
  

  
Abstract—Web services are software applications which can 

be used through a network (intranet or Internet) via the 
exchange of messages based on XML standards. They are aimed 
at wild reusability and are typically designed to interact with 
other in order to build larger applications. Web service 
sometimes requires combining more than one to meet our 
requirements. Service composition is the process of creating 
new services from a set of services. In this context, one of the 
important investigations is the choreography compatibility 
analysis. We mean by the choreography compatibility the 
capability of a set of Web services of actually interacting by 
exchanging messages in a proper manner. Whether a set of 
services are compatible depends not only on their sequences of 
messages but also on quantitative properties such as timed 
properties. In this paper, we present a framework for model 
checking web service choreography based on checking web 
service (CWB) in which the web services support synchronous 
or asynchronous timed communications. Particularly, in this 
paper we present a new modeling of Web services using 
temporal value passing calculus of communicating systems 
(TVPCCS).  

Index Terms—Model checking, web service composition, 
temporal value passing calculus of communicating systems, the 
edinburgh concurrency workbench.  
 

I. INTRODUCTION 
Web services are increasingly gaining acceptance as a 

framework for facilitating application-to-application 
interactions within and across enterprises, they are typically 
designed to interact with other in order to build larger 
applications. Service composition is one of the most 
promising ideas underlying Web services [1]: new 
functionalities can be defined and implemented by 
combining and interacting with pre-existing services. 

Since the complexity of composition increases, 
verification and validation of the composite Web service 
become a sophisticated task that deserves and has received 
many studies [2]. In this context, one of the important 
elements is the compatibility analysis. Two web services are 
compatible depends not only on static properties like the 
correct typing of their message parameters, but also on their 
dynamic behavior [3]. 

A lot of works on the compatibility problem of Web 
services deal with services that support synchronous 
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communication and consider only the sequences of messages, 
that is, two Web services are compatible if each input (resp. 
output) message of a service corresponds to an output (resp. 
input) message of the other service in the same order. 
Nevertheless, the nature of Web services could be 
asynchronous, and then in this paper we tackle the problem of 
analyzing the compatibility of a choreography in which the 
Web services support synchronous or asynchronous 
communications. It is very important to define the nature of 
supported communications considered in a compatibility 
framework because two Web services which are 
incompatible using synchronous communication can be 
compatible using the asynchronous one. In an asynchronous 
communication, when a message is sent, it is inserted into a 
bounded message queue or stored into a buffer, and the 
receiver consumes (i.e. receives) the message while it is 
available in the queue or buffer. 

The compatibility of Web services depends not only on the 
supported sequences of messages but there are other crucial 
quantitative properties such as timed properties [1], [4], [5], 
[6]. We define the timed properties to be the delays needed to 
be able to exchange messages (e.g., in an application, a 
Insurance Company can send its final decision to 
policyholder after 3 days and within 7 days). Some works 
using synchronous communication cannot discover or cannot 
discover all the eventual timed conflicts [3], [4], [6], [7]. 

In this paper, we first propose a framework for analyzing 
the choreography compatibility supporting synchronous or 
asynchronous communicating services and then present a 
mapping between TVPCCS and BPEL in order to allow an 
automatic translation between the two languages that permit 
designing and verifying in TVPCCS and then translating the 
specification onto BPEL. In our framework we take into 
account data flow that can be involved when exchanging 
messages. Furthermore, we consider timed properties that 
specify the delays to be able to exchange messages. Implicit 
timed conflicts could be rose during the interaction and the 
exchange of messages between Web services because 
implicit timed dependencies could be built between their 
different timed properties.  We tried to use some existing 
work to discover deadlocks due to implicit timed conflicts 
but we notice that it is not possible since they do not consider 
timed properties or they use synchronous communication 
mode and then can’t discover all deadlocks. In order to catch 
all the possible timed deadlocks, we propose to use the model 
checker the CWB (the edinburgh concurrency workbench). 

To analyze the choreography compatibility we need the 
Web services description behavior which is the sequences of 
messages the service supports and the associated timed 
requirements. We use Temporal Value Passing Calculus of 
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Communicating Systems (TVPCCS) that is a timed extension 
of Calculus of Communicating Systems (CCS) to model the 
timed behavior, process algebra like Communicating 
Sequential Processes (CSP) and CCS have been already used 
in series of papers [8]-[11]. TVPCCS model is suitable to 
describe Web services timed behaviors. It is simple, fairly 
easy to understand and at the same time it is expressive 
enough to model the properties we consider. 

In this paper we make the following contributions: 
(1) We propose an asynchronous/synchronous model of 

Web services that consider sequence of messages, data and 
timed requirements. (2) We propose an abstraction process 
that aims to handle Web services using CWB. (3) We 
propose a mapping between TVPCCS and BPEL.  

The reminder of the paper is organized as follows.Section 
II presents the case study that we use to show the related 
issues of the proposed approach. In Section III we introduce 
TVPCCS. In section IV, we discuss informally and intuitively 
the timed compatibility problem of a choreography using the 
TVPCCS to model web services and their timed behaviors. 
Section V presents a mapping from TVPCCS to TCCS. In 
order to be able to handle asynchronous services by CWB, in 
section VI, we present CWB objects and model the study case 
using it. Section VII presents the proposed formal 
choreography compatibility investigations. In Section VIII, 
we first explain the principle used to store information in 
TVPCCS action’s name, and then present the mapping from 
TVPCCS to BPEL. In Section IX, we discuss related work. 
Finally, in section X we conclude. 

 

II. CASE STUDY 
The goal of the application we consider is to manage 

policyholder request. Such a request involves three Web 
services: (1) requester service (RS), (2) Auto Repair Garage 
(ARG), and (3) Administration (Ad). The high level 
choreography model of the process is depicted on Fig. 1. To 
benefit from insurance, the process can be summarized as 
follows. (1) Via a requester service, a policyholder deposits a 
file in the administration, (2) the policyholder asks an 
estimated cost from the Auto Repair Garage, (3) the Auto 
Repair Garage negotiates a date of an appointment to 
examine the car. (4) After the examination, the Auto Repair 
Garage sends a report (estimated cost) to the administration. 
(5) After studying the insurance policy of the policyholder 
and the report of the Auto Repair Garage the administration 
sends a notification of the final decision to the policyholder. 

 

 

 

 

 

 
The timed requirements are: 

1) Once the Auto Repair Garage proposes meeting dates to 
the policyholder, this latter must send the filled form 

within 24 hours. 
2) The administration requires at least 3 days and at most 7 

days from receiving the file from the policyholder to 
notify him by the final decision. 

3) Via the requester service, once the policyholder obtains 
the car’s information form, he must send the filled form 
within 36 hours. 

The Web services we consider could support 
asynchronous communications. The first issue we deal with 
is how to model asynchronous communications using TCCS? 
When the services are interacting together, timed deadlocks 
could arise because the timed properties of the several 
services are local and are mutually independent, we must 
check that the choreography is deadlock free, the second 
issue is how to consider timed properties when analyzing the 
compatibility of a choreography? 

 

III. TVPCCS 

A. Basic Syntax of TVPCCS 
The temporal value passing CCS is a kind of computation 

model to describe and analyze concurrent systems. In the 
temporal value passing CCS, every expression denotes an 
agent, and expresses a concurrent entity which can run freely. 
The communication between agents is implemented by 
exchanging information in named channels. 

The collection of TVPCCS expressions, ranged over by P, 
is defined by the following expression where we take a  ∈
Act (set of actions), X  Var, ∈ t  T (T = {1, 2, 3...} ∈
represent divisions in time). 

P ::=  0  |  0  |  X  |  a.P  |  a.P  |  (t).P  |  P+P  |  P++P  | 
          P|P    |   P\a   |   if b then P   |   A(x1, … , xn) 

0 and 0 represents that the process is inactive and it does 
not perform any actions (0 represents the completely dead 
process. It can neither perform any computation, nor can it 
witness the passage of any time. 0 represents the process 
which can never perform any actions, but rather idles 
forever). 

a.P represents the process which can perform the action a 
and evolve into the process P by so doing. The process cannot 
progress through time before performing the action a, and the 
action is assumed to occur instantaneously in time. a.P 
represents the process which can perform the action a, but 
will allow any amount of time to pass before doing the action. 
Prefix action has three kinds of form: 
1) τ  stands for an internal and unobservable action τ. 
2) a(x) represents that variable receives values from input 

channel a. 
3) ā(e) denotes that the value of variable send out along 

output channel a . 
(t).P represents the process which will do no computation 

for an amount of time t, but at that point in time will 
commence behaving as the process P. 

P+Q represents a choice between the two processes P and 
Q. The process behaves as the process P or the process Q, 
with the choice being made at the time of the first action, or 
else at the occurrence of a passage of time when only one of 
the operands may allow the time passage to occur. In this 

         Fig. 1.  Global view of the application  
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latter case, the second temporally deadlocked process is 
dropped from the computation. This operator is referred to as 
weak choice. 

P++Q represents a stronger notion of choice between the 
two processes P and Q. The process behaves as the process P 
or the process Q, with the choice being made only at the time 
of the first action. Thus, for instance, any initial passage of 
time must be allowed by both P and Q. This operator is 
referred to as strong choice. 

A process can be a parallel composition of sub-processes: 
P|Q, Each of the processes may do any actions independently, 
or they may synchronize on complementary actions, resulting 
in a τ action. Any passage of time must be allowed and 
recorded by each of P and Q. 

A process may have a restriction, which is denoted by \S. P 
is a process and S is a set of named channels, imposing that an 
emission on m  S by one sub∈ -process of P can occur only if 
another sub-process does a reception on the same channel. 

if b then P: represents that P will execute if the Boolean 
expressions b is ‘true’. 

A(x1, … , xn) represents constant A with arity n. There is a 
defining equation: A(x1, … , xn) = P where the right-hand side 
P may contain no agent variables, and no free value variable 
except x1, … , xn. 

B. Operational Semantics of TVPCCS 
 

 

 

 

 

 

 

 

 

 
Fig. 2. Action Derivation Rules 

 

 

 

 

 

 

 

 
Fig. 3. Temporal Derivation Rules 

 
In this section, we define the operational semantics of our 

language. The semantics is transition based, outlining what 
actions and time delays a process can witness. In order to 
define our semantic we must first define a syntactic predicate 
which will allow us to describe when a process must stop 
delaying its computation within a particular amount of time. 

This is done using the following function on TVPCCS terms. 
Definition [12] The function | . |T: TCCS → {0, 1 , 2 ,… ,γ} 

defines the maximum delay which a process may allow 
before forcing a computation (or deadlock) to occur. 
Formally, this function is defined as follows: 

 
| 0 | T = 0                         | P++Q | T = max (| P | T , | Q | T) 
| X | T = 0                        | P + Q | T = min (| P | T , | Q | T) 
| P \ a | T  = | P | T             | P | Q | T = min (| P | T , | Q | T)        
| a.P | T = 0                      | (s).P | T = s + | P |  T 

 
This definition is well defined as long as all recursive 

variables are guarded by action or time prefixes. 
In Fig. 1 and Fig. 2, we present the operational rules for 

our language. They are presented in a natural deduction style, 
and are to be read as follows: if the transition(s) above the 
inference line can be inferred, then we can infer the transition 
below the line. Our transitional semantics over TVPCCS then 
is given by the least relations    

→    ⊆ TVPCCS × Act × TVPCCS and         ⊆ TVPCCS × 

T × TVPCCS (written P ⎯→⎯a Q and P       Q    respectively) 
satisfying the rules laid out in Fig. 1 and Fig. 2. Notice that 
these rules respect the informal description of the constructs 
given in III.A 

 

IV. SYNCHRONOUS/ASYNCHRONOUS COMMUNICATION AND 
COMPATIBILITY PROBLEMS 

In this section, by using examples, we present how to 
model composition of synchronous or asynchronous Web 
services using TVPCCS and we discuss informally and 
intuitively the timed choreography compatibility problem 
and the related issues 

Example 1: Let us first consider the two untimed services 
Q and Q’ depicted on Fig. 4. Using synchronous 
communication and services with no times property, we are 
using the model proposed by [9], these two services are 
incompatible because they don’t produce and consume their 
messages in the same order. The first action of the service Q 
is to send the message m0 (d0, d1), as services are 
synchronized over messages, it is blocked because the 
service Q’ is not waiting for the message m0 (d0, d1). The 
same problem arises for the service Q’ whose first action is to 
send the message m2(d3). 

 
 
 
 
 
 
 
 
 
 
The representation of Q and Q’ is 

0 . )(m . )(m . ),(m  Q 3221100 dddd=     

0 . )(m. ),(m . )(m  Q' 2110032 dddd= and their composition 
using synchronous communication is 

t 

a    Q         Q’ 
P++Q         Q’ a 

a    P         P’ 
P++Q         P’ a 

a    P         P’ 
P\b         P’\ba   (a≠b) 

a P+Q         Q’ 

a    Q         Q’ 
a P+Q         P’ 

a    P         P’ 

a.P         P a a.P         P a 

P|Q         P’|Q a 

a    P         P’ 
P|Q         P|Q’ a 

   Q        Q’a 

P|Q         P|Q’ {e/x}τ
 ,Q     Q’a(e)   P         P’ a(x) 

0       0 t a.P       a.P t 

(t).P       P t (s+t).P       (t).P s 
  P       P’ s 

 (t).P        P' 
s+t

P+Q      Q’ 
t 

  Q      Q’ t 

(|P|T<t) 
P+Q      P’ 

t (|Q|T<t)    P      P’ t 

P+Q       P’+Q’ 
t 
 ,Q      Q’ t 

   P      P’ t 

P\a       P’\a 
t

   P      P’ t
 ,Q      Q’ t 

   P      P’ t 

  P|Q       P’|Q’ 
t

 ,Q      Q’ t 
   P      P’ t 

P++Q      P’++Q’ 
t 

Fig. 4. Untimed Incompatible Synchronous Web services 
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S\)Q' | (Q n Compositio =  where S = { m0(d0,d1), m1(d2), 
m2(d3) }. 

Example 2: we use the same services Q and Q’ depicted 
on Fig. 4. but this time we consider the case of asynchronous 
communication. The two services become compatible, the 
service Q sends the message m0 (d0, d1) that is stored in the 
buffer M0 and start waiting for m1(d2), on the other side Q’ 
sends m2(d3) that is stored in the associated buffer M2 and 
then consumes m0 (d0, d1), finally sends the message m1(d2) 
that also is stored in a buffer M1 and terminate. At the 
moment m1(d2) becomes available the service Q consumes it 
and then consumes m2(d3) and terminate. By using the 
existing work, these two services are considered as 
incompatible although they can succeed an execution. In fact, 
the proposed frameworks (e.g.,see [3], [4], [6], [7], [13]) deal 
only with synchronous communicating services. 

 
0 . )('m . )('m . ),(m  Q 3221100 dddd=          0 . )('m . )(m  M1 2121 dd=  

0 . )(m . ),('m . )(m  Q' 2110032 dddd=      0 . )('m . )(m  M2 3232 dd=  

0 . ),('m . ),(m  M0 10100 dddd d=       
 

S\M2)|M1|M0|Q'|(QnCompositio =  where S= { m0(d0,d1), 
m1(d2), m2(d3), m0’(d0,d1), m1’ (d2), m2’ (d3) }. 

 
For each message we add a process acting like a buffer that 

receives this message, sends it and finally terminate. By 
adding buffers we transform the synchronous communication 
to asynchronous one because services Q and Q’are not still 
synchronized over messages. 

When the services interact together, implicit timed 
conflicts could arise. To illustrate this issue, in the following 
we present an illustrative example. 

Example 3: Let us add timed properties to services Q and 
Q’ depicted on Fig. 5. that use asynchronous communication. 
Now,  the   service  Q  sends   the  message  m0 (d0, d1) that is 
stored in the buffer M0 and start counting time, it must 
receive the message m2(d3) within 10 units of time. On the 
other hand, Q’ can send the message m2(d3) that can be stored 
in the buffer M2. The service Q remains blocked until the 
message m1(d2) will be available but Q’ can consume the 
message m0 (d0, d1) which has been already sent by Q. Once 
consumed, Q’ sends the message m1(d2) after 20 and within  
40  units   of   time   from   consuming   the   message  m0 (d0, 
d1) (i.e., 20 ≤ x ≤ 40). Consequently, the message m1(d2) 
becomes available in the buffer M1 after 20 units of time 
from consuming the message m0 (d0, d1). In that case, Q will 
be able to consume the message m1(d2) after 20 units of time 
which means that the message m2(d3) can’t be consumed 
within 10 units of time, it is a timed conflict. 

 
 
 
 
 
 
 
 

)))0 . stopT1|0( . )('m0 . stopT1(       

 . 'wfm . )('m0 . stopT1( . 'wfm . startT1  . ),(mQ

32

2211100

d

ddd

++

++=
 

))0 . stopT|0( . )(m0       

 . )(m . stopT2( . startT2 . 20 . ),('m . 'wfm . )(mQ'

21

21100032

d

dddd

++

=
 

0 . ),('m         

. 'wfm . ),(m0 . ),('m . ),(m . 'wfmM0

100

01001001000

dd

dddddd ++=

           

0 . )('m . 'wfm . )(m0 . )('m . )(m . 'wfmM1 2112121211 dddd ++=  
0 . )('m . 'wfm . )(m0 . )('m . )(m . 'wfmM2 3223232322 dddd ++=

     
0 .  stopT1 . 10 .  startT1T1 =         0 .  stopT2 . 20 .  startT2T2 =  

 
S\T2) | T1 | M2 | M1 | M0 | Q' | (Q n Compositio =  

S= { m0(d0,d1), m1(d2), m2(d3), m0’(d0,d1), m1’(d2), m2’(d3), 
startT1, stopT1, startT2, stopT2, wfm0’, wfm1’, wfm2’}. 

 
We add processes acting like Timer, for example we know 

that the process Q’ after consuming the message m0 (d0, d1) 
must send the message m1(d2) after 20 units of time and 
within 40 units, so after consuming the message m0 (d0, d1) 
we wait 20 units of time and then we start the timer T2 which 
count 20 units of time. The process Q’ can send the message 
m1(d2) or wait at most until the timer T2 completes the 
counting to send it. 

When using TVPCCS, if the process 
0 . ),('m . ),(mM0 100100 dddd=  can’t receive the message m0 at 

the present instant, then there is a deadlock, because M0 can’t 
allow any passage of time, consequently the definition of 
buffers change. To guaranty that when a service is waiting for 
a message mn’, this latter will be consumed as soon as it is 
available (without any passage of time) new messages are 
used named wfmn’ (waiting for mn’). the new definition of 
buffer is:  

0 . )('m . 'wfm . )(m0 . )('m . )(m . 'wfmMn nnnnnn xxxx dddd ++=  

In order to handle the eventual timed conflicts, we propose 
a Framework for Model Checking Web Service 
choreography based on CWB. To do so, we first present a 
mapping from TVPCCS to TCCS and then a mapping from 
TCCS to CWB. 

 

V. FROM TVPCCS TO TCCS 
We assume that all values belong to some fixed value set V. 

we begin by showing how some basic examples can be 
reduced from TVPCCS to TCCS. 

Let C be a buffer cell. 

C = in(x).C’(x) and C’(x) = out (x).C 

Consider first the parameterized constant C’. It will 
become a family of constants C’v, one for each value ∈ V. 

Similarly the parameterized negative prefix “ (x)out ” 

becomes a family of prefixed “ vout ”, one for each value v. 
Thus the single defining equation for C’ becomes a family of 
defining equations Fig. 5. Incompatible Timed Asynchronous Web services 

       Q                    
 
 
      Q’ 
 

y≤10 y=0 S2 
m0 (d0, d1) m1(d2) m2(d3) 

S1 S3 

x=0 20≤x≤40 

m1(d2) m2(d3) m0 (d0, d1) 
S’0 S’1 S’2 S’3 
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vC'  = vout .C   (v∈V) 

Now consider the prefix “(x)”. To reflect the fact that it can 
accept any input value, because it binds the variable x, we 
translate it to “∑ ∈Vv vin ”; in this way the use of a bound 
variable x is replaced by summation. Thus the defining 
equation for C becomes. 

∑=
∈Vv

vv .C'inC  

Next let’s consider this example: 
P = in(x).Start(x) 
Start(x) = if smallThanTen(x)  then  F(x) 
                else if smallThanHundred(x)  then  G(x)  
                else H(x) 

Since Start takes a parameter, like C’, we expect the 
second equation  to be reduced to a family of equations, one 
for each x ∈ V. But in this case the form of the right-hand 
side of each equation depends up on the value of x, as 
determined by the predicates smallThanTen and 
smallThanHundred the translation is as follows: 

∑=
∈Vx

xx .StartinP  

x

x x

x

F                                                  (if smallThanTen(x))
Start G    (if smallThanTen(x) and smallThanHundred(x))

H (if smallThanTen(x) and smallThanHundred(x))
= ¬

¬ ¬

⎧⎪
⎨
⎪⎩

 
More generally, we assume that P range over the collection 

of TVPCCS expressions, we also assume value expressions e 
and Boolean expressions b, built from value variable x,y,… 
together with value constants v and any operator symbol we 
wish. Let A be the set of actions names like a, b, in,... then we 
denote by Ā the set of co-names like ,...in ,b ,a Then we set 
L=A∪Ā; L is the set of labels and we shall use l, l’ to range 
over L. Our translation of TVPCCS expressions into TCCS 
rests upon the idea that to each label  in the TVPCCS 
corresponds a set {lv: v∈V} of labels in the TCCS. 

For each TVPCCS expression P without free value 
variables, its translated form P̂  is given in Table I. 

 
TABLE I: THE MAPPING FROM TVPCCS TO TCCS 

P P̂  
X X 

a(x).E ∑ ∈Vv v {v/x}Êa  

a(x).E ∑ ∈Vv v {v/x}Êa  

ā(e).E āe. Ê  
ā(e).E āe. Ê  

τ. E τ. Ê  

(t). E (t). Ê  

∑ ∈Ii iE  ∑ ∈Ii iÊ  

E1|E2 Ê 1| Ê 2 

E\L Ê \{lv:l ∈L, v∈V} 

if b then E 

⎩
⎨
⎧ =

otherwise  0

trueb if   Ê
 

A(e1, … , en) ne,...,1eA  

Here is our modeling of the case study, the meanings of the 
messages are listed below (abbreviations are defined for each 
message at the end of each explanation). 

FileDeposite: Via a requester service, a policyholder 
deposits a file in the administration (fd(d0)). 

FormClaim: Via a requester service, the policyholder asks 
auto repair garage for a form (fc(d1)). 

GettingForm: the policyholder receives the form from auto 
repair garage (gf(d2)). 

SendFilledForm: after filling the form, the policyholder 
sends it to auto repair garage (sff(d3)). 

MeetingProposedDates: auto repair garage proposes dates 
to examine the car (mpd(d4, d5, d6)). 

MeetingConfirmedDate: the policyholder chooses a date 
for meeting (mcd(d7)). 

CarExamination: auto repair garage examines the car 
(ce(d8)). 

EstimatedCost: the auto repair garage sends the reparation 
estimated cost to the administration (ec(d9)). 

FinalNotification: the administration sends the decision to 
the policyholder (fn(d10)). 

The timed conversational protocols of the three services 
introduced in Section II are depicted on Fig. 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

))0 . stopT4 | 0( . )(fn          

 . stopT0 . )(ec'  ))0 . stopT4 | 0( . )(fn . )(ec'           

 0 . stopT4( . stopT0( . wfec' . startT4 . startT0 . )(fd' . wffd'  AD

10

9109

0

d

ddd

d

++++

=

 

 

))0 . stopT2            

 | ))0 . stopT3 | 0( . )(ec  0 . )(ec . stopT3( . startT3            

 . 24 . )(ce . )(mcd' . wfmcd'( . )(sff'  0 . stopT2(            

 . wfsff' . startT2 . ) , ,(mpd . )(gf . )(fc' . wffc' ARG 

99

873

65421

dd

ddd

ddddd

++

++

=

 

Fig. 6. Web services of the case study 
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VI. FROM TCCS TO THE CWB (THE EDINBURGH 
CONCURRENCY WORKBENCH) 

The Edinburgh concurrency workbench (CWB) is an 
automated tool which caters for the manipulation and 
analysis of concurrent systems. In particular, the CWB 
allows for various equivalence, preorder and model checking 
using a variety of different process semantics.  

There are different objects, namely agents, action sets and 
propositions, using CCS, (for synchronous/asynchronous 
untimed web services) processes are defined as agents where 
m1 stands for receiving the message m1 and ‘m1 stands for 
sending the message m1.Using TCCS, m1.0 stands for m1.0, 
$m1.0 for m1.0 and 2.m1.0 for 2.m1.0. In CWB the 
propositions are nexpressed in the propositional modal 
μ-calculus, an agent A (process A) satisfies <K>P if it has a 
K-derivative satisfying P, that is, if there is some a ∈ K such 
that A'A a⎯→⎯  with A’ satisfying P. an agent A (process A) 
satisfies [K]P if every K-derivative of A satisfies P, that is, if 

A’ satisfies P whenever there is an a ∈ K such that A'A a⎯→⎯ . 
In natural models the computing tree logic (CTL) operator F 
can be characterized by a μTL formula: 

( )qψμqX |M iff ψF |M ∨=+= . so in CWB we define a 
parameterized proposition EF(P)=min(Z.P|<->Z) and 
AF(P)=min(Z.P|([-]Z &<->T)). Where min(X.P) is the least 
fix point temporal formula. 

The CWB objects resulting from the modeling are depicted 
on Fig. 7. 
 

VII. FORMAL ASYNCHRONOUS COMPATIBILITY CHECKING 
In this section, we present the compatibility checking 

using our modeling and CWB. Like the existing works [4], 
[6], [7], [14], we distinguish three compatibility classes: (1) 
full compatibility, (2) partial compatibility, and (3) full 
incompatibility. 

A. Full compatibility 
In general, a set of Web services constitute a full 

choreography compatibility if they can interact without an 
eventual blocking. As we deal with asynchronous services, 
the output messages are sent without synchronizing with the 
corresponding input. Therefore, it is not sufficient to check 
only if there is no a deadlock when the services interact 
together. But, in addition it is important to check if all the sent 
messages are consumed. So, a set of services constitute a full 
compatible choreography if: (1) they can collaborate together 
without an eventual blocking and (2) at the same time, all the 
generated messages must be consumed. 

Formally, a set of Web services interact without an 
eventual blocking is equivalent to check if the services reach 
their final states. At the same time when the services reach 
their final states, all the sent messages must be consumed is 
formally equivalent to check that when the services reach 
their final states, all buffers must be empty. 

Each agent representing a web service or a message buffer 
send a message terminate “tr” just before terminate, and 
another agent V is defined receiving the messages terminate 
from all the web services and the message buffers and finally 
sending the message composable.  

Let P1…Pn be n agents corresponding to n (asynchronous) 
services (P1..n= …’tr.$0), B1…Bm be m agents corresponding 
to m messages buffers (B1..m= …’tr.$0) and T1… Tk be k 
agents corresponding to k timers.                  
Composition = (P1|…| Pn| B1|…|Bm| T1|… |Tk| V)\S where S is 
the set of messages and .0composable.'

mn
$tr...$trV

+
=  

Web services are said to be fully compatible when for all 
paths the message composable is emitted. To check the full 
compatibility we use the command : 

checkprop(Composition,  AF(<’composable>T)). 

B. Partial compatibility 
When the set of n services P1… Pn do not constitute a full 

compatible choreography, we check if the services can fulfill 
at least one execution so that all the produced messages 
during this execution are consumed. 
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execution is equivalent to check if the state “final” can be 
reached via at least one path and at the same time when the 
services reach their final states, all buffers must be empty. 

Web services are said to be partially compatible when they 
are not fully compatible but for some paths the message 
composable is emitted. To check the partial compatibility we 
use the command : 

checkprop(Composition,  EF(<’composable>T)). 

C. Full incompatibility 
When a set of n Web services do not even constitute a 

partial compatible choreography, we say that the services 
build a full incompatible choreography. The full 
incompatibility  characterizes  the  fact  that  the set of 
services cannot, absolutely, collaborate together. Formally, a 
set of services are fully incompatible, if for all the paths, all 
the services cannot reach the state “final”  or for all the paths, 
when the services reach their final states, buffers are not 
empty. 

 
Fig. 7. CWB objects resulting from modeling the case study 

 

VIII. MAPPING TVPCCS INTO BPEL 

A. General Outline 
The translation from BPEL to TVPCCS presented in the 

first work [15] implicitly preserve the BPEL structure, but the 
translation from TVPCCS to BPEL does not: TVPCCS is 
more flexible than BPEL. For example in BPEL there is no 
message exchanged inside a service, a service can 
communicate only with other services. In TVPCCS there are 
no constraints about this. In the TVPCCS design we have to 
be careful, if we want a simple automatic translation, to write 
behavior structurally similar to BPEL ones. The TVPCCS 

programmers have to respect this rule: they have to write the 
main behavior simply instantiating all the processes 
representing services, in the usual manner.  

At the basis of our mapping there is the correspondence 
between TVPCCS actions and BPEL interactions. BPEL 
services and TVPCCS processes instantiated in the main 
process correspond to each other. From TVPCCS to BPEL, 
we use the behaviors specified in the process definition to 
generate the BPEL service description with the names of 
partner links, port type, operations and variables. 

B. Decomposing TVPCCS Expressions 
We would like to map TVPCCS process onto a 

Formally, a set of services can terminate at least one 
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hierarchical decomposition of specific and adequate BPEL 
constructs. For example the TVPCCS parallel operator can 
be used to represent BPEL sequence or Flow construct (see 
Table II), it is important to identify the right construct.  We 
must also recognize complex BPEL constructs; bottom up 
traversal of the parse tree is used to identify in the TVPCCS 
process, parts that are suitable to BPEL constructs.  

The name of TVPCCS actions stores information that will 
help us while choosing the “good” construct. Names will 
carry all information needed to map a TVPCCS process onto 
“BPEL block”. 

C. Actions name 
All BPEL basic activities perform interactions between 

web services. An interaction is characterized by the partner 
link, the port type, and the operation involved in the two 
communicating partners. When the process representing a 
service is defined, an action is simply an emission or a 
reception. The name of the action must store information 
(partner link, port type, and operation involved) on the 
receiver in the emission case, on the sender in the reception 
case. 

TVPCCS emission (resp. reception) action can be used to 
represent BPEL reply (resp. receive) activity, asynchronous 
invoke activity or synchronous invoke activity performing 
two actions (sending a request and receiving a response) 
corresponds in TVPCCS to en emission followed 
immediately by a reception (the emission (resp. reception) 
action can be used for other structured activities, it will be 
explained later).  

We must be able to make difference between TVPCCS 
emission (resp. reception) action that represents BPEL reply 
(resp. receive) activity, synchronous invoke activity and …. 
To do so, a description of the activity is added in the name of 
the action. 

For instance, the following TVPCCS processes: 
0 . (z)xrep_PL_PT_ : P =  

Will be translated to the BPEL activity: 
<reply  partnerLink=”PL”  portType=”PT”  operation=”x”  

variable=”z”> 
0 . (y)_xaInv_PL_PT : P =  

Will be translated to the BPEL activity: 
<invoke  partnerLink="PL"  portType="PT"  

operation="x"    inputVariable="y">  
0 .  (y)xrec_PL_PT_ : P =

 
Will be translated to the BPEL activity: 
<receive partnerLink=”PL” portType=”PT”  

operation=”x”    variable=”y”> 
 And: 

 
0 . (z)_xsInv_PL_PT . (y)_xsInv_PL_PT : P =

 
Will be translated to the BPEL activity: 
<invoke partnerLink="PL"  portType="PT"  

operation="x"  inputVariable="y" outputVariable=”z”>  
TVPCCS emission and reception action can also be used in 

the representation of BPEL assign activity. 
( ) { }ass_copy\.0 (x)ass_copy    | .0 (5) ass_copy  : P =  

Will be translated to the BPEL activity: 
<assign … >  

     <copy>  
          <from expression="5"/>  
          <to var="x"/>  
     <copy>  
</assign>  
Note that a restriction on the name of the channel is used to 

ensure that the value “5” will be assigned to the variable “x” 
and not another variable when using the same channel 
“ass_copy”, different channel’s names must be used if one 
don’t want to use the restriction. 

D. Translating TVPCCS to BPEL 
A parallel processing is identified by processes linked by 

the parallel operator. If synchronization dependencies 
between processes are enabled, TVPCCS emission and 
reception activities will be used to represent BPEL link 
construct. The name of these activities will be “link” 
followed by the name of the link (for more details about the 
translation of the BPEL flow construct and links see [15]). 

 
TABLE II: TVPCCS-BPEL MAPPING 

Sample TVPCCS Specification Sample BPEL Code 

Q1 | Q2 

<flow> 
     <…activity1…> 
     <…activity2…> 
</flow> 

Q1 . Q2      or 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

2

1

Q . (v)seq_next 

0 . )1( seq_next . Q

| \{seq_next} 

<sequence> 
     <…activity1…> 
     <…activity2…> 
</sequence> 

A(x)  where 

A(x) := if  (x ≥ 0) then  Q1 . A(x) 

<while condition=  
"bpws:getVariableData(x)>=0">  
     <…activity1…>  
</while> 

pick_onMessage_PL1_PT1_x1(m1
).Q1 

++ 

pick 
_onMessage_PL2_PT2_x2(m2).Q2 

++ 

82.Q3 

<pick ... >  
     <onMessage … 
     variable="m1">  
          <…activity1…>  
     </onMessage>  
     <onMessage ... 
     variable="m2">  
          <…activity2…>  
     </onMessage>  
     <onAlarm>  
          <for>'P3DT10H'</for>  
          <…activity3…>  
     </onAlarm>  
</pick> 

 if (x ≥ 0) then  Q1 

                        else   Q2 
<if>      
     <condition> 
          $x≥0 
     </condition> 
           <…activity1…> 
     <else> 
           <…activity2…> 
     </else> 
</if> 

 
A sequential composition is identified by two processes 

linked by the prefixing operator “.” or by parallel operator 
and one is post fixed by an emission action and the other one 
is prefixed by a reception action on the same channel.  
Generally, the prefixing operator is used because it is 
simplest and more intuitive, however, in some cases only the 
representation using the parallel operator can be used, as in 
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the following example: 
<sequence> 
     <flow> 
          <…activity1…> 
          <…activity2…> 
     </flow> 
     <…activity3…> 
</sequence> 
The flow construct and activity3 are performed 

sequentially, and the flow construct contains activity1 and 
activity2 that must be executed concurrently, which means 
that activity3 starts after the completion of both activity1 and 
activity2.  

The TVPCCS representation  is: 
( Q1 . seq_next (1) . 0 | Q2 . seq_next (1) . 0 | seq_next (v1) . 

seq_next (v2) . Q3 ) \ {seq_next} 
Note that B is not well formed TVPCCS process 
B:=( Q1 | Q2 ) . Q3 
The BPEL while construct is identified by a process that 

executes repeatedly contained activities as long as the 
Boolean condition evaluates to true at the beginning of each 
iteration. 

 The BPEL pick construct is identified by processes linked 
by weak choice operator, with the condition that these 
processes begin by :  
1) A reception action which name’s begin by 

“pick_onMessage”, representing the BPEL 
<onMessage> construct 

2) Allowing some passage of time, representing the BPEL 
<onAlarm> construct. 

 

IX. RELATED WORKS 
In this paper, we first propose a framework for analyzing 

the choreography compatibility supporting synchronous or 
asynchronous communicating services and then present a 
mapping between TVPCCS and BPEL in order to allow an 
automatic translation between the two languages that permit 
designing and verifying in TVPCCS and then translating the 
specification onto BPEL, consequently we divide related 
works in two groups: 

The first group is interested in the compatibility analysis of 
a choreography. The compatibility problem is not limited to 
analyzing message exchange sequences (conversations). In 
practice, other metrics affect the Web services compatibility, 
such as the quantitative properties like timed constraints 
which plays a crucial role in Web services interaction. 

In [3], [16], the authors consider the sequence of messages 
that can be exchanged between two synchronous Web 
services. But, considering only message exchange sequences 
is not sufficient. To succeed a conversation, other metrics can 
have an impact such as timed properties which are not 
considered in [3], [16]. Another important remark is that in 
[3], [16],  the authors consider synchronous Web services. 
Such assumption is very restrictive since the nature of Web 
services can be asynchronous. To overcome this limitation, 
we propose a compatibility checking approach for timed 
asynchronous services. 

The compatibility framework presented in [6], [14], that is 

an extension of the framework presented in [4], considers a 
more expressive timed constraints model. In fact, the authors 
deal only with synchronous communicating services. Thus, 
to discover timed conflicts, the authors are based on 
synchronizing the corresponding timed properties over 
messages. Therefore, this framework cannot be applied to 
discover the eventual timed conflicts in case of asynchronous 
Web services. 

The second group The second group is interested in 
translations into BPEL. 

In [17] authors present an approach to automatically map a 
workflow net onto BPEL using an iterative approach. To 
support this approach, they implemented a tool to 
automatically translate Colored Petri Nets into BPEL code. 

In [18] the authors extend the common mapping theme 
between the algebra and BPEL by providing rules for a 
two-way mapping. They also confirm however, that due to 
the expressive and flexible structure of process algebra, the 
mapping from process algebra to BPEL clearly does not 
preserve the structure of a process. 

In [19] the author supports the idea that building the 
pi-calculus model, check it and only then map it into 
WS-BPEL seems to be a more effective way to tackle the 
problem of verification for WS-BPEL systems. 

 

X. CONCLUSION 
In this paper, we presented a formal framework for 

analyzing the compatibility of choreography. Unlike the 
proposed approaches, this framework caters for timed 
properties of synchronous and asynchronous Web services. 
We presented how to model the timed behavior of Web 
services using TVPCCS. In choreography, when the services 
are interacting together, timed conflicts could arise. In order 
to handle the eventual timed deadlocks, we proposed an 
approach which is based on the model checker CWB. 

In order to handle asynchronous services, we proposed to 
add a process acting like a buffer that receives this message, 
sends it and finally terminate. 

We also present a method to generate BPEL specifications 
from TVPCCS processes. We argue that the automatic 
generation of BPEL code is a promising way, it allows 
modeling in a formal language, checking and then generating 
the BPEL specification. It also saves time and effort, we have 
presented a translation of BPEL into TVPCCS [15], then we 
can translate a BPEL specification, check it, correct it, apply 
hierarchical refinement design method, and finally the BPEL 
corrected code is automatically generated. This approach is 
useful also for reverse engineering issues, and when one 
wants to verify BPEL services developed by others. 

REFERENCES 
[1] R. Kazhamiakin, P. K. Pandya, and M. Pistore, “Timed modeling and 

analysis in web service compositions,” In Proc. 1st International Conf. 
Availability, Reliability and Security, ARES, IEEE Computer Society, 
2006, pp. 840-846. 

[2] H. Huang, W.T. Tsai, R. Paul, and Y. Chen, “Automated model 
checking and testing for composite web services,” In Proc. 8th IEEE 
International Symposium. Object-oriented Real-time distributed 
Computing (ISORC), Seattle, May 2005, pp. 300-307. 

[3] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. “When are two 
web services compatible? ,” In Proc. 5th International Workshop on 

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

9



  

Technologies for E-Services (TES'04), Toronto, Canada, 2004, pp. 
15-28. 

[4] B. Benatallah, F. Casati, J. Ponge, and F. Toumani. “On temporal 
abstractions of web service protocols,” In Proc. 17th Conf. Advanced 
Information Systems Engineering (CAiSE ’05), Porto, Portugal, 2005. 

[5] R. Kazhamiakin, P. K. Pandya, and M. Pistore. “Representation, 
verification, and computation of timed properties in web service 
compositions,” In Proc. The IEEE International Conf. Web Services 
(ICWS), 2006, pp. 497-504. 

[6] J. Ponge, B. Benatallah, F. Casati, and F. Toumani. “Fine grained 
compatibility and replaceability analysis of timed web service 
protocols,” In Proc. 26th International Conf. Conceptual Modeling 
(ER), Auckland, New Zealand, 2007, pp. 599-614 

[7] N. Guermouche, O. Perrin, and C. Ringeissen. “Timed specification for 
web services compatibility analysis,” In Proc. International Workshop 
on Automated Specification and Verification of Web Systems 
(WWV’07), San Servolo island, Venice, Italy. December 14, 2007, pp. 
155-170. 

[8] F. Liu, L. Zhang, Y. Shi, L. Lin, and B. Shi. “Formal analysis of 
compatibility of web services via CCS,” In Proc. 1st International 
Conf.  Next GenerationWeb Services Practices, IEEE Computer 
Society, 2005. pp. 143-148. 

[9] L. Bao, W.S. Zhang and X.G. Zhang, “Describing and verifying web 
service using CCS,” In Proc. 7th International conf. Parallel and 
Distributed Computing, Applications and Technologies (PDCAT '06), 
2006, pp. 421-426. 

[10] J. Li, J. He, H. Zhu, and G. Pu. “Modeling and verifying web services 
choreography using process algebra,” In Proc. 31st IEEE Software 
Engineering Workshop, IEEE Computer Society, Washington, DC, 
USA, 2007, pp. 256-268. 

[11] Yeung, W. L., Wang, J., and Dong, W. “Verifying choreographic 
descriptions of web services based on CSP,” In Proc. IEEE Services 
Computing Workshops (SCW’06), IEEE Computer Society. 
Washington, DC, USA, 2006, pp. 97-104. 

[12] F. Moller and C. Tofts. “A temporal calculus of communicating 
systems,” In Proc. CONCUR 90, Amsterdam, volume 458 of Lecture 
Notes in Computer Science. 1990, pp. 401-415. 

[13] N. Guermouche and C. Godart. “Uppaal based approach for 
compatibility analysis of synchronous web services,” INRIA, Research 
report, 2008. 

[14] J. Ponge. “A new model for web services timed business protocols,”. In 
Proc. Atelier (Conception des systèmes d’information et services Web) 
(SIWS-Inforsid), Hermès, Hammamet, Tunisie, Mai 2006, pp. 15-28. 

[15] M. L. Beggar, L. Liao, and S. Zhang, “Transforming BPEL into 
TVPCCS for web services testing,” In Proc. IEEE International Conf. 
on Computational Intelligence and Software Engineering (CiSE 2011), 
Wuhan, china, 2011. 

[16] B. Benatallah, F. Casati, and F. Toumani. “Analysis and management 
of web service protocols,” In Proc. 23rd International Conf. 
Conceptual Modeling, Shanghai, China, November 2004. 

[17] W. M. P. van der Aalst and K.B. Lassen, “Translating workflow nets to 
bpel4ws,” BETA Working Paper Series, Eindhoven University of 
Technology, Eindhoven, 2005.  

[18] A. Ferrara, “Web services: a process algebra approach,” In Proc. 2nd 
international conf. Service oriented computing, New York, NY, USA, 
2004, pp. 242-251. 

[19] F. Abouzaid, “A mapping from pi-calculus into BPEL,” In Proc. the 
conf. Leading the Web in Concurrent Engineering. 2006, pp. 235-242. 

 
 
 

Mohammed Lamine Beggar  was born in 1983, is 
currently a PhD student at school of Computer Science 
and Technology, Beijing Institute of Technology. His 
research interests include Analysis of Web Services 
Composition, and model checking. 

 
 
 
 

Liao Lejian is currently a professor at School of 
Computer Science and Techno-logy, Beijing Institute 
of Technology. He is an expert semantic web. His 
research interests include security protocol analysis 
and design web service, semantic web, model 
checking and logic. E-mail: liaolj@bit.edu.cn 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

International Journal of Information and Education Technology, Vol. 2, No. 1, February 2012

10


