t1 14 16 9

t2 13 19 18

t3 11 13 19

t4 13 8 17

t5 12 13 10

t6 13 16 9

t7 7 15 11

t8 5 11 14

t9 18 12 20

t10 21 7 10

For the given graph (fig.2.), the ECT value for the entry

task is its ACC, so t1 has the ECT value 13. The ECT value

for the tasks with single parent is calculated by adding data

arrival cost with its average computation cost. Hence ECT

value for all tasks at level-2 and the first task at level-3 is

shown in TABLE II. The ECT value for the tasks that are

having more than one parent is computed by adding their

ACC with MDAC. So, the ECT value for the second task (t8)

at level-3 is 37, where its ACC is 10 and MDAC is 27.

Likewise the ECT value is computed for all tasks. The

computed value of ACC, MDAC and ECT of all tasks is

shown in TABLE II.

TABLE II: PRIORITY COMPUTATION FOR THE GIVEN GRAPH

Level Task ACC
Parent

tasks
MDAC ECT Priority

1 1 13 0 0 13 1

2

2

2

2

2

2

3

4

5

6

16.667

14.333

12.667

11.667

12.667

1

1

1

1

1

18

12

9

11

14

34.667

26.333

21.667

22.667

26.667

1

3

5

4

2

3

3

3

7

8

9

11

10

16.667

3

2,4,6

2,4,5

23

27

23

34

37

39.667

3

2

1

4 10 14.667 7,8,9 17 31.667 1

Stage 2 – Task Selection: This is the second stage of Task

Prioritization phase in which all tasks at each level are sorted

in non-increasing order of their ECT value, which is

computed in the first stage and priority is assigned to them. A

task which is having the highest ECT is given higher priority

and the tasks are selected by their priority. Thus the task

sequence arrived by the proposed algorithm for the given

graph is t1 – t2 – t6 – t3 – t5 – t4 – t9 – t8 –t7 – t10.

14

11 13

15 13

23 23 16
27

17

19

11 12 9
18

t2

t3

t4

t5

t6

t7

t1

t8

t9

t1

0

Read the DAG with the corresponding attributes such as

 computation cost, communication, number of processors

While unscheduled tasks in the DAG do

For each level Li in the DAG do

 For each task ti in the level Li do

 Find Average Computation Cost, Maximum Data Arrival Cost,

 and Expected Completion Time

 End For

 Sort all tasks in decreasing order of ECT and

 assign priority for each task

 Select tasks from the level by its priority

End For

For each processor pk in the processor set do

 Compute earliest finish time of tj on pk using the insertion based policy

End For

 Assign task ti to the processor pk that minimizes its finish time

 End while

End

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

373

B. Processor Selection Phase

In this phase, the selected task is assigned to a processor in

the set of processors that minimizes its finish execution time

using the insertion-based scheduling policy [1]. When a

processor mj is assigned to a task ti, the insertion based

scheduling policy considers the possible insertion of the task

in an earliest idle time slot between two already-scheduled

tasks on that processor. This must be done without violating

the precedence constraints among tasks. An idle time slot on

processor mj is defined as the difference between execution

start time and finish time of two tasks that were consecutively

scheduled on the processor mj and should be greater than or

equal to the computation cost of the task to be scheduled. The

search starts from a time equal to the ready time of ti on mj,

and proceeds until it finds the first idle time slot with a

sufficient large time space to accommodate the computation

cost of ti on mj. If no such idle time slot is found, the

insertion-based scheduling policy inserts the selected task

after the last scheduled task on mj. If two processors are

producing same EFT for a selected task, then the following

selection strategies can be followed:

 Select processor randomly

 Select processor that is lightly loaded

Using the above processor selection strategy, all tasks of

the given graph have been scheduled in the order they are

selected for execution. The mapping of tasks and their

processor pair is shown in TABLE III.

TABLE III: TASKS AND PROCESSORS PAIR

Selected

Task

Selected

Processor

t1 M3

t2 M3

t6 M3

t3 M1

t5 M2

t4 M2

t9 M2

t8 M2

t7 M1

t10 M2

According to equation (3) the earliest starting time of the

entry task on any processor is 0. When compared with

processors M1 and M2, processor M3 has less computation

time. So task t1 is scheduled on M3. Similarly, for the next

task t2, the earliest finish time (EFT) is calculated by equation

(5). The task t2 is assigned to processor M3 which minimizes

its EFT compared to other processors. Likewise, the selected

task sequence is assigned to the available processors in such a

way to obtain minimum schedule length.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The effectiveness of the proposed algorithm is proved

theoretically for the given graph and experimentally for the

real application graph, Fast Fourier Transformation.

A. Comparison Metrics

The following metrics have been taken to evaluate the

proposed algorithm.

1) Schedule Length Ratio (SLR) is defined as the

normalized schedule length to the lower bound of the

schedule length. It is calculated using the following

formula.

The is the critical path of the unscheduled

application DAG based on the computation cost of tasks on

the fastest processor pj. The denominator is equal to the sum

of computation costs of tasks located on when they are

scheduled on pj.

2) The Speedup of a schedule is defined as ratio of the

schedule length obtained by assigning all tasks to the

fastest processor, to the parallel execution time

(makespan of the output schedule) of the task schedule.

B. Comparative Analysis

The sample DAG is shown in Fig.2 and its computation

cost matrix is given in Table I. The stepwise trace of the

proposed algorithm is given in Table II. For this graph the

generated schedule length of the ECTS algorithm is shown in

Fig.3.

Fig. 3. Schedule length of ECTS algorithm

The schedule length (makespan) comparison of the three

algorithms is shown in Fig.4. The schedule length of ECTS

algorithm is 73, which is shorter than the schedule length

generated by PETS and HEFT algorithms which are 77 and

80 respectively. It is observed that the proposed ECTS

algorithm is producing better schedule compared to the other

two algorithms.

Fig. 4. Schedule length comparison of three algorithms

C. Fast Fourier Transformation

A task graph of Fast Fourier Transformation [1] (FFT)

algorithm with respect to four data points is given in Fig.5.

t1

t2

t3 t5

t4
t6

t7

t9

t8

t10

0

10

20

30

40

50

60

70

80

P1 P2 P3

S
ch

ed
u

le
 L

en
g
th

Processors

0
10
20
30
40
50
60
70
80
90

S
ch

ed
u

le
 L

en
g

th

Algorithms

HEFT

PETS

ECTS

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

374

FFT is characterized by the size of the input vector (data

points).

Fig .5. FFT graph with four data points

For an input vector of size M, the total number of nodes in

the task graph is equal to . The

parameters such as number tasks, in degree and out degree

are not needed because the structure of the FFT application

graphs is already known. Communication to computation

cost ratio and range percentage of computation cost

(heterogeneity factor) are taken from the data sets given in [1].

The number of data points is taken as input, which various

from 2 to 16 incrementing powers of 2.

 Heterogeneity factor β, where is selected randomly

from a uniform distribution with range ,
where is the average computation cost of the

given graph, which is set randomly in the algorithm.

Then the computation cost of each task ti on each

processor mj is randomly set from the following range:

 Communication to computation ratio (CCR) is defined

as the ratio of the average communication cost to the

average computation cost.

D. Performance Results

The algorithm is implemented using C language in Intel

core i7-620M processor. For this experimentation around 885

numbers of FFT graphs have been generated. The

performance of the algorithm is compared with respect to

different number of data points, which varies from 2 to 16

incrementing powers of 2, and the result is shown in Fig.6.

Further the efficiency of the algorithm is compared for

various number of processors (2, 4, 8, 16, 32) and is shown in

Fig.7 and Fig.8.

Fig. 6. Average SLR for different data points

Fig. 7. Average SLR for different processors

The average SLR is reduced while increasing number of

processors and number of tasks for the case of ECTS

algorithm. The average speedup obtained for each of the

algorithms with respect to varying numbers of processors is

shown in the Fig.8. The ECTS algorithm is faster than other

algorithms for large number of tasks and processors as shown

from the graphs.

Fig. 8. Average speedu.

Finally, a comparison is made with respect to the quality of

schedules generated by each of the algorithms. On all

generated graphs, ECTS algorithm gives better or equal

performance than the PETS algorithm by 77.2% and the

HEFT algorithm by 80.4%.

From the above results, it can be observed that the

proposed ECTS algorithm outperforms when compared with

HEFT algorithm and gives competitive performance when

compared with PETS algorithm. Moreover, ECTS algorithm

gives better performance when the number of tasks and

processors were increased.

VI. CONCLUSION

In this paper, a non-preemptive static task scheduling

algorithm is proposed for heterogeneous computing systems.

The ECTS algorithm is evaluated for the real world FFT

application graphs. The scheduling performance of the

algorithm is compared with the existing HEFT and PETS

algorithms. The experimental results show that the

performance of ECTS algorithm increases with respect to

increase in the number of tasks. It can be tested for more real

applications graphs and enhancement can be made in terms of

time complexity and efficiency which are to be considered as

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5
3.75

4

2 4 8 16

A
v

er
a

g
e

S
L

R

Number of data points

ECTS

PETS

HEFT

0

0.5

1

1.5

2

2.5

3

2 4 8 16 32

A
v

er
a
g

e
S

L
R

Number of Processors

ECTS

PETS

HEFT

0

1

2

3

4

5

6

7

2 4 8 16 32

A
v

er
a
g

e
S

p
ee

d
u

p

Number of Processors

ECTS

PETS

HEFT

t3

t4

t5

t6

t7

t1

t9

t1

0

t8

t2

t1

1

t1

2

t1

3

t1

4

t1

5

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

375

future course of work. Also the effect of task duplication in

reducing schedule length can be considered in future.

REFERENCES

[1] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing,” IEEE

Trans. Parallel and Distributed Systems, vol. 13, no.3, pp. 260-274,

March 2002.

[2] L. Lee, H. Chang, K. Liu, G. Chang, and C. Lien, “A dynamic

scheduling algorithm in heterogeneous computing environments,”

IEEE W4B-4, ISCIT, pp. 313-318, 2006.

[3] C. Yang, P. Lee, and Y. Chung, “Improving static task scheduling in

heterogeneous and homogeneous computing systems,” in

International Conf. on Parallel Processing, 2007, pp. 45.

[4] E. Illavarasan and P. Thambidurai (February 2007). Low complexity

performance effective task scheduling algorithm for heterogeneous

computing environments. J. of Computer Sci. [Online]. 3(2). pp.

94-103. Available: http://thescipub.com/issue-jcs/3/2

[5] M. Wu and D. Gajski, “Hypertool: A Programming aid for message

passing systems,” IEEE Trans. on Parallel and Distributed systems,

vol.1, pp.330-343, July 1990.

[6] C. Boeres, J. V. Filho, and V. E. F. Rebello, “A cluster based strategy

for scheduling task on heterogeneous processors,” in Proc. of 16th

Symp. on Computer Architecture and High Performance Computing

(SBAC-PAD), 2004, pp.214-221.

[7] S. Baskiyar and C. Dickinson (May 2005). Scheduling directed

a-cyclic graph on a bounded set of heterogeneous processors using task

duplication. J. Parallel Distributed Computing, [Online]. 65. pp.

911-921. Available:

http://www.sciencedirect.com/science/article/pii/S0743731505000067

[8] S. Ranaweera and D. P. Agrawal, “A task duplication based scheduling

algorithm for heterogeneous systems,” in Proc. International Parallel

and Distributed Processing Symposium, 2000, pp. 445–450.

[9] A. Agarwal and P. Kumar, “Economical duplication based task

scheduling for heterogeneous and homogeneous computing systems,”

in IEEE International Advance Computing Conference, 2009, pp.6-7.

[10] S. C. Kim and S. Lee, “Push-pull: Guided search DAG scheduling for

heterogeneous clusters,” in International. Conf. on Parallel

Processing, 2005, pp.603-610.

[11] R. Eswari and S. Nickolas, “Expected completion time based

scheduling algorithm for heterogeneous processors,” in Proc. 2011

International Conf. Information Communication and Management,

IPCSIT vol.16 2011, pp.72-77.

R. Eswari, obtained M.E. in the field of Computer and

Communication from Anna University, Chennai,

Tamilnadu, India, and B.E. in the field of Computer

Science and Engineering from Bharathidasan

Univeristy, Tiruchirappalli, Tamilnadu, India. She is

pursuing Ph.D. degree from the department of

Computer Applications, National Institute of

Technology, Tiruchirappalli, Tamilnadu, India.
She secured first rank in her M.E. course. She is currently working as

Assistant Professor in the Department of Computer Applications, National

Institute of Technology, Tiruchirappalli, She is a life member of Computer

Society of India, and a member of IACSIT. Her research interest includes

scheduling in distributed systems, database management systems and data

structures.

S. Nickolas is currently working as Associate Professor

in the Department of Computer Applications, National

Institute of Technology, Tiruchirappalli, Tamilnadu,

India. He obtained his M.E. in the field of Computer

Science from Regional Engineering College,

Tiruchirappalli, and Ph.D. from National Institute of

Technology, Tiruchirappalli, in the year 2007

Dr. S. Nickolas has published 20 papers in International Conferences and 10

papers in International Journals. He is life member of ISTE, CSI, IE and also

member of IACSIT. His area of interest includes Database systems, Data

mining, Software metrics and Distributed systems.

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

376

