

Abstract—Web services are software applications which can

be used through a network (intranet or Internet) via the
exchange of messages based on XML standards. They are aimed
at wild reusability and are typically designed to interact with
other in order to build larger applications. Web service
sometimes requires combining more than one to meet our
requirements. Service composition is the process of creating
new services from a set of services. In this context, one of the
important investigations is the choreography compatibility
analysis. We mean by the choreography compatibility the
capability of a set of Web services of actually interacting by
exchanging messages in a proper manner. Whether a set of
services are compatible depends not only on their sequences of
messages but also on quantitative properties such as timed
properties. In this paper, we present a framework for model
checking web service choreography based on checking web
service (CWB) in which the web services support synchronous
or asynchronous timed communications. Particularly, in this
paper we present a new modeling of Web services using
temporal value passing calculus of communicating systems
(TVPCCS).

Index Terms—Model checking, web service composition,
temporal value passing calculus of communicating systems, the
edinburgh concurrency workbench.

I. INTRODUCTION
Web services are increasingly gaining acceptance as a

framework for facilitating application-to-application
interactions within and across enterprises, they are typically
designed to interact with other in order to build larger
applications. Service composition is one of the most
promising ideas underlying Web services [1]: new
functionalities can be defined and implemented by
combining and interacting with pre-existing services.

Since the complexity of composition increases,
verification and validation of the composite Web service
become a sophisticated task that deserves and has received
many studies [2]. In this context, one of the important
elements is the compatibility analysis. Two web services are
compatible depends not only on static properties like the
correct typing of their message parameters, but also on their
dynamic behavior [3].

A lot of works on the compatibility problem of Web
services deal with services that support synchronous

Manuscript received October 24, 2011; revised December 28, 2011.
This work is funded by the Natural Science Foundation of China (NSFC,

Grant No.60873237), Natural Science Foundation of Beijing (Grant
No.4092037), and partially supported by Beijing Key Discipline Program.

M. La. Beggar is with School of Computer Science, Beijing Institute of
Technology, Beijing, China (e-mail amine@bit.edu.cn).

L. Liao is with School of Computer Science and Technology, Beijing
Institute of Technology, China (e-mail liaolj@bit.edu.cn).

communication and consider only the sequences of messages,
that is, two Web services are compatible if each input (resp.
output) message of a service corresponds to an output (resp.
input) message of the other service in the same order.
Nevertheless, the nature of Web services could be
asynchronous, and then in this paper we tackle the problem of
analyzing the compatibility of a choreography in which the
Web services support synchronous or asynchronous
communications. It is very important to define the nature of
supported communications considered in a compatibility
framework because two Web services which are
incompatible using synchronous communication can be
compatible using the asynchronous one. In an asynchronous
communication, when a message is sent, it is inserted into a
bounded message queue or stored into a buffer, and the
receiver consumes (i.e. receives) the message while it is
available in the queue or buffer.

The compatibility of Web services depends not only on the
supported sequences of messages but there are other crucial
quantitative properties such as timed properties [1], [4], [5],
[6]. We define the timed properties to be the delays needed to
be able to exchange messages (e.g., in an application, a
Insurance Company can send its final decision to
policyholder after 3 days and within 7 days). Some works
using synchronous communication cannot discover or cannot
discover all the eventual timed conflicts [3], [4], [6], [7].

In this paper, we first propose a framework for analyzing
the choreography compatibility supporting synchronous or
asynchronous communicating services and then present a
mapping between TVPCCS and BPEL in order to allow an
automatic translation between the two languages that permit
designing and verifying in TVPCCS and then translating the
specification onto BPEL. In our framework we take into
account data flow that can be involved when exchanging
messages. Furthermore, we consider timed properties that
specify the delays to be able to exchange messages. Implicit
timed conflicts could be rose during the interaction and the
exchange of messages between Web services because
implicit timed dependencies could be built between their
different timed properties. We tried to use some existing
work to discover deadlocks due to implicit timed conflicts
but we notice that it is not possible since they do not consider
timed properties or they use synchronous communication
mode and then can’t discover all deadlocks. In order to catch
all the possible timed deadlocks, we propose to use the model
checker the CWB (the edinburgh concurrency workbench).

To analyze the choreography compatibility we need the
Web services description behavior which is the sequences of
messages the service supports and the associated timed
requirements. We use Temporal Value Passing Calculus of

A TVPCCS Model for Testing Web Service Choreography
and Generating BPEL Code

Mohammed Lamine Beggar and Lejian Liao

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

1

Communicating Systems (TVPCCS) that is a timed extension
of Calculus of Communicating Systems (CCS) to model the
timed behavior, process algebra like Communicating
Sequential Processes (CSP) and CCS have been already used
in series of papers [8]-[11]. TVPCCS model is suitable to
describe Web services timed behaviors. It is simple, fairly
easy to understand and at the same time it is expressive
enough to model the properties we consider.

In this paper we make the following contributions:
(1) We propose an asynchronous/synchronous model of

Web services that consider sequence of messages, data and
timed requirements. (2) We propose an abstraction process
that aims to handle Web services using CWB. (3) We
propose a mapping between TVPCCS and BPEL.

The reminder of the paper is organized as follows.Section
II presents the case study that we use to show the related
issues of the proposed approach. In Section III we introduce
TVPCCS. In section IV, we discuss informally and intuitively
the timed compatibility problem of a choreography using the
TVPCCS to model web services and their timed behaviors.
Section V presents a mapping from TVPCCS to TCCS. In
order to be able to handle asynchronous services by CWB, in
section VI, we present CWB objects and model the study case
using it. Section VII presents the proposed formal
choreography compatibility investigations. In Section VIII,
we first explain the principle used to store information in
TVPCCS action’s name, and then present the mapping from
TVPCCS to BPEL. In Section IX, we discuss related work.
Finally, in section X we conclude.

II. CASE STUDY
The goal of the application we consider is to manage

policyholder request. Such a request involves three Web
services: (1) requester service (RS), (2) Auto Repair Garage
(ARG), and (3) Administration (Ad). The high level
choreography model of the process is depicted on Fig. 1. To
benefit from insurance, the process can be summarized as
follows. (1) Via a requester service, a policyholder deposits a
file in the administration, (2) the policyholder asks an
estimated cost from the Auto Repair Garage, (3) the Auto
Repair Garage negotiates a date of an appointment to
examine the car. (4) After the examination, the Auto Repair
Garage sends a report (estimated cost) to the administration.
(5) After studying the insurance policy of the policyholder
and the report of the Auto Repair Garage the administration
sends a notification of the final decision to the policyholder.

The timed requirements are:

1) Once the Auto Repair Garage proposes meeting dates to
the policyholder, this latter must send the filled form

within 24 hours.
2) The administration requires at least 3 days and at most 7

days from receiving the file from the policyholder to
notify him by the final decision.

3) Via the requester service, once the policyholder obtains
the car’s information form, he must send the filled form
within 36 hours.

The Web services we consider could support
asynchronous communications. The first issue we deal with
is how to model asynchronous communications using TCCS?
When the services are interacting together, timed deadlocks
could arise because the timed properties of the several
services are local and are mutually independent, we must
check that the choreography is deadlock free, the second
issue is how to consider timed properties when analyzing the
compatibility of a choreography?

III. TVPCCS

A. Basic Syntax of TVPCCS
The temporal value passing CCS is a kind of computation

model to describe and analyze concurrent systems. In the
temporal value passing CCS, every expression denotes an
agent, and expresses a concurrent entity which can run freely.
The communication between agents is implemented by
exchanging information in named channels.

The collection of TVPCCS expressions, ranged over by P,
is defined by the following expression where we take a ∈
Act (set of actions), X Var, ∈ t T (T = {1, 2, 3...} ∈
represent divisions in time).

P ::= 0 | 0 | X | a.P | a.P | (t).P | P+P | P++P |
 P|P | P\a | if b then P | A(x1, … , xn)

0 and 0 represents that the process is inactive and it does
not perform any actions (0 represents the completely dead
process. It can neither perform any computation, nor can it
witness the passage of any time. 0 represents the process
which can never perform any actions, but rather idles
forever).

a.P represents the process which can perform the action a
and evolve into the process P by so doing. The process cannot
progress through time before performing the action a, and the
action is assumed to occur instantaneously in time. a.P
represents the process which can perform the action a, but
will allow any amount of time to pass before doing the action.
Prefix action has three kinds of form:
1) τ stands for an internal and unobservable action τ.
2) a(x) represents that variable receives values from input

channel a.
3) ā(e) denotes that the value of variable send out along

output channel a .
(t).P represents the process which will do no computation

for an amount of time t, but at that point in time will
commence behaving as the process P.

P+Q represents a choice between the two processes P and
Q. The process behaves as the process P or the process Q,
with the choice being made at the time of the first action, or
else at the occurrence of a passage of time when only one of
the operands may allow the time passage to occur. In this

 Fig. 1. Global view of the application

1 5 2

 Requester
 Service

3

4 Auto Repair
 Garage

Administration

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

2

latter case, the second temporally deadlocked process is
dropped from the computation. This operator is referred to as
weak choice.

P++Q represents a stronger notion of choice between the
two processes P and Q. The process behaves as the process P
or the process Q, with the choice being made only at the time
of the first action. Thus, for instance, any initial passage of
time must be allowed by both P and Q. This operator is
referred to as strong choice.

A process can be a parallel composition of sub-processes:
P|Q, Each of the processes may do any actions independently,
or they may synchronize on complementary actions, resulting
in a τ action. Any passage of time must be allowed and
recorded by each of P and Q.

A process may have a restriction, which is denoted by \S. P
is a process and S is a set of named channels, imposing that an
emission on m S by one sub∈ -process of P can occur only if
another sub-process does a reception on the same channel.

if b then P: represents that P will execute if the Boolean
expressions b is ‘true’.

A(x1, … , xn) represents constant A with arity n. There is a
defining equation: A(x1, … , xn) = P where the right-hand side
P may contain no agent variables, and no free value variable
except x1, … , xn.

B. Operational Semantics of TVPCCS

Fig. 2. Action Derivation Rules

Fig. 3. Temporal Derivation Rules

In this section, we define the operational semantics of our

language. The semantics is transition based, outlining what
actions and time delays a process can witness. In order to
define our semantic we must first define a syntactic predicate
which will allow us to describe when a process must stop
delaying its computation within a particular amount of time.

This is done using the following function on TVPCCS terms.
Definition [12] The function | . |T: TCCS → {0, 1 , 2 ,… ,γ}

defines the maximum delay which a process may allow
before forcing a computation (or deadlock) to occur.
Formally, this function is defined as follows:

| 0 | T = 0 | P++Q | T = max (| P | T , | Q | T)
| X | T = 0 | P + Q | T = min (| P | T , | Q | T)
| P \ a | T = | P | T | P | Q | T = min (| P | T , | Q | T)
| a.P | T = 0 | (s).P | T = s + | P | T

This definition is well defined as long as all recursive

variables are guarded by action or time prefixes.
In Fig. 1 and Fig. 2, we present the operational rules for

our language. They are presented in a natural deduction style,
and are to be read as follows: if the transition(s) above the
inference line can be inferred, then we can infer the transition
below the line. Our transitional semantics over TVPCCS then
is given by the least relations

→ ⊆ TVPCCS × Act × TVPCCS and ⊆ TVPCCS ×

T × TVPCCS (written P ⎯→⎯a Q and P Q respectively)
satisfying the rules laid out in Fig. 1 and Fig. 2. Notice that
these rules respect the informal description of the constructs
given in III.A

IV. SYNCHRONOUS/ASYNCHRONOUS COMMUNICATION AND
COMPATIBILITY PROBLEMS

In this section, by using examples, we present how to
model composition of synchronous or asynchronous Web
services using TVPCCS and we discuss informally and
intuitively the timed choreography compatibility problem
and the related issues

Example 1: Let us first consider the two untimed services
Q and Q’ depicted on Fig. 4. Using synchronous
communication and services with no times property, we are
using the model proposed by [9], these two services are
incompatible because they don’t produce and consume their
messages in the same order. The first action of the service Q
is to send the message m0 (d0, d1), as services are
synchronized over messages, it is blocked because the
service Q’ is not waiting for the message m0 (d0, d1). The
same problem arises for the service Q’ whose first action is to
send the message m2(d3).

The representation of Q and Q’ is

0 .)(m .)(m .),(m Q 3221100 dddd=

0 .)(m.),(m .)(m Q' 2110032 dddd= and their composition
using synchronous communication is

t

a Q Q’
P++Q Q’ a

a P P’
P++Q P’ a

a P P’
P\b P’\ba (a≠b)

a P+Q Q’

a Q Q’
a P+Q P’

a P P’

a.P P a a.P P a

P|Q P’|Q a

a P P’
P|Q P|Q’ a

 Q Q’a

P|Q P|Q’ {e/x}τ
 ,Q Q’a(e) P P’ a(x)

0 0 t a.P a.P t

(t).P P t (s+t).P (t).P s
 P P’ s

 (t).P P'
s+t

P+Q Q’
t

 Q Q’ t

(|P|T<t)
P+Q P’

t (|Q|T<t) P P’ t

P+Q P’+Q’
t
 ,Q Q’ t

 P P’ t

P\a P’\a
t

 P P’ t
 ,Q Q’ t

 P P’ t

 P|Q P’|Q’
t

 ,Q Q’ t
 P P’ t

P++Q P’++Q’
t

Fig. 4. Untimed Incompatible Synchronous Web services

S2 S0
m0 (d0, d1) m1(d2) m2(d3)

S1 S3 Q

 Q’

m1(d2) m2(d3) m0 (d0, d1)
S’0 S’1 S’2 S’3

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

3

S\)Q' | (Q n Compositio = where S = { m0(d0,d1), m1(d2),
m2(d3) }.

Example 2: we use the same services Q and Q’ depicted
on Fig. 4. but this time we consider the case of asynchronous
communication. The two services become compatible, the
service Q sends the message m0 (d0, d1) that is stored in the
buffer M0 and start waiting for m1(d2), on the other side Q’
sends m2(d3) that is stored in the associated buffer M2 and
then consumes m0 (d0, d1), finally sends the message m1(d2)
that also is stored in a buffer M1 and terminate. At the
moment m1(d2) becomes available the service Q consumes it
and then consumes m2(d3) and terminate. By using the
existing work, these two services are considered as
incompatible although they can succeed an execution. In fact,
the proposed frameworks (e.g.,see [3], [4], [6], [7], [13]) deal
only with synchronous communicating services.

0 .)('m .)('m .),(m Q 3221100 dddd= 0 .)('m .)(m M1 2121 dd=

0 .)(m .),('m .)(m Q' 2110032 dddd= 0 .)('m .)(m M2 3232 dd=

0 .),('m .),(m M0 10100 dddd d=

S\M2)|M1|M0|Q'|(QnCompositio = where S= { m0(d0,d1),
m1(d2), m2(d3), m0’(d0,d1), m1’ (d2), m2’ (d3) }.

For each message we add a process acting like a buffer that

receives this message, sends it and finally terminate. By
adding buffers we transform the synchronous communication
to asynchronous one because services Q and Q’are not still
synchronized over messages.

When the services interact together, implicit timed
conflicts could arise. To illustrate this issue, in the following
we present an illustrative example.

Example 3: Let us add timed properties to services Q and
Q’ depicted on Fig. 5. that use asynchronous communication.
Now, the service Q sends the message m0 (d0, d1) that is
stored in the buffer M0 and start counting time, it must
receive the message m2(d3) within 10 units of time. On the
other hand, Q’ can send the message m2(d3) that can be stored
in the buffer M2. The service Q remains blocked until the
message m1(d2) will be available but Q’ can consume the
message m0 (d0, d1) which has been already sent by Q. Once
consumed, Q’ sends the message m1(d2) after 20 and within
40 units of time from consuming the message m0 (d0,
d1) (i.e., 20 ≤ x ≤ 40). Consequently, the message m1(d2)
becomes available in the buffer M1 after 20 units of time
from consuming the message m0 (d0, d1). In that case, Q will
be able to consume the message m1(d2) after 20 units of time
which means that the message m2(d3) can’t be consumed
within 10 units of time, it is a timed conflict.

)))0 . stopT1|0(.)('m0 . stopT1(

 . 'wfm .)('m0 . stopT1(. 'wfm . startT1 .),(mQ

32

2211100

d

ddd

++

++=

))0 . stopT|0(.)(m0

 .)(m . stopT2(. startT2 . 20 .),('m . 'wfm .)(mQ'

21

21100032

d

dddd

++

=

0 .),('m

. 'wfm .),(m0 .),('m .),(m . 'wfmM0

100

01001001000

dd

dddddd ++=

0 .)('m . 'wfm .)(m0 .)('m .)(m . 'wfmM1 2112121211 dddd ++=
0 .)('m . 'wfm .)(m0 .)('m .)(m . 'wfmM2 3223232322 dddd ++=

0 . stopT1 . 10 . startT1T1 = 0 . stopT2 . 20 . startT2T2 =

S\T2) | T1 | M2 | M1 | M0 | Q' | (Q n Compositio =

S= { m0(d0,d1), m1(d2), m2(d3), m0’(d0,d1), m1’(d2), m2’(d3),
startT1, stopT1, startT2, stopT2, wfm0’, wfm1’, wfm2’}.

We add processes acting like Timer, for example we know

that the process Q’ after consuming the message m0 (d0, d1)
must send the message m1(d2) after 20 units of time and
within 40 units, so after consuming the message m0 (d0, d1)
we wait 20 units of time and then we start the timer T2 which
count 20 units of time. The process Q’ can send the message
m1(d2) or wait at most until the timer T2 completes the
counting to send it.

When using TVPCCS, if the process
0 .),('m .),(mM0 100100 dddd= can’t receive the message m0 at

the present instant, then there is a deadlock, because M0 can’t
allow any passage of time, consequently the definition of
buffers change. To guaranty that when a service is waiting for
a message mn’, this latter will be consumed as soon as it is
available (without any passage of time) new messages are
used named wfmn’ (waiting for mn’). the new definition of
buffer is:

0 .)('m . 'wfm .)(m0 .)('m .)(m . 'wfmMn nnnnnn xxxx dddd ++=

In order to handle the eventual timed conflicts, we propose
a Framework for Model Checking Web Service
choreography based on CWB. To do so, we first present a
mapping from TVPCCS to TCCS and then a mapping from
TCCS to CWB.

V. FROM TVPCCS TO TCCS
We assume that all values belong to some fixed value set V.

we begin by showing how some basic examples can be
reduced from TVPCCS to TCCS.

Let C be a buffer cell.

C = in(x).C’(x) and C’(x) = out (x).C

Consider first the parameterized constant C’. It will
become a family of constants C’v, one for each value ∈ V.

Similarly the parameterized negative prefix “ (x)out ”

becomes a family of prefixed “ vout ”, one for each value v.
Thus the single defining equation for C’ becomes a family of
defining equations Fig. 5. Incompatible Timed Asynchronous Web services

 Q

 Q’

y≤10 y=0 S2
m0 (d0, d1) m1(d2) m2(d3)

S1 S3

x=0 20≤x≤40

m1(d2) m2(d3) m0 (d0, d1)
S’0 S’1 S’2 S’3

S0

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

4

vC' = vout .C (v∈V)

Now consider the prefix “(x)”. To reflect the fact that it can
accept any input value, because it binds the variable x, we
translate it to “∑ ∈Vv vin ”; in this way the use of a bound
variable x is replaced by summation. Thus the defining
equation for C becomes.

∑=
∈Vv

vv .C'inC

Next let’s consider this example:
P = in(x).Start(x)
Start(x) = if smallThanTen(x) then F(x)
 else if smallThanHundred(x) then G(x)
 else H(x)

Since Start takes a parameter, like C’, we expect the
second equation to be reduced to a family of equations, one
for each x ∈ V. But in this case the form of the right-hand
side of each equation depends up on the value of x, as
determined by the predicates smallThanTen and
smallThanHundred the translation is as follows:

∑=
∈Vx

xx .StartinP

x

x x

x

F (if smallThanTen(x))
Start G (if smallThanTen(x) and smallThanHundred(x))

H (if smallThanTen(x) and smallThanHundred(x))
= ¬

¬ ¬

⎧⎪
⎨
⎪⎩

More generally, we assume that P range over the collection

of TVPCCS expressions, we also assume value expressions e
and Boolean expressions b, built from value variable x,y,…
together with value constants v and any operator symbol we
wish. Let A be the set of actions names like a, b, in,... then we
denote by Ā the set of co-names like ,...in ,b ,a Then we set
L=A∪Ā; L is the set of labels and we shall use l, l’ to range
over L. Our translation of TVPCCS expressions into TCCS
rests upon the idea that to each label in the TVPCCS
corresponds a set {lv: v∈V} of labels in the TCCS.

For each TVPCCS expression P without free value
variables, its translated form P̂ is given in Table I.

TABLE I: THE MAPPING FROM TVPCCS TO TCCS

P P̂
X X

a(x).E ∑ ∈Vv v {v/x}Êa

a(x).E ∑ ∈Vv v {v/x}Êa

ā(e).E āe. Ê
ā(e).E āe. Ê

τ. E τ. Ê

(t). E (t). Ê

∑ ∈Ii iE ∑ ∈Ii iÊ

E1|E2 Ê 1| Ê 2

E\L Ê \{lv:l ∈L, v∈V}

if b then E

⎩
⎨
⎧ =

otherwise 0

trueb if Ê

A(e1, … , en) ne,...,1eA

Here is our modeling of the case study, the meanings of the
messages are listed below (abbreviations are defined for each
message at the end of each explanation).

FileDeposite: Via a requester service, a policyholder
deposits a file in the administration (fd(d0)).

FormClaim: Via a requester service, the policyholder asks
auto repair garage for a form (fc(d1)).

GettingForm: the policyholder receives the form from auto
repair garage (gf(d2)).

SendFilledForm: after filling the form, the policyholder
sends it to auto repair garage (sff(d3)).

MeetingProposedDates: auto repair garage proposes dates
to examine the car (mpd(d4, d5, d6)).

MeetingConfirmedDate: the policyholder chooses a date
for meeting (mcd(d7)).

CarExamination: auto repair garage examines the car
(ce(d8)).

EstimatedCost: the auto repair garage sends the reparation
estimated cost to the administration (ec(d9)).

FinalNotification: the administration sends the decision to
the policyholder (fn(d10)).

The timed conversational protocols of the three services
introduced in Section II are depicted on Fig. 6.

))0 . stopT4 | 0(.)(fn

 . stopT0 .)(ec'))0 . stopT4 | 0(.)(fn .)(ec'

 0 . stopT4(. stopT0(. wfec' . startT4 . startT0 .)(fd' . wffd' AD

10

9109

0

d

ddd

d

++++

=

))0 . stopT2

 |))0 . stopT3 | 0(.)(ec 0 .)(ec . stopT3(. startT3

 . 24 .)(ce .)(mcd' . wfmcd'(.)(sff' 0 . stopT2(

 . wfsff' . startT2 .) , ,(mpd .)(gf .)(fc' . wffc' ARG

99

873

65421

dd

ddd

ddddd

++

++

=

Fig. 6. Web services of the case study

D1

D7 D5
w = 0 24 ≤ w ≤ 48

mcd(d7) ce(d8) ec(d9)
D6

z ≤ 24

z = 0
sff(d3)

fc(d1) gf(d2) mpd(d4, d5, d6)
D2 D0 D3

D4

Auto Repair Garage

Administration

fn(d10
)

ec(d9)

72 ≤ y ≤ 168y = 0

fd(d0)
A0 A1 A2 A3

Requester Service

x = 0

gf(d2) fd(d0) fc(d1)
R0 R1 R2

x ≤ 36

mpd(d4, d5, d6)ce(d8)
fn(d10)

sff(d3)

mcd(d7)

R8

R5 R6 R7 R4

R3

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

5

))0 . stopT1 | 0 .)(fn' . wffn' .)(ce' . wfce' .)(mcd

 .) , ,(mpd' . wfmpd'(.)(sff 0 .)(fn'

. wffn' .)(ce' . wfce' .)(mcd .) , ,(mpd' . wfmpd'

 .)(sff . stopT1(. startT1 .)(gf' . wfgf' .)(fc .)(fd RS

1087

654310

87654

3210

ddd

ddddd

ddddd

dddd

++

=

0 . stopT0 . 72 . startT0 T0 =

0 . stopT1 . 36 . startT1 T1=

0 . stopT2 . 24 . startT2 T2 =

0 . stopT3 . 24 . startT3 T3 =

0 . stopT4 . 168 . startT4 T4 =

0 .)(ce' . wfce' .)(ce 0 .)(ce' .)(ce . wfce' Bufce 8888 dddd ++=

0 .)(ec' . wfec' .)(ec 0 .)(ec' .)(ec . wfec' Bufec 9999 dddd ++=

0 .)(fc' . wffc' .)(fc 0 .)(fc' .)(fc . wffc' Buffc 1111 dddd ++=

0 .)(fd' . wffd' .)(fd 0 .)(fd' .)(fd . wffd' Buffd 0000 dddd ++=

0 .)(fn' . wffn' .)(fn 0 .)(fn' .)(fn . wffn' Buffn 10101010 dddd ++=
0 .)(gf' . wfgf' .)(gf 0 .)(gf' .)(gf . wfgf' Bufgf 2222 dddd ++=

0 .)(fn'

. wfmcd' .)(mcd 0 .)(mcd' .)(mcd . wfmcd' Bufmcd

7

777

d

ddd ++=

0 .) , ,(mpd' . wfmpd' .) , ,(mpd

 0 .) , ,(mpd' .) , ,(mpd . wfmpd' Bufmpd

654654

654654

dddddd

dddddd ++=

0 .)(sff' . wfsff' .)(sff 0 .)(sff' .)(sff . wfsff' Bufsff 3333 dddd ++=

S\T4) | T3 | T2 | T1
 | T0 | Bufsff | Bufmpd | Bufmcd | Bufgf |Buffn

 | Buffd | Buffc | Bufec | Bufce | RS |ARG | (AD n Compositio =

} wfsff',pd' wfm
, wfmcd', wfgf', wffn', wffd',wffc',wfec',wfce'stopT4, stopT3,

stopT2, stopT1, stopT0, startT4, startT3, startT2, startT1,
 startT0, ,)(sff' ,)(sff ,) , ,(mpd' ,) , ,(mpd

 ,)(mcd' ,)(mcd ,)'gf(),gf(),(fn'),fn(
),(fd'),fd(),(fc'),fc(),(ec'),ec(),(ce'),{ce(S

33654654

77221010

00!!9988

dddddddd
dddddd

dddddddd=

VI. FROM TCCS TO THE CWB (THE EDINBURGH
CONCURRENCY WORKBENCH)

The Edinburgh concurrency workbench (CWB) is an
automated tool which caters for the manipulation and
analysis of concurrent systems. In particular, the CWB
allows for various equivalence, preorder and model checking
using a variety of different process semantics.

There are different objects, namely agents, action sets and
propositions, using CCS, (for synchronous/asynchronous
untimed web services) processes are defined as agents where
m1 stands for receiving the message m1 and ‘m1 stands for
sending the message m1.Using TCCS, m1.0 stands for m1.0,
$m1.0 for m1.0 and 2.m1.0 for 2.m1.0. In CWB the
propositions are nexpressed in the propositional modal
μ-calculus, an agent A (process A) satisfies <K>P if it has a
K-derivative satisfying P, that is, if there is some a ∈ K such
that A'A a⎯→⎯ with A’ satisfying P. an agent A (process A)
satisfies [K]P if every K-derivative of A satisfies P, that is, if

A’ satisfies P whenever there is an a ∈ K such that A'A a⎯→⎯ .
In natural models the computing tree logic (CTL) operator F
can be characterized by a μTL formula:

()qψμqX |M iff ψF |M ∨=+= . so in CWB we define a
parameterized proposition EF(P)=min(Z.P|<->Z) and
AF(P)=min(Z.P|([-]Z &<->T)). Where min(X.P) is the least
fix point temporal formula.

The CWB objects resulting from the modeling are depicted
on Fig. 7.

VII. FORMAL ASYNCHRONOUS COMPATIBILITY CHECKING
In this section, we present the compatibility checking

using our modeling and CWB. Like the existing works [4],
[6], [7], [14], we distinguish three compatibility classes: (1)
full compatibility, (2) partial compatibility, and (3) full
incompatibility.

A. Full compatibility
In general, a set of Web services constitute a full

choreography compatibility if they can interact without an
eventual blocking. As we deal with asynchronous services,
the output messages are sent without synchronizing with the
corresponding input. Therefore, it is not sufficient to check
only if there is no a deadlock when the services interact
together. But, in addition it is important to check if all the sent
messages are consumed. So, a set of services constitute a full
compatible choreography if: (1) they can collaborate together
without an eventual blocking and (2) at the same time, all the
generated messages must be consumed.

Formally, a set of Web services interact without an
eventual blocking is equivalent to check if the services reach
their final states. At the same time when the services reach
their final states, all the sent messages must be consumed is
formally equivalent to check that when the services reach
their final states, all buffers must be empty.

Each agent representing a web service or a message buffer
send a message terminate “tr” just before terminate, and
another agent V is defined receiving the messages terminate
from all the web services and the message buffers and finally
sending the message composable.

Let P1…Pn be n agents corresponding to n (asynchronous)
services (P1..n= …’tr.$0), B1…Bm be m agents corresponding
to m messages buffers (B1..m= …’tr.$0) and T1… Tk be k
agents corresponding to k timers.
Composition = (P1|…| Pn| B1|…|Bm| T1|… |Tk| V)\S where S is
the set of messages and .0composable.'

mn
$tr...$trV

+
=

Web services are said to be fully compatible when for all
paths the message composable is emitted. To check the full
compatibility we use the command :

checkprop(Composition, AF(<’composable>T)).

B. Partial compatibility
When the set of n services P1… Pn do not constitute a full

compatible choreography, we check if the services can fulfill
at least one execution so that all the produced messages
during this execution are consumed.

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

6

execution is equivalent to check if the state “final” can be
reached via at least one path and at the same time when the
services reach their final states, all buffers must be empty.

Web services are said to be partially compatible when they
are not fully compatible but for some paths the message
composable is emitted. To check the partial compatibility we
use the command :

checkprop(Composition, EF(<’composable>T)).

C. Full incompatibility
When a set of n Web services do not even constitute a

partial compatible choreography, we say that the services
build a full incompatible choreography. The full
incompatibility characterizes the fact that the set of
services cannot, absolutely, collaborate together. Formally, a
set of services are fully incompatible, if for all the paths, all
the services cannot reach the state “final” or for all the paths,
when the services reach their final states, buffers are not
empty.

Fig. 7. CWB objects resulting from modeling the case study

VIII. MAPPING TVPCCS INTO BPEL

A. General Outline
The translation from BPEL to TVPCCS presented in the

first work [15] implicitly preserve the BPEL structure, but the
translation from TVPCCS to BPEL does not: TVPCCS is
more flexible than BPEL. For example in BPEL there is no
message exchanged inside a service, a service can
communicate only with other services. In TVPCCS there are
no constraints about this. In the TVPCCS design we have to
be careful, if we want a simple automatic translation, to write
behavior structurally similar to BPEL ones. The TVPCCS

programmers have to respect this rule: they have to write the
main behavior simply instantiating all the processes
representing services, in the usual manner.

At the basis of our mapping there is the correspondence
between TVPCCS actions and BPEL interactions. BPEL
services and TVPCCS processes instantiated in the main
process correspond to each other. From TVPCCS to BPEL,
we use the behaviors specified in the process definition to
generate the BPEL service description with the names of
partner links, port type, operations and variables.

B. Decomposing TVPCCS Expressions
We would like to map TVPCCS process onto a

Formally, a set of services can terminate at least one

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

7

hierarchical decomposition of specific and adequate BPEL
constructs. For example the TVPCCS parallel operator can
be used to represent BPEL sequence or Flow construct (see
Table II), it is important to identify the right construct. We
must also recognize complex BPEL constructs; bottom up
traversal of the parse tree is used to identify in the TVPCCS
process, parts that are suitable to BPEL constructs.

The name of TVPCCS actions stores information that will
help us while choosing the “good” construct. Names will
carry all information needed to map a TVPCCS process onto
“BPEL block”.

C. Actions name
All BPEL basic activities perform interactions between

web services. An interaction is characterized by the partner
link, the port type, and the operation involved in the two
communicating partners. When the process representing a
service is defined, an action is simply an emission or a
reception. The name of the action must store information
(partner link, port type, and operation involved) on the
receiver in the emission case, on the sender in the reception
case.

TVPCCS emission (resp. reception) action can be used to
represent BPEL reply (resp. receive) activity, asynchronous
invoke activity or synchronous invoke activity performing
two actions (sending a request and receiving a response)
corresponds in TVPCCS to en emission followed
immediately by a reception (the emission (resp. reception)
action can be used for other structured activities, it will be
explained later).

We must be able to make difference between TVPCCS
emission (resp. reception) action that represents BPEL reply
(resp. receive) activity, synchronous invoke activity and ….
To do so, a description of the activity is added in the name of
the action.

For instance, the following TVPCCS processes:
0 . (z)xrep_PL_PT_ : P =

Will be translated to the BPEL activity:
<reply partnerLink=”PL” portType=”PT” operation=”x”

variable=”z”>
0 . (y)_xaInv_PL_PT : P =

Will be translated to the BPEL activity:
<invoke partnerLink="PL" portType="PT"

operation="x" inputVariable="y">
0 . (y)xrec_PL_PT_ : P =

Will be translated to the BPEL activity:
<receive partnerLink=”PL” portType=”PT”

operation=”x” variable=”y”>
 And:

0 . (z)_xsInv_PL_PT . (y)_xsInv_PL_PT : P =

Will be translated to the BPEL activity:
<invoke partnerLink="PL" portType="PT"

operation="x" inputVariable="y" outputVariable=”z”>
TVPCCS emission and reception action can also be used in

the representation of BPEL assign activity.
() { }ass_copy\.0 (x)ass_copy | .0 (5) ass_copy : P =

Will be translated to the BPEL activity:
<assign … >

 <copy>
 <from expression="5"/>
 <to var="x"/>
 <copy>
</assign>
Note that a restriction on the name of the channel is used to

ensure that the value “5” will be assigned to the variable “x”
and not another variable when using the same channel
“ass_copy”, different channel’s names must be used if one
don’t want to use the restriction.

D. Translating TVPCCS to BPEL
A parallel processing is identified by processes linked by

the parallel operator. If synchronization dependencies
between processes are enabled, TVPCCS emission and
reception activities will be used to represent BPEL link
construct. The name of these activities will be “link”
followed by the name of the link (for more details about the
translation of the BPEL flow construct and links see [15]).

TABLE II: TVPCCS-BPEL MAPPING

Sample TVPCCS Specification Sample BPEL Code

Q1 | Q2

<flow>
 <…activity1…>
 <…activity2…>
</flow>

Q1 . Q2 or

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

2

1

Q . (v)seq_next

0 .)1(seq_next . Q

| \{seq_next}

<sequence>
 <…activity1…>
 <…activity2…>
</sequence>

A(x) where

A(x) := if (x ≥ 0) then Q1 . A(x)

<while condition=
"bpws:getVariableData(x)>=0">
 <…activity1…>
</while>

pick_onMessage_PL1_PT1_x1(m1
).Q1

++

pick
_onMessage_PL2_PT2_x2(m2).Q2

++

82.Q3

<pick ... >
 <onMessage …
 variable="m1">
 <…activity1…>
 </onMessage>
 <onMessage ...
 variable="m2">
 <…activity2…>
 </onMessage>
 <onAlarm>
 <for>'P3DT10H'</for>
 <…activity3…>
 </onAlarm>
</pick>

 if (x ≥ 0) then Q1

 else Q2
<if>
 <condition>
 $x≥0
 </condition>
 <…activity1…>
 <else>
 <…activity2…>
 </else>
</if>

A sequential composition is identified by two processes

linked by the prefixing operator “.” or by parallel operator
and one is post fixed by an emission action and the other one
is prefixed by a reception action on the same channel.
Generally, the prefixing operator is used because it is
simplest and more intuitive, however, in some cases only the
representation using the parallel operator can be used, as in

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

8

the following example:
<sequence>
 <flow>
 <…activity1…>
 <…activity2…>
 </flow>
 <…activity3…>
</sequence>
The flow construct and activity3 are performed

sequentially, and the flow construct contains activity1 and
activity2 that must be executed concurrently, which means
that activity3 starts after the completion of both activity1 and
activity2.

The TVPCCS representation is:
(Q1 . seq_next (1) . 0 | Q2 . seq_next (1) . 0 | seq_next (v1) .

seq_next (v2) . Q3) \ {seq_next}
Note that B is not well formed TVPCCS process
B:=(Q1 | Q2) . Q3
The BPEL while construct is identified by a process that

executes repeatedly contained activities as long as the
Boolean condition evaluates to true at the beginning of each
iteration.

 The BPEL pick construct is identified by processes linked
by weak choice operator, with the condition that these
processes begin by :
1) A reception action which name’s begin by

“pick_onMessage”, representing the BPEL
<onMessage> construct

2) Allowing some passage of time, representing the BPEL
<onAlarm> construct.

IX. RELATED WORKS
In this paper, we first propose a framework for analyzing

the choreography compatibility supporting synchronous or
asynchronous communicating services and then present a
mapping between TVPCCS and BPEL in order to allow an
automatic translation between the two languages that permit
designing and verifying in TVPCCS and then translating the
specification onto BPEL, consequently we divide related
works in two groups:

The first group is interested in the compatibility analysis of
a choreography. The compatibility problem is not limited to
analyzing message exchange sequences (conversations). In
practice, other metrics affect the Web services compatibility,
such as the quantitative properties like timed constraints
which plays a crucial role in Web services interaction.

In [3], [16], the authors consider the sequence of messages
that can be exchanged between two synchronous Web
services. But, considering only message exchange sequences
is not sufficient. To succeed a conversation, other metrics can
have an impact such as timed properties which are not
considered in [3], [16]. Another important remark is that in
[3], [16], the authors consider synchronous Web services.
Such assumption is very restrictive since the nature of Web
services can be asynchronous. To overcome this limitation,
we propose a compatibility checking approach for timed
asynchronous services.

The compatibility framework presented in [6], [14], that is

an extension of the framework presented in [4], considers a
more expressive timed constraints model. In fact, the authors
deal only with synchronous communicating services. Thus,
to discover timed conflicts, the authors are based on
synchronizing the corresponding timed properties over
messages. Therefore, this framework cannot be applied to
discover the eventual timed conflicts in case of asynchronous
Web services.

The second group The second group is interested in
translations into BPEL.

In [17] authors present an approach to automatically map a
workflow net onto BPEL using an iterative approach. To
support this approach, they implemented a tool to
automatically translate Colored Petri Nets into BPEL code.

In [18] the authors extend the common mapping theme
between the algebra and BPEL by providing rules for a
two-way mapping. They also confirm however, that due to
the expressive and flexible structure of process algebra, the
mapping from process algebra to BPEL clearly does not
preserve the structure of a process.

In [19] the author supports the idea that building the
pi-calculus model, check it and only then map it into
WS-BPEL seems to be a more effective way to tackle the
problem of verification for WS-BPEL systems.

X. CONCLUSION
In this paper, we presented a formal framework for

analyzing the compatibility of choreography. Unlike the
proposed approaches, this framework caters for timed
properties of synchronous and asynchronous Web services.
We presented how to model the timed behavior of Web
services using TVPCCS. In choreography, when the services
are interacting together, timed conflicts could arise. In order
to handle the eventual timed deadlocks, we proposed an
approach which is based on the model checker CWB.

In order to handle asynchronous services, we proposed to
add a process acting like a buffer that receives this message,
sends it and finally terminate.

We also present a method to generate BPEL specifications
from TVPCCS processes. We argue that the automatic
generation of BPEL code is a promising way, it allows
modeling in a formal language, checking and then generating
the BPEL specification. It also saves time and effort, we have
presented a translation of BPEL into TVPCCS [15], then we
can translate a BPEL specification, check it, correct it, apply
hierarchical refinement design method, and finally the BPEL
corrected code is automatically generated. This approach is
useful also for reverse engineering issues, and when one
wants to verify BPEL services developed by others.

REFERENCES
[1] R. Kazhamiakin, P. K. Pandya, and M. Pistore, “Timed modeling and

analysis in web service compositions,” In Proc. 1st International Conf.
Availability, Reliability and Security, ARES, IEEE Computer Society,
2006, pp. 840-846.

[2] H. Huang, W.T. Tsai, R. Paul, and Y. Chen, “Automated model
checking and testing for composite web services,” In Proc. 8th IEEE
International Symposium. Object-oriented Real-time distributed
Computing (ISORC), Seattle, May 2005, pp. 300-307.

[3] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. “When are two
web services compatible? ,” In Proc. 5th International Workshop on

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

9

Technologies for E-Services (TES'04), Toronto, Canada, 2004, pp.
15-28.

[4] B. Benatallah, F. Casati, J. Ponge, and F. Toumani. “On temporal
abstractions of web service protocols,” In Proc. 17th Conf. Advanced
Information Systems Engineering (CAiSE ’05), Porto, Portugal, 2005.

[5] R. Kazhamiakin, P. K. Pandya, and M. Pistore. “Representation,
verification, and computation of timed properties in web service
compositions,” In Proc. The IEEE International Conf. Web Services
(ICWS), 2006, pp. 497-504.

[6] J. Ponge, B. Benatallah, F. Casati, and F. Toumani. “Fine grained
compatibility and replaceability analysis of timed web service
protocols,” In Proc. 26th International Conf. Conceptual Modeling
(ER), Auckland, New Zealand, 2007, pp. 599-614

[7] N. Guermouche, O. Perrin, and C. Ringeissen. “Timed specification for
web services compatibility analysis,” In Proc. International Workshop
on Automated Specification and Verification of Web Systems
(WWV’07), San Servolo island, Venice, Italy. December 14, 2007, pp.
155-170.

[8] F. Liu, L. Zhang, Y. Shi, L. Lin, and B. Shi. “Formal analysis of
compatibility of web services via CCS,” In Proc. 1st International
Conf. Next GenerationWeb Services Practices, IEEE Computer
Society, 2005. pp. 143-148.

[9] L. Bao, W.S. Zhang and X.G. Zhang, “Describing and verifying web
service using CCS,” In Proc. 7th International conf. Parallel and
Distributed Computing, Applications and Technologies (PDCAT '06),
2006, pp. 421-426.

[10] J. Li, J. He, H. Zhu, and G. Pu. “Modeling and verifying web services
choreography using process algebra,” In Proc. 31st IEEE Software
Engineering Workshop, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 256-268.

[11] Yeung, W. L., Wang, J., and Dong, W. “Verifying choreographic
descriptions of web services based on CSP,” In Proc. IEEE Services
Computing Workshops (SCW’06), IEEE Computer Society.
Washington, DC, USA, 2006, pp. 97-104.

[12] F. Moller and C. Tofts. “A temporal calculus of communicating
systems,” In Proc. CONCUR 90, Amsterdam, volume 458 of Lecture
Notes in Computer Science. 1990, pp. 401-415.

[13] N. Guermouche and C. Godart. “Uppaal based approach for
compatibility analysis of synchronous web services,” INRIA, Research
report, 2008.

[14] J. Ponge. “A new model for web services timed business protocols,”. In
Proc. Atelier (Conception des systèmes d’information et services Web)
(SIWS-Inforsid), Hermès, Hammamet, Tunisie, Mai 2006, pp. 15-28.

[15] M. L. Beggar, L. Liao, and S. Zhang, “Transforming BPEL into
TVPCCS for web services testing,” In Proc. IEEE International Conf.
on Computational Intelligence and Software Engineering (CiSE 2011),
Wuhan, china, 2011.

[16] B. Benatallah, F. Casati, and F. Toumani. “Analysis and management
of web service protocols,” In Proc. 23rd International Conf.
Conceptual Modeling, Shanghai, China, November 2004.

[17] W. M. P. van der Aalst and K.B. Lassen, “Translating workflow nets to
bpel4ws,” BETA Working Paper Series, Eindhoven University of
Technology, Eindhoven, 2005.

[18] A. Ferrara, “Web services: a process algebra approach,” In Proc. 2nd
international conf. Service oriented computing, New York, NY, USA,
2004, pp. 242-251.

[19] F. Abouzaid, “A mapping from pi-calculus into BPEL,” In Proc. the
conf. Leading the Web in Concurrent Engineering. 2006, pp. 235-242.

Mohammed Lamine Beggar was born in 1983, is
currently a PhD student at school of Computer Science
and Technology, Beijing Institute of Technology. His
research interests include Analysis of Web Services
Composition, and model checking.

Liao Lejian is currently a professor at School of
Computer Science and Techno-logy, Beijing Institute
of Technology. He is an expert semantic web. His
research interests include security protocol analysis
and design web service, semantic web, model
checking and logic. E-mail: liaolj@bit.edu.cn

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

10

