

Abstract—Design and implementation of a soft-core MIPS

processor using field-programmable gate array (FPGA)
technology will be addressed in this paper. Teaching processor
architecture and design is considered the key element of the
student learning in the undergraduate Computer Engineering
program; as such, this project was developed to enrich students’
experience in this field. This paper presents a practical
introduction to soft-core processor design through the use of
step-by-step integrating of the processor’s components.
Students implemented their processors using Xilinx ISE design
tools and downloaded their designs to Xilinx ML 501 FPGA
boards, which used Xilinx Virtex 5 chips. A designed and
developed soft-core processor provided students with a starting
point for applying their designed processors in follow-up
courses such as Embedded Systems and Senior Design Project.
Students’ assessment of the soft-core processor design was
analyzed, which indicated that they are confident in confronting
the next step of constructing advanced processor architecture.

Index Terms—MIPS processor, field-programmable gate
array (FPGA), Xilinx design tools, VHDL.

I. INTRODUCTION
Teaching processor design is considered the key element

in student learning for the undergraduate computer
engineering program. It is essential that students obtain
strong knowledge in processor architecture concepts, design
methodology, design tools, and technology during their
processor design course.

The concepts of complex instruction set computer (CISC)
and reduced instruction set computer (RISC) have been
taught in the processor design course for many years.
However, the design simplicity feature of the RISC-based
processors, specifically MIPS architecture, makes such
architecture very attractive in teaching processor design
courses at the undergraduate level [1].

The processor design approach using components
integration can serve as a model for teaching processor
design and development [2]. In this approach, the processor’s
components that students designed, simulated, and tested
during the processor design course will be used in their final
processor design project course. For example, students can
start their course with developing the processor’s
components such as arithmetic logic unit (ALU), register file
(RF), control unit (CU), and program counter (PC). Students

Manuscript received November 8, 2011; revised December 25, 2011.
A. Elkateeb is with the Department of Electrical and Computer

Engineering at University of Michigan, Dearborn, USA (e-mail:
elkateeb@umd.umich.edu).

will then integrate these components in designing their
processor for the final course project. Such design approach
will aid students in gradually gaining experience in processor
design.

Student learning of top-down and bottom-up design
methodologies, in addition to the structural, behavioral, and
mixed modeling using hardware description language (HDL),
are essential to achieve processor design and development
successfully. These design methods and HDL modeling
constitute the core of the teaching materials for processor
design where students will not only streamline the design but
also shorten the processor implementation time [3], [4]. For
example, using the VHDL structural and behavior modeling
are required for learning bottom-up and top-down design
methodology. Also, learning mixed modeling is important to
connect and integrate all processor’s components to achieve
the final design.

The use of reconfigurable technology such as the field
programmable gate array (FPGA) has become very effective
and suitable for teaching processor design. Students can
implement their design on the FPGA chip; if the processor
fails to function according to the design specifications,
students have the option to modify their designs. In addition,
students can take advantage of the FPGA technology feature
of providing fast design updates in which they can reprogram
their designs until they become satisfied with the design
outcomes.

 Using the design tools such as ISE from Xilinx will help
students simulate and verify their design functionality and
performance before implementing their final processor. Also,
the design tools can be used to produce the design’s
downloadable file, also called ‘bit’ file, that can be
downloaded to program the FPGA chip. Furthermore,
exposing students to the use of logic analyzers devices will
be useful for design testing and debugging.

The processor design approach using components
integration will help students to integrate the processor
components in a step by step manner until they completed
their final processor design. MIPS non-pipelining processor
designs. Students’ perception of using the step by step
approach in developing their final processors and using the
FPGA board for their design implementations will be
obtained during the end of the term course.

This paper is organized as follows: in Section II we
examine previous work related to teaching processor design.
The course structure and teaching methodology will be
discussed in Section III. In Section IV, the laboratory
assignments will be discussed, while the details of step

A Processor Design Course Project: Creating Soft-Core
MIPS Processor Using Step-by-Step Components’

Integration Approach

Ali Elkateeb

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

432

bystep development of the soft-core MIPS processor will be
presented in Section V. Students’ feedback is addressed in
Section VI. The paper is concluded in Section VII.

II. PREVIOUS WORK
Typically, all computer engineering undergraduate

programs offer one or more courses on computer architecture
and design. However, the teaching depth of these courses
materials is varied from one university to the other. While
some universities are focused on the theoretical concepts of
processor design, other universities cover all the key
elements required for teaching processor design that are
mentioned in the previous section [5]-[8].

The flexibility and reprogramming capability of the field
programmable gate array (FPGA) has made such technology
widely used in academic environments for teaching
processors design. Students can download their designs on
the same FPGA chip numerous times until they are assured
that their designs are operating according to the
specifications. Hence, students can gain the essential
hands-on-experience on designing, implementing, testing,
and debugging processors using actual FPGA-based
hardware [9].

The students’ knowledge on HDL languages, such as
VHDL and Verilog HDL, is an essential requirement to learn
processor design [10]. However, insufficient training in HDL
for undergraduate students was reported in many U.S.
Universities [11]. To cope with this problem, instructors need
to provide more intensive HDL learning techniques within
the processor design course timeframe. This task has been
achieved through the systematic use of auxiliary materials,
such as processor components’ templates, tutorials, and a
library of design templates that are synthesized with
industrial standard programmable design tools such as Xilinx
ISE [12].

The availability of the inexpensive FPGA boards, low-cost
PC-based logic analyzers, and free FPGA design tools have
made processor design affordable as well as easily and
efficiently achieved by students. The use of FPGA in
teaching processor design course in which the methodology
and design tools of computer design is outlined and discussed
in some works [13]. Also, providing students with hands-on
experience in developing processors by porting a standard
processor design, such as POWEPC, to FPGA boards and
building users logic around the processor have been achieved
[14], [15]. The processor implementation using FPGA chip to
support specific applications has also been addressed [16].

However, to the best of the authors’ knowledge, the
development of MIPS soft-core processor using a
step-by-step design approach has not been currently
addressed in any published paper. In this paper, we discuss
how students gradually integrate processor components until
they complete the final processor design. This step-by-step
processor development approach has enriched student
knowledge not just with MIPS architecture, but with VHDL
programming and industrial standard Xilinx ISE design tools
(in addition to processor implementations using virtex 5

FPGA boards) and exposes students to the use of logic
analyzed devices in design testing.

III. COURSE STRUCTURE AND TEACHING METHODOLOGY
ECE 475 is the processor design course that must be taken

by all senior computer engineering students at University of
Michigan-Dearborn. The course materials include teaching
students the theoretical aspects of the MIPS computer
architecture in addition to the hardware description language,
specifically VHDL. All students attending ECE 475 course
have already learned the basic concepts of computer
organization during their computer organization course (ECE
375), which is the prerequisite course for ECE 475. Also, the
ECE 375 course provides students with hands-on experience
in using ISE Xilinx FPGA design tools and specifically the
schematic capture.

The ECE 475L is a laboratory section of the ECE 475
processor design course, where students are introduced to
VHDL design flow using Xilinx ISE design tools, and learn
processor design implementations and testing using the
FPGA technology where students use ML501 Virtex 5 FPGA
boards in their laboratory work. Also, students learn the use
of the logic analyzed device in testing their designs.

Students learn, during their first three weeks of the ECE
475L laboratory section, the VHDL design flow, using logic
analyzer device, and implementing a simple VHDL code
using ML 501 Virtex 5 FPGA boards. The instructor
conducts demonstrations to help students learn logic analyzer
and the ML501 board. These demonstrations are essential to
accelerate student learning and refresh students’ memory
with using ISE and schematic capture design tools which was
taught in the previous computer organization course ECE
375. During this period, students learn the VHDL structural
modeling at their ECE 475 course. We believe that start
teaching VHDL language with VHDL structural modeling
will provide students with smooth transition from what they
learned at ECE 375 of schematic capture to VHDL design
using structural modeling at ECE 475 course. For instance,
students work on design and developing MIPS Arithmetic
Logic Unit (ALU) that supports few simple instructions
using VHDL structural modeling with bottom-up design
methodology.

Moreover, students learn the top-down design
methodology using VHDL behavioral modeling in ECE 475
course and they applied that they learned on ECE 475L by
design and developing other processor components such as
register file, instruction and data memory, control unit, and
clock divider. The instructor provides students with tutorials
and design templates for some of these components to ensure
students can complete the development of these components
in the time allocated to the laboratory sessions.

The last step in processor design course is to teach students
the MIPS processor design through the final course project.
Students are introduced to components integration using
VHDL mixed modeling where they learn how to integrate
their developed processor components to achieve the design
of the MIPS RISC processor. The step-by-step design
approach has been used by students to achieve their
processors, as will be shown in Section V.

The clock divider component is not part of the processor

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

433

architecture but is a necessary component to help students
reduce the clock rate of 100MHZ provided by the ML501
FPGA board to 1Hz clock rate. This very low clock rate can
be used by students to run their MIPS processor design and
help to visibly observe the processor operations. Also,
students can utilize the board’s LEDs and switches to
examine the functionality of instructions and their execution
results. In addition, students can use logic analyzer devices to
test the processor operations at 100MHz speed. However, the
setup time of the device fly leads is usually a time consuming
process making some students more comfortable with using a
clock divider approach and the boards’ LEDs and switches
over the use of the logic analyzer device.

IV. LABORATORY ASSIGNMENT
During the laboratory section ECE 475L of the computer

design course, students gain hands-on experience in
processor design using VHDL. Different processor
components have been designed during the laboratory
sessions where their operations are evaluated through
functional and timing simulation. Their designs are then
downloaded to the FPGA boards where the LEDs and
switches that are available on these boards are used to test the
components’ design. There are six laboratory sessions in
ECE 474L and these are as follows:
1) VHDL design flow: The first lab is designed to help

students understand VHDL design flow process and the
process of downloading designs to FPGA boards.

2) Using logic analyzer devices: Students are introduced to
the use of logic analyzer devices that are essential for
their design testing where their design runs at the
100MHz clock rates of the FPGA boards.

3) ALU design using VHDL structural modeling: Students
design an ALU for MIPS architecture using VHDL
structural modeling where they learn the bottom-up
design approach. Components from Xilinx library are
instantiated to develop ALU.

4) ALU design using VHDL behavior modeling: This lab is
similar to lab 3 where the same ALU will be designed
but with using VHDL behavioral modeling. Using
behavior modeling will expose students to the top-down
design approach. As students work with both modeling,
they observe the simplicity of developing designs using
behavior over structural modeling.

5) Register file design using VHDL behavior modeling: A
dual-port register file of four registers is designed in lab
5 where register writing occurs on the positive edge of
the clock where the register reading occurs on the
negative clock edge.

6) Moore state machine: Students design a Moore state
machine to encode the instructions operation codes to
control the processor data path.

As students complete the development of the MIPS
components, they are directed in the final course project to
integrate their designed components and develop other
required components to produce the final soft-core MIPS
processor.

V. STEP-BY-STEP APPROACH FOR TEACHING SOFT-CORE
MIPS DESIGN AND DEVELOPMENT

Teaching MIPS processor design is a challenge when
students have just started to learn the VHDL language and
have little/no experience in processor and systems design.
Therefore, a step-by-step design method is appropriate where
students progressively develop their learning experience in
this important computer engineering field.

In using such method, students will design the MIPS
processor by gradually integrating the processor components
developed during their laboratory course and develop other
components required for their final soft-core MIPS processor
design. Whenever students complete each of these six steps
of the MIPS processor design, they use their Xilinx ML501
Virtex 5 FPGA boards to perform design testing for that step.
When students completed all these design steps, the
architecture for the non-pipeline soft-core MIPS processor
design, as described in Hennessy and Patterson book [1], will
be achieved. To help students complete their design work
during the ECE 475 course period, processor components
have been simplified. For instance, the ALU is designed to
support the basic instructions as will be mentioned in the
following processor design steps, four registers are the size of
the register file, the instruction memory is limited to 16
locations, and the processor data path is designed to be a
16-bit architecture. The three types of the instruction format,
i.e., the R-type, I-type, and J-type, for the 16-bit MIPS
architecture are as following:

OP_Code
(15-12)

Rs
(11-10)

Rt
(9-8)

Rd
(7-0)

 R-Type Instruction format

OP_Code
(15-12)

Rs
(11-10)

Rt
(9-8)

Label
(7-0)

 I- Type Instruction format

Note: Op Code field is the Operation Code field,
 Rs is the source register address field,
 Rt and Rd represents the target and destination

registers fields respectively,
 Label is representing the target memory address.
As the size of the memory is small, the J-type instruction

format is not used in this course project and the I-type is used
to serve both I and J-type instructions.

Students are asked to work in design groups of two
students and to conduct presentation of their designs at the
end of each design step. Using such teaching approach will
help students to share design experience through discussion
and exchanging ideas. The detail of each design step is as
following:

Step 1: Core Processor Design

In the first part of the MIPS soft-core processor course
project, students are requested to design simple processor
core that includes the register file, ALU, and control unit [Fig.
1]. These components are already designed by students
during their lab assignments and students will need to
integrate them to produce the processor core. Students will

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

434

use the structural model of the ALU, the behavioral model of
the register file, and the control unit in this step. The mixed
VHDL modeling is used in connecting components
developed with VHDL structural modeling with other
components developed using behavioral modeling. As the
students used a positional association technique for ports
mapping of the VHDL code for structural modeling of the
ALU design, they asked to use named association technique
for port mapping to generate the processor core. This has
benefited students to understand the use of these two
different types of port mapping in developing different
components and integrating them to produce the processor
core.

The register file has two reading ports and one writing port.
Each port size is 16-bits. Also, the register file has a
“reg-write” signal to control writing data on one of its four
registers. The register file is designed to perform register
reading operation on every rising edge clock cycle. The
register writing occurs when the reg-write signal is asserted
by the control unit at the falling edge of the clock.

Store data in the register file can be achieved through
loading data from the ALU output or from the external data
bus that is represented by external switches. The ALU has
been designed to support the following instructions at this
design step: add, subtract, logical and, logical or, add
immediate, exclusive-or, complement, and load external data.
The control unit is a Moore type state machine which is
designed to execute these instructions and produce signals
that control the operations of this simple processor core. The
instructions are provided to the control unit from the FPGA
on-board switches that represent the instruction register,
where students can use these switches to provide their
instructions manually one at a time to the control unit for
decoding purpose. The load external data is the instruction
that a student uses to load the register file with the data that
can be used by other students in the program. The “src-sel”
signal will be generated by the control unit to select the data
source from either the output of the ALU or from the external
switches that will be saved in one of the registers in the
register file.

Step 2: Instruction Memory and Program Counter

Using the switches of the FPGA board for implementing
the processor’s instructions register during the first part of the
course project has helped students to test the functionality of
each instruction. Students have used the switches to enter
each instruction manually and test its operation. In this part of
the project, students have replaced the 16-bit switches that
represent the instruction register with small instruction
memory (IMEM), where they performed their programs
testing without entering each instruction using the switches
that exist on the FPGA board. Also, a program counter (PC)
is required to track the processed instructions [Fig. 2]. The

IMEM size contains 16 locations, which can hold 16
instructions. Students generate a small program that includes
all the processor’s instructions and store that program inside
the IMEM. The program counter will be incremented with
the execution of each instruction, which provides the testing
for all implemented instructions. To support the processor
architecture with IMEM and PC, the processor’s control unit
is designed to provide signals such as “PC-INC” to increment
the program counter, “PC-LD” to load the program counter,
and “IM-READ” for reading the IMEM. Fig. 2 shows the
processor designed by students in step 2 where the dotted
lines represent the processor section that designed for the step
2 of the course final project.

Result

ALU_OP [3-0]

Reg-write

src-sel

ALU

Instructions
register (16-bit
switches)

Control
Unit

0

1

Read Reg1

Read Reg2

Write Reg

Write
Data
Register File (RF)

Fig. 1. Step 1: Simple Processor Core

Switches for
External Data

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

435

Sel-ALU

Sel-DM-RF

DM-
write

DM-read

PC-INC

PC-LD IM Read

Read 2

Read 1

Address

DataOut

Write
Data

1

0

ALU_OP [3-0] Reg-write

Reg-des

ALU

Program
Counter
(PC)

Read
Address

Instruction
 [15-0]

Instruction
Memory
(IMEM)

Control
Unit

0

1

Read Reg1
Read Reg2

Write Reg

Write
Data
Register File
(RF)

0

1

Sign
extension
unit

Data
Memory
(DMEM)

 Fig. 3. Step3: Processor enhanced with Data memory and sign extension unit

PC-LD
IM-Read

Result

ALU_OP [3-0]

Reg-write

src-sel

ALU

Program
Counter
(PC)

Read
Address

Instruction
 [15-0]

Instruction
Memory
(IMEM)

Control
Unit

0

1

Read Reg1

Read Reg2

Write Reg

Write
Data
Register File (RF)

Fig. 2. Step 2: Processor enhanced with instruction memory and program counter

Switches for
External Data

PC-INC

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

436

Step 3: Data Memory and Sign Extend

 In the third step, students were asked to upgrade their
processor designs to support data memory and sign extension
unit. To support these two units, students required to upgrade
their instructions set by including two new instructions, the
Load Word (LW) and Store Word (SW). Also, the processor
data path will be updated to include some multiplexers to
manage data transfer between the processor’s components
[Fig. 3]. One multiplexer is inserted at the output of the data
memory where it is used to select between two sources, the
output of the ALU and the output of data memory. One of
these multiplexer inputs will be connected to the write data
port of the register file.

 The second multiplexer is located at the read 2 port output
of the register file to select between the output of the sign
extension unit and the read 2 port of the register file. The
output of this multiplexer is connected to the lower input of

the ALU. The third multiplexer is located at the Write Reg
port of the register file to select the destination register
address that is located in different positions in the processor
instructions format of R-type or I-type.

The multiplexer at the lower input of the ALU is required
to select between either a register to perform
arithmetic/logical operation or the output of the sign
extension unit. The sign extension of the memory offset for
the LW and SW instructions will be added to memory based
address, which is provided from one of the registers in the
register file. Clearly, the data memory address space is very
small for this project, but the use of producing the
memoryaddress by adding the offset to the based address will
allow students to understand the address generated in real
MIPS processor. The control unit will generate the input
signals for the multiplexers’ select inputs port according to
the current processed instructions.

Step 4: Branch Equal and Jump instructions

This step is important to teach students how to enhance
their processor architecture to support conditional branch and
unconditional jump instructions. When students completed
their design and implementation to the processor described in
step 3, they asked to update their processor data path to these

two instructions, as shown in Fig. 4. The processor data path
has been enhanced with two adders. The first adder ‘adder 1’
is used for address increment for the next program counter
value, while the second adder ‘adder 2’ is to update the
program counter with the target address of the jump or the
BEQ instructions (when the branch is taken). Incrementing
the PC in this step of the project was achieved through

Sel-DM-RF

DM- Read DM-
write

PC-INC
PC-LD

IM Read

Zero

Branch

JMP

Adder
2

Adder
1

Fig. 4. Step4: Enhance data path with branch equal and unconditional jump instructions

Read 2

Read 1

Address

DataOut

Write
Data

1

0

ALU_OP [3-0] Reg-write

Reg-des

AL
U

Progra
m
Counte

Read
Address

Instructi
on

[15-0]

Control
Unit

0

1

Read Reg1
Read Reg2

Write Reg

Write
Data
Register File
(RF)

0

1

Sign
extension
unit

Data
Memory
(DME)

0

1

1

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

437

updating the processor data path; previously this occurred
inside the control unit in the first three steps. Such change is
required in handling the PC update since Jump and BEQ
instructions might change the program flow to the
instructions’ target address; otherwise, the PC should be
incrementing to point to the next instruction address. The
hardware AND/OR logic, shown in Fig. 4 is used to select the
multiplexer input in this data path to update the PC. The

control unit asserts the JMP or Branch signals whenever
Jump or BEQ instructions are executed. The Zero’s signal is
generated from the ALU whenever the BEQ instruction will
require to branch to the target address. Therefore, the PC will
always be loaded with the target location specified by the
Jump instruction, while it will be loaded with target location
specified by the BEQ instruction when it is executed and the
Zero signal is generated from the ALU simultaneously.

IM-Re
ad

PC-LD

Branch

Jump

Sel-DM-RF

DM-
Write

DM-Read

2

Sel-PC

Save-PC

Timer-ctrl

Reg-des

Timer
flag

Fig. 5. Data path supported with interrupt and timer units

Reset
interrupt

Adde
r 2

Adder
 1

Read 2

Read 1

Address

DataOut

Write
Data

1

0

ALU_OP [3-0]

Reg-write

AL
U

Progra
m
Counte
(PC)

 Read
 Address

Instruction

[15-0]

Instructi
on
Memory

Cont
rol
Unit

0

1

Read Reg1
Read Reg2

Write Reg

Write
Data
Register
File (RF)

0

1

 Sign
 xtension
 unit

0

1

0

1

2

3

Interrup
t
Address
Register

PC
Buffer

Interrupt
Flag
Buffer

Interrupt
Event –
External
Input

1

Timer

Data
Memory
(DME)

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

438

Step 5: Interrupt support

During the previous four steps of the processor design
project, students obtained hands-on experience in design,
implementation, debugging, and testing of the conventional
MIPS processor. Support the processor design with interrupt
and timer units, as discussed in this step and step 6
respectively, will help students to achieve their learning of
full processor design cycle [Fig. 5].

In this step, students are asked to support their designed
processor with an interrupt mechanism that has an interrupt
service routine executed when a rising edge signal is asserted
on the processor’s interrupt request pin. A very simple
interrupt service routine is used for testing the interrupt
functionality. Also, a return from interrupt was developed
where a return to the main program and specifically to the
next instruction that located after the interrupted instruction
position. Students have learned how the program counter is
saved when the interrupt request occurs and how to restore it
at the return from the service routine. Also, students learned
how to revise their VHDL control unit design to support
interrupt mechanism. To simplify the interrupt structure, a
fixed location is used for the interrupt service routine where
the interrupt address is saved into specific register called
interrupt address register [Fig. 5]. A PC buffer is used to save
the return address to the main program after the interrupt
service routing is completed. Also, as the signal is asserted at

the interrupt request pin, the interrupt flag buffer is used to
latch the request until the control unit completed the
execution of the current instruction. The interrupt flag buffer
will be cleared when the control unit acknowledged receiving
the interrupt request from the interrupt external pin.

Step 6: Timer support

During the last step of this course project, students
supported their MIPS processor with a timer unit. The timer
is 16-bit, decrements with every clock cycle and will raise a
flag when counting reached the zero value. The timer is
programmable where the start value of the timer can be set by
a special “load timer” instruction.

 The signal ‘timer-ctrl’ is produced by the control unit to
reset the timer. The timer is designed as an independent
component that adds to the data path of the MIPS architecture,
as shown in Fig. 5.

VI. STUDENT FEEDBACK
A questionnaire was provided at the end of the processor

design course to evaluate students’ opinion on their course
and laboratory sections. All 46 students that attended the
computer design course were involved and responded to this
evaluation study.

TABLE I: STUDENTS FEEDBACK

Question Average rate (%)

1. Learning VHDL

a) I am confident in using VHDL structural modeling in processor’s components design. 94

b) I am confident in using VHDL behavioral modeling in processor’s components design. 80

c) I am confident in using VHDL mixed modeling for components integration to implement the
final processor.

80

d) The course material helped me understand the processor components design and how to integrate
them to produce the final processor.

90

e) I am confident in developing processor components using VHDL. 81

f) The VHDL templates provided throughout the course material were very useful for processor’s
components and final processor design.

88

g) The course materials increased my confidence in digital systems design. 88

2. Laboratory work

a) The lab work was very well organized and synchronized with course lectures. 90

b) The processor design and implementation was challenging. 96

c) I was able to develop an effective strategy for the processor testing. 92

d) I have learned how to use logic analyzer device for the debugging of the processor design. 70

e) I have gained very good experience in using the Virtex 5 FPGA board. 96

f) I have mastered the use of FPGA design tools. 88

g) I can implement the processor design on the FPGA board successfully. 90

h) Is the time allocated to complete each lab works is reasonable? If not, explain why? 70

3. Course learning impact

a) I will use the designed processor in other courses such as senior design project and embedded
systems courses.

86

b) The course materials will be useful in my graduate studies. 90

c) This project prepares me for future industrial work. 100

Students were requested to answer questions that were related to three groups: learning VHDL, laboratory work, and

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

439

the course learning impact [TABLE I]. Each statement has a
score from 1 to 5, with 1 indicating that they strongly
disagreed while a 5 indicated they strongly agreed. We
considered students’ average score of 80% and above in
responding to each question as good and no action would be
taken to improve the course material related to that question.
For the questions related to learning VHDL, students’
learning of different VHDL modeling and use in designing
and developing the processor was evaluated; student
feedback indicated their satisfaction on the covered teaching
materials.

For the laboratory work questions, students displayed
concern regarding the use of the logic analyzer device and the
time allocated to the structural modeling laboratory session.
To address their concern on using logic analyzer device, we
constructed a short summary about how to use the device,
specifically the formatting of the 32 output channels,
triggering channels, and the readings of device measurements.
With regards to the time allocated for laboratory session, we
tackled this issue by conducting a tutorial on ALU design
using structural modeling and assigning more time to
complete the laboratory session.

VII. CONCLUSION
A reference design for a soft-core processor development

using a step-by-step methodology for processor’s
components integration has been presented. Over the course
of an academic term, the FPGA technology was utilized to
implement and test the developed MIPS processor. Students
gained hands-on experience on structural, behavioral, and
mixed modeling using a VHDL language. They also learned
industrial standard FPGA Xilinx ISE and Modelsim design
and simulation tools. Students were divided into groups
where each group implemented and tested each design step
on the Xilinx ML-501 FPGA Virtex 5 board before
proceeding to the next step of their designs.

Student feedback regarding their learning experience was
evaluated at the end of the course term. Students expressed
their satisfaction on the Soft-core processor design project.
Also, students enjoyed the laboratory section of the course
even though some struggled with the theoretical aspect of the
soft-core processor design course. Processor components
integration on the FPGA boards has given students

significant confidence in processor design and
implementation.

REFERENCES
[1] D. Patterson and J. Hennessy, Computer Organization and Design,

Morgan Kaufman.
[2] J. Wing, “Computational Thinking,” Communications of the ACM,

March 2006, Vol. 49, No. 3, pp. 33-35.
[3] J. Bhasker (1999), VHDL Primer, Prentice-Hall, third edition.
[4] S. Yalamanchili (2000), Introductory VHDL from simulation to

synthesis, Prentice-Hall.
[5] G. Brown and N. Vrana, (1995). “A computer architecture laboratory

course using programmable logic,” IEEE Transaction on Education,
Vol. 38, No. 2.

[6] V. Sklyarov and I. Skliarova, “Teaching reconfigurable systems:
methoda, tools, tutorials, and projects,” IEEE Tran. on Educ., Vol. 48,
No. 2, pp. 290-300, May 2005.

[7] Computing Curricula, Computer Science [2004, sep. 10]. [On-line].
Avaliable on: http//www.celoxica.com/products/default.asp.

[8] A. Bindal, S. Mann, N. Ahmed, and L. Raimundo, “An undergraduate
system-on-chip (soc) course for computer engineering students”, IEEE
Trans. Edu., vol. 48, no. 2, pp. 279-289, May 2005.

[9] Y. Zhu, T. Weng, and C. Cheng, “Enhancing learning effectiveness in
digital design courses through the use of programmable logic boards,”
IEEE TRAN. Educ., vol. 52, no. 1, pp. 151-156, Feb. 2009.

[10] C. Rowen (2002), “Reducing SOC simulation and development time,”
IEEE Computer, pp. 29-34.

[11] A. Sagahyoon, “From AHDL to VHDL: A course in hardware
description languages,” IEEE Trans. Educ., vol43, no4, pp. 449-454,
Nov, 2000.

[12] V. Sklyarov and I. Skliarova, “Teaching reconfigurable systems:
method, tools, tutorials, and projects,” IEEE Tran. Educ., Vol. 48, No.
2, pp. 290-300, May 2005.

[13] R. D. Williams, R. H. Klenke, and J. H. Aylor, “Teaching computer
design using virtual prototyping,” IEEE Trans. Educ., vol. 46, no. 2, pp.
296–301, May 2003.

[14] R. Foist, C. Grecu, A. Ivanov, and R. Turner, “An FPGA design project:
creating a powerpc subsystem plus user logic,” IEEE Trans. Educ, Vol.
51, no. 3, pp. 312-318, Aug. 2008.

[15] A. Sagahyoon, “From AHDL to VHDL: A course in hardware
description languages,” IEEE Trans. Educ., vol. 43, no. 4, pp. 449-454,
Nov. 2000.

[16] J. Hamblen, “Rapid prototyping using field-programmable logic
design,” IEEE Micro, Vol. 20, N0. 3, pp. 29-37, May/Jun. 2000.

El Kateeb received his PhD from Concordia University,
Montreal, in 1992 and his MSc from Kent University,
UK, in 1980 and his BSc from University of Technology,
Iraq, in 1976. He is currently an Associate Professor in
the Department of Electrical and Computer Engineering
at University of Michigan, Dearborn, USA.

His research interests include high-speed networks, computer architecture,
reconfigurable computing, and computer applications. He has over 60 papers
published in international journals and conferences.

International Journal of Information and Education Technology, Vol. 1, No. 5, December 2011

440

