
  

 

Abstract—Achieving high performance without proper 

scheduling of application tasks is impossible in a heterogeneous 

environment. To solve such an issue, in this paper, a new static 

scheduling algorithm is proposed called expected completion 

time based scheduling (ECTS) algorithm, which is used to 

effectively schedule application tasks on to the heterogeneous 

processors. The ECTS algorithm finds the task sequence for 

execution by assigning priority and then maps the selected task 

sequence on to the processors. In order to give the comparison 

of proposed algorithm over the existing algorithms, a real Fast 

Fourier application graphs are considered as experimental test 

case. The results show the effectiveness of the proposed 

algorithm to those presented previously.  The algorithm is 

mainly focused on producing minimum makespan. 

 
Index Terms—Directed acyclic graph, heterogeneous 

distributed systems, heuristic algorithm, static task scheduling.  

 

I. INTRODUCTION 

The availability of high speed networks and diverse sets of 

resources lead to a new platform, called as heterogeneous 

platform. Such a platform contains interconnected resources 

with different computing capabilities and different 

computing speeds. To run an application in this 

heterogeneous environment, several issues need to be 

considered such as partitioning the application, scheduling 

the tasks, etc. Task scheduling is one of the key factors for 

achieving high performance in heterogeneous environment 

since an improper schedule of tasks can fail to exploit the 

computing capability of available resources in that platform. 

So the efficiency of executing applications on heterogeneous 

systems depends on the method we used to schedule tasks 

onto the available processors. The main objective of task 

scheduling is to map the tasks onto the available processors 

and order their execution without violating the precedence 

constraints and with the aim of producing minimum schedule 

length [1].  

Generally the task scheduling algorithms are classified into 

two classes, static and dynamic. In static scheduling, 

decisions can be made at compile-time, since the application 

characteristics such as execution time of tasks, data 

dependencies between the tasks and the amount of data to be 

transferred between the tasks are known priori, whereas in 

the dynamic scheduling decisions are made at run time [2]. 

The static task scheduling for a heterogeneous distributed 

computing system is an NP-complete problem [1], which 

means that there is no known algorithm that finds the optimal 
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solution in polynomial time. Several heuristics algorithms 

have been proposed for homogeneous and heterogeneous 

systems for finding sub-optimal solutions. These heuristics 

are categorized into several groups, such as list-based 

algorithms, clustering algorithms, guided random search 

algorithms, and duplication-based algorithms. Among these 

algorithms, the list-based scheduling algorithms provide 

good quality of schedules and performance [3]. 

In list scheduling heuristics, a priority list is generated 

from the given graph, which contains ordered list of tasks 

with its priority. The tasks are selected based on its priority 

and are assigned to the best processors which minimize its 

execution time. Some well known list scheduling algorithms 

are heterogeneous earliest finish time algorithm (HEFT) [1], 

critical path on a processor (CPOP) [1], and Performance 

Effective Task Scheduling (PETS) [4] algorithm. 

In clustering heuristics, a set of tasks that communicate 

among themselves are grouped together to create a cluster. If 

the number of created clusters is greater than the number of 

available processors, then clusters are merged so that the 

remaining number of clusters equals the number of 

processors. Finally, clusters are mapped to the available 

processors and task ordering within each processor is 

determined. If two tasks are assigned to the same cluster, they 

will be executed on the same processor. Mobility directed 

(MD) [5] and clustering for heterogeneous processors (CHP) 

[6] are examples of clustering algorithms. 

Duplication based scheduling algorithms schedule a task 

graph by executing the tasks redundantly that have high 

number of dependent tasks, which reduces the interprocess 

communication overhead. These algorithms can be applied 

for an unbounded number of processors but they have much 

higher scheduling complexity than the algorithms in other 

group. Heterogeneous n-predecessor decisive path (HNPD) 

[7], task duplication based scheduling (TDS) [8], and 

heterogeneous economical duplication (HED) [9] are some of 

the examples of duplication based scheduling algorithms. 

Guided random scheduling algorithms make use of the 

principles of evolution and natural genetics to evolve near- 

optimal task schedules. Genetic Algorithms [10] are most 

popular and widely used technique for task scheduling 

problem. 

In this paper a new heuristic algorithm is proposed, called 

Expected Completion Time based Scheduling Algorithm for 

a bounded number of heterogeneous processors and is based 

on list-scheduling heuristics. The motivation behind this 

algorithm is to generate a high quality task schedules that are 

necessary to achieve high performance in heterogeneous 

environment. The paper is organized as follows: Section II 

describes the task scheduling problem. Section III gives an 

overview of the related work. Section IV presents the 
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proposed algorithm with example. Section V discusses the 

comparative and experimental analysis and Section VI 

concludes with future work. 

 

II. PROBLEM DESCRIPTION 

In a distributed environment, an application is decomposed 

into multiple tasks with data dependencies among them. It 

can be represented by a directed acyclic graph (DAG), G (T, 

E), where T is the set of „n’ tasks and E is the set of „e’ edges 

between the tasks. Each task ti є T represents a task in the 

distributed application, and each edge (ti, tj) є E represents a 

precedence constraint, such that the execution tj starts after 

the execution of ti. A task without any parent is called an 

entry task (tentry), and a task without any child is called an exit 

task (texit). Each edge (ti, tj) є E has a value that represents the 

communication overhead when data is transferred from task ti 

to task tj. A task can start execution on a processor only when 

all data from its parents become available to that processor. 

A heterogeneous distributed environment consists of a set 

Q of m processors connected in a fully connected topology. 

The following assumptions are made: 

1) All inter-processor communications are performed 

without contention. 

2) Computation can be overlapped with communication. 

3) Task execution of a given application is non-preemptive. 

 The communication cost of the edge ei,j, which represents 

the cost of transferring µi,j units of data from task ti scheduled 

on processor pm to task tj scheduled on processor pn, is 

defined as 

                                           (1)                            

where Sm is the communication startup time of pm, µi,j is the 

amount of data transferred from task ti to task tj, and Rm,n is 

the communication time per transferred unit from pm to pn. 

The average communication cost of sending data from task 

ti to task tj is defined by 

                                              (2)            

where    is the average communication startup costs over all 

processors,    is the average communication cost per 

transferred unit over all processors. If ti and tj are on the same 

processor then     = 0 since intraprocessor communication is 

negligible. 

EST(ti, mj) and  EFT(ti, mj) [1] are the earliest execution 

start time and earliest execution finish time of task ti on 

processor mj. 

                                                                           (3) 

                           
           

                 

  (4) 

where         is the actual finish time of a task tk on the 

processor mj, avail[j] is the time that the processor mj is free 

and it is ready to execute task ti. The inner max block in 

equation (4) returns the ready time, i.e., the time when all data 

needed by ti, has arrived at processor mj.  

To compute EFT of a task ti, all immediate predecessor 

tasks of ti must have been scheduled. 

                                         (5)                      

where      is the computation cost of task ti on processor mj. 

After all tasks in a graph are scheduled, the schedule length 

(overall execution time) will be the AFT of the exit task      . 

The schedule length also called makespan [1] is defined as 

                                                

The objective function of task scheduling problem is to 

assign tasks onto the available processors in such a way to 

produce minimum schedule length.   

 

III. RELATED WORK 

This section presents two existing task scheduling 

algorithms for heterogeneous systems, taken for comparison, 

namely, heterogeneous-earliest-finish-time (HEFT) [1] 

algorithm, and Performance Effective Task Scheduling 

(PETS) [4] algorithm. 

A. The Heterogeneous-Earliest-Finish-Time (HEFT) 

Algorithm 

HEFT algorithm has two phases: The task prioritizing 

phase assigns value to each task called upward rank, ranku, 

which is based on mean computation and mean 

communication costs. The task list is then generated by 

sorting the tasks in decreasing order of ranku. In processor 

selection phase the unscheduled task which has the highest 

upward rank is selected and assigned to the processor that 

minimizes its finish execution time, using the insertion-based 

scheduling policy. 

B. The Performance Effective Task Scheduling (PETS) 

Algorithm 

This algorithm starts with level sorting phase in which 

tasks at each level are sorted in order to group the tasks that 

are independent of each other. The priority is computed and 

assigned to each task using the attributes such as Average 

Computation Cost which finds average computation cost of 

each task on all processors, Data Transfer Cost which finds 

the amount of communication cost incurred to transfer the 

data from a task to all its immediate successors tasks and the 

Rank of Predecessor Task calculates the highest rank of all 

immediate predecessor tasks for any particular task. The 

tasks are selected and assigned to the processor which gives 

minimum finish time.  

 

IV. PROPOSED ALGORITHM 

The proposed Expected Completion Time based 

Scheduling (ECTS) algorithm [11] is given in Fig.1. It 

consists of two phases namely, Task Prioritization phase and 

Processor Selection phase. The first phase consists of two 

stages. The first stage is called as level wise task priority in 

which the priority of each task at each level is computed and 

the second stage is called as task selection in which the tasks 

are selected from all levels based on their priority. And in the 

second phase, the selected tasks are assigned to the best 

processor, which minimizes its completion time. 
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A. Task Prioritization Phase 

The optimized schedule length depends on the order in 

which tasks are generated. In this phase an ordered task list is 

generated for execution by two stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. ECTS algorithm 

Stage 1 – Level-wise Task Priority: In this first stage, the 

priority of all tasks at each level is computed based on their 

average computation cost and maximum data arrival cost. 

The Average Computation Cost of all tasks for the given 

graph is calculated using the equation (7). 

Definition 1. Given a DAG with n tasks and m processors, 

the Average Computation Cost (ACC) of a task (ti) is 

computed by dividing the sum of computation cost of the task 

on each processor by the number of available processors. 

                     
 
                    (7) 

where      is the estimated execution time to complete task ti 

on processor mj. 

A task can have more than one parent. Hence, the 

Completion time of any task depends on the highest Data 

Arrival Cost among its parents in addition to its average 

computation, as given in definition 2. 

Definition 2. Given a DAG with n tasks and e edges, the 

Maximum Data Arrival Cost (MDAC) of a task (tj) is the 

highest amount of time that the task needs to spend to receive 

data among its parents.  

                        
                    (8) 

where ti is the set of predecessors of task tj. 

For the given graph, the MDAC value for the first task at 

level-1 is 0, since it is an entry task. The MDAC value for all 

tasks at level-2 and the first task (t7) of level-3 is their data 

arrival cost, since they have only one parent, whereas the 

second task (t8) of level-3 has three parents such as t2, t4, t6 

and their data transfer costs are 19, 27, and 15 respectively. 

The highest data arrival cost (MDAC), 27 is assigned to task 

t8 from its parent t4. In this way the MDAC value for all tasks 

for the given graph is assigned by definition 2.   

The Expected Completion Time of all tasks is calculated as 

per the definition 3.  

Definition 3. The Expected Completion Time (ECT) of a 

task (tj) is computed by summing the average computation 

cost of that task and maximum data arrival cost of the same 

task. 

                                       (9) 

 

Fig. 2. Sample DAG 

TABLE I: COMPUTATION COST MATRIX 

Task M1 M2 M3 

t1 14 16 9 

t2 13 19 18 

t3 11 13 19 

t4 13 8 17 

t5 12 13 10 

t6 13 16 9 

t7 7 15 11 

t8 5 11 14 

t9 18 12 20 

t10 21 7 10 

For the given graph (fig.2.), the ECT value for the entry 

task is its ACC, so t1 has the ECT value 13. The ECT value 

for the tasks with single parent is calculated by adding data 

arrival cost with its average computation cost. Hence ECT 

value for all tasks at level-2 and the first task at level-3 is 

shown in TABLE II. The ECT value for the tasks that are 

having more than one parent is computed by adding their 

ACC with MDAC. So, the ECT value for the second task (t8) 

at level-3 is 37, where its ACC is 10 and MDAC is 27. 

Likewise the ECT value is computed for all tasks. The 

computed value of ACC, MDAC and ECT of all tasks is 

shown in TABLE II. 

TABLE II: PRIORITY COMPUTATION FOR THE GIVEN GRAPH 

Level Task ACC 
Parent 

tasks 
MDAC ECT Priority 

1 1 13 0 0 13 1 

2 

2 

2 

2 

2 

2 

3 

4 

5 

6 

16.667 

14.333 

12.667 

11.667 

12.667 

1 

1 

1 

1 

1 

18 

12 

9 

11 

14 

34.667 

26.333 

21.667 

22.667 

26.667 

1 

3 

5 

4 

2 

3 

3 

3 

7 

8 

9 

11 

10 

16.667 

3 

2,4,6 

2,4,5 

23 

27 

23 

34 

37 

39.667 

3 

2 

1 

4 10 14.667 7,8,9 17 31.667 1 

Stage 2 – Task Selection: This is the second stage of Task 

Prioritization phase in which all tasks at each level are sorted 

in non-increasing order of their ECT value, which is 

computed in the first stage and priority is assigned to them. A 

task which is having the highest ECT is given higher priority 

and the tasks are selected by their priority. Thus the task 

sequence arrived by the proposed algorithm for the given 

graph is t1 – t2 – t6 – t3 – t5 – t4 – t9 – t8 –t7 – t10. 

14 

11 13 

15 13 
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Read the DAG with the corresponding attributes such as  

 computation cost, communication, number of processors 

While unscheduled tasks in the DAG do 

For each level Li in the DAG do 

      For each task ti in the level Li do 

            Find Average Computation Cost, Maximum Data Arrival Cost,  

 and Expected Completion Time  

      End For 

      Sort all tasks in decreasing order of ECT and  

          assign priority for each task 

      Select tasks from the level by its priority 

End For 

For each processor pk in the processor set do 

     Compute earliest finish time of tj on pk using the insertion based policy 

End For 

     Assign task ti to the processor pk that minimizes its finish time 

 End while 

End 
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B. Processor Selection Phase 

In this phase, the selected task is assigned to a processor in 

the set of processors that minimizes its finish execution time 

using the insertion-based scheduling policy [1]. When a 

processor mj is assigned to a task ti, the insertion based 

scheduling policy considers the possible insertion of the task 

in an earliest idle time slot between two already-scheduled 

tasks on that processor. This must be done without violating 

the precedence constraints among tasks.  An idle time slot on 

processor mj is defined as the difference between execution 

start time and finish time of two tasks that were consecutively 

scheduled on the processor mj and should be greater than or 

equal to the computation cost of the task to be scheduled. The 

search starts from a time equal to the ready time of ti on mj, 

and proceeds until it finds the first idle time slot with a 

sufficient large time space to accommodate the computation 

cost of ti on mj. If no such idle time slot is found, the 

insertion-based scheduling policy inserts the selected task 

after the last scheduled task on mj. If two processors are 

producing same EFT for a selected task, then the following 

selection strategies can be followed: 

 Select processor randomly 

 Select processor that is lightly loaded 

Using the above processor selection strategy, all tasks of 

the given graph have been scheduled in the order they are 

selected for execution. The mapping of tasks and their 

processor pair is shown in TABLE III. 

TABLE III: TASKS AND PROCESSORS PAIR 

Selected 

Task 

Selected 

Processor 

t1 M3 

t2 M3 

t6 M3 

t3 M1 

t5 M2 

t4 M2 

t9 M2 

t8 M2 

t7 M1 

t10 M2 

According to equation (3) the earliest starting time of the 

entry task on any processor is 0. When compared with 

processors M1 and M2, processor M3 has less computation 

time. So task t1 is scheduled on M3. Similarly, for the next 

task t2, the earliest finish time (EFT) is calculated by equation 

(5). The task t2 is assigned to processor M3 which minimizes 

its EFT compared to other processors. Likewise, the selected 

task sequence is assigned to the available processors in such a 

way to obtain minimum schedule length. 

 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

The effectiveness of the proposed algorithm is proved 

theoretically for the given graph and experimentally for the 

real application graph, Fast Fourier Transformation. 

A. Comparison Metrics 

The following metrics have been taken to evaluate the 

proposed algorithm. 

1) Schedule Length Ratio (SLR) is defined as the 

normalized schedule length to the lower bound of the 

schedule length. It is calculated using the following 

formula. 

    
        

                      

               

The       is the critical path of the unscheduled 

application DAG based on the computation cost of tasks on 

the fastest processor pj. The denominator is equal to the sum 

of computation costs of tasks located on       when they are 

scheduled on pj. 

2) The Speedup of a schedule is defined as ratio of the 

schedule length obtained by assigning all tasks to the 

fastest processor, to the parallel execution time 

(makespan of the output schedule) of the task schedule. 

        
                  

        
                    

B. Comparative Analysis 

The sample DAG is shown in Fig.2 and its computation 

cost matrix is given in Table I. The stepwise trace of the 

proposed algorithm is given in Table II. For this graph the 

generated schedule length of the ECTS algorithm is shown in 

Fig.3. 

 

Fig. 3. Schedule length of ECTS algorithm 

The schedule length (makespan) comparison of the three 

algorithms is shown in Fig.4. The schedule length of ECTS 

algorithm is 73, which is shorter than the schedule length 

generated by PETS and HEFT algorithms which are 77 and 

80 respectively. It is observed that the proposed ECTS 

algorithm is producing better schedule compared to the other 

two algorithms.  

 

Fig. 4. Schedule length comparison of three algorithms 

C. Fast Fourier Transformation 

A task graph of Fast Fourier Transformation [1] (FFT) 

algorithm with respect to four data points is given in Fig.5. 
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FFT is characterized by the size of the input vector (data 

points). 

 

Fig .5. FFT graph with four data points 

For an input vector of size M, the total number of nodes in 

the task graph is equal to                  . The 

parameters such as number tasks, in degree and out degree 

are not needed because the structure of the FFT application 

graphs is already known. Communication to computation 

cost ratio and range percentage of computation cost 

(heterogeneity factor) are taken from the data sets given in [1]. 

The number of data points is taken as input, which various 

from 2 to 16 incrementing powers of 2. 

 Heterogeneity factor β, where       is selected randomly 

from a uniform distribution with range                   , 
where             is the average computation cost of the 

given graph, which is set randomly in the algorithm. 

Then the computation cost of each task ti on each 

processor mj is randomly set from the following range: 

          
 

 
                        

 

 
            

 Communication to computation ratio (CCR) is defined 

as the ratio of the average communication cost to the 

average computation cost. 

D. Performance Results 

The algorithm is implemented using C language in Intel 

core i7-620M processor. For this experimentation around 885 

numbers of FFT graphs have been generated. The 

performance of the algorithm is compared with respect to 

different number of data points, which varies from 2 to 16 

incrementing powers of 2, and the result is shown in Fig.6. 

Further the efficiency of the algorithm is compared for 

various number of processors (2, 4, 8, 16, 32) and is shown in 

Fig.7 and Fig.8.  

 

Fig. 6. Average SLR for different data points 

 

Fig. 7. Average SLR for different processors 

The average SLR is reduced while increasing number of 

processors and number of tasks for the case of ECTS 

algorithm. The average speedup obtained for each of the 

algorithms with respect to varying numbers of processors is 

shown in the Fig.8. The ECTS algorithm is faster than other 

algorithms for large number of tasks and processors as shown 

from the graphs.   

 

Fig. 8. Average speedu. 

Finally, a comparison is made with respect to the quality of 

schedules generated by each of the algorithms. On all 

generated graphs, ECTS algorithm gives better or equal 

performance than the PETS algorithm by 77.2% and the 

HEFT algorithm by 80.4%.   

From the above results, it can be observed that the 

proposed ECTS algorithm outperforms when compared with 

HEFT algorithm and gives competitive performance when 

compared with PETS algorithm. Moreover, ECTS algorithm 

gives better performance when the number of tasks and 

processors were increased. 

 

VI. CONCLUSION 

In this paper, a non-preemptive static task scheduling 

algorithm is proposed for heterogeneous computing systems.  

The ECTS algorithm is evaluated for the real world FFT 

application graphs. The scheduling performance of the 

algorithm is compared with the existing HEFT and PETS 

algorithms. The experimental results show that the 

performance of ECTS algorithm increases with respect to 

increase in the number of tasks. It can be tested for more real 

applications graphs and enhancement can be made in terms of 

time complexity and efficiency which are to be considered as 
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future course of work. Also the effect of task duplication in 

reducing schedule length can be considered in future. 

REFERENCES 

[1] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Performance-effective and 

low-complexity task scheduling for heterogeneous computing,” IEEE 

Trans. Parallel and Distributed Systems, vol. 13, no.3, pp. 260-274, 

March 2002. 

[2] L. Lee, H. Chang, K. Liu, G. Chang, and C. Lien, “A dynamic 

scheduling algorithm in heterogeneous computing environments,” 

IEEE W4B-4, ISCIT, pp. 313-318, 2006. 

[3] C. Yang, P. Lee, and Y. Chung, “Improving static task scheduling in 

heterogeneous and homogeneous computing systems,”  in 

International Conf. on Parallel Processing, 2007, pp. 45. 

[4] E. Illavarasan and P. Thambidurai (February 2007). Low complexity 

performance effective task scheduling algorithm for heterogeneous 

computing environments. J. of Computer Sci. [Online]. 3(2). pp. 

94-103. Available: http://thescipub.com/issue-jcs/3/2 

[5] M. Wu and D. Gajski, “Hypertool: A Programming aid for message 

passing systems,” IEEE Trans. on Parallel and Distributed systems, 

vol.1, pp.330-343, July 1990. 

[6] C. Boeres, J. V. Filho, and V. E. F. Rebello, “A cluster based strategy 

for scheduling task on heterogeneous processors,” in Proc. of 16th 

Symp. on Computer Architecture and High Performance Computing 

(SBAC-PAD), 2004, pp.214-221. 

[7] S. Baskiyar and C. Dickinson (May 2005). Scheduling directed 

a-cyclic graph on a bounded set of heterogeneous processors using task 

duplication. J. Parallel Distributed Computing, [Online]. 65. pp. 

911-921. Available: 

http://www.sciencedirect.com/science/article/pii/S0743731505000067 

[8] S. Ranaweera and D. P. Agrawal, “A task duplication based scheduling 

algorithm for heterogeneous systems,” in Proc. International Parallel 

and Distributed Processing Symposium, 2000, pp. 445–450. 

[9] A. Agarwal and P. Kumar, “Economical duplication based task 

scheduling for heterogeneous and homogeneous computing systems,” 

in IEEE International Advance Computing Conference, 2009, pp.6-7. 

[10] S. C. Kim and S. Lee, “Push-pull: Guided search DAG scheduling for 

heterogeneous clusters,” in  International. Conf. on Parallel 

Processing, 2005, pp.603-610. 

[11] R. Eswari and S. Nickolas, “Expected completion time based 

scheduling algorithm for heterogeneous processors,” in Proc. 2011 

International Conf. Information Communication and Management, 

IPCSIT  vol.16 2011, pp.72-77. 

 

 

R. Eswari, obtained M.E. in the field of Computer and 

Communication from Anna University, Chennai, 

Tamilnadu, India, and B.E. in the field of Computer 

Science and Engineering from Bharathidasan 

Univeristy, Tiruchirappalli, Tamilnadu, India. She is 

pursuing Ph.D. degree from the department of 

Computer Applications, National Institute of 

Technology, Tiruchirappalli, Tamilnadu, India. 
She secured first rank in her M.E. course. She is currently working as 

Assistant Professor in the Department of Computer Applications, National 

Institute of Technology, Tiruchirappalli, She is a life member of Computer 

Society of India, and a member of IACSIT. Her research interest includes 

scheduling in distributed systems, database management systems and data 

structures. 

 

 

S. Nickolas is currently working as Associate Professor 

in the Department of Computer Applications, National 

Institute of Technology, Tiruchirappalli, Tamilnadu, 

India. He obtained his M.E. in the field of Computer 

Science from Regional Engineering College, 

Tiruchirappalli, and Ph.D. from National Institute of 

Technology, Tiruchirappalli, in the year 2007 

Dr. S. Nickolas has published 20 papers in International Conferences and 10 

papers in International Journals. He is life member of ISTE, CSI, IE and also 

member of IACSIT. His area of interest includes Database systems, Data 

mining, Software metrics and Distributed systems.  

 

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

376


