

Abstract—The effectiveness of a team work not only depends

on individual's knowledge; depends on cooperation and precise

communication among them. The tradeoffs of remote

communication as compared with face-to-face communication

are a major issue for geographically dispersed team work.

However, the challenges such as what task to be completed,

what problems have been raised and clarified, clarity in project

plan , availability of resource person and to make just-in-time

decision are the major concerns of a software life cycle.

Consequently, these issues cause project delay as well as anxiety

among team members. The ease of communication can be

achieved by aggregating the collective knowledge about the

project, the domain knowledge and skills of managing project

into a common resource platform with the help of intelligent

agents and allow them to share the repository called Knowledge

Grid. In this paper, we present the challenges in distributed

team environment and ontology involved in software life cycle

along with distributed agent algorithm.

Index Terms—Agents, coalition, knowledge grid, ontology

I. INTRODUCTION

 In today's knowledge era, a defining characteristic is our

reliance on vast, complex and intertwined information

networks. Such networks enable exchange, analysis, and

control of information on a scale and of a quality that has

never been emphasized [1].These information networks

support the critical infrastructure that is responsible for much

of the productivity behind our economic growth. Also

ensures advances that we contemplate in areas such as

medicine, engineering and communication.

As our reliance on these networks grows, so does our

vulnerability. The internet enabled us to communicate

globally. However the globalization causes not only the

rising of communication cost, also the increasing overhead of

managing teams when knowledge drain happens [2]. There

are multiple types of flows which have been investigated viz.

energy flow, message flow, control flow. Each of them

follow the rules in their respective domain.

This paper investigates: a mapping between software

engineering and knowledge grid in section II, followed by

different ontologies in software systems in section III,

implementation approaches of agents in distributed

environment in section IV and section V concludes the paper.

II. SOFTWARE SYSTEMS AND KNOWLEDGE GRID

A distributed team work environment requires team

Manuscript received March 21, 2012; revised April 29.

Praveen Desai is with the Manipal Institute of Technology, a constituent

Institution of Manipal University, Manipal, India.

knowledge management. A knowledge flow exists in team

work processes and this knowledge flow reflects the

knowledge level cooperation in team work, which in turn

defines the effectiveness of team work. Distributed software

development team focuses on work co-operation and

resource sharing between members during software

development life cycle and knowledge flow should reflect

cognitive cooperation process dynamically. Hence each team

member can use experience of predecessor accumulated

during previous projects and avoid redundant work. With the

advent of the networks [3], the system specification is done in

one geographic area and the design in some other place. The

entire software development process has distributed

resources such as five generic up-level ontologies and a

knowledge based [KB] issues and solutions ontology. An

issue and solution pair criteria is based on organizational

goals, priorities, cost and timeliness. As a result following

challenges to be addressed.

a) different terminologies and protocols about principles of

software engineering

b) variation in understanding of problem domain

c) various styles of training, project management skills

d)lesser accountability about the project and the

implication that it is somebody else's fault

e) redundancy and wastage of time

The purpose of the Knowledge Grid is for sharing and

managing globally distributed knowledge resources in an

efficient and effective way. The Knowledge Grid is a

sustainable human machine interconnection environment that

enables people or agents to effectively generate, capture,

publish, share, manage and promote knowledge [4], to

process any type of resource through machines, and to

transform resources from one form to another. It provides

appropriate on-demand services to support, innovation,

teamwork, simulation, problem solving, and decision making

by using sharable knowledge. It incorporates epistemology

and ontology to reflect human cognition, exploits social,

biological, ecological and economic principles, and adopts

the techniques for the future interconnection environment.

III. ONTOLOGIES IN SOFTWARE SYSTEMS

In order to develop ontological concepts in software

engineering, it is necessary to identify various knowledge

domains involved in the process to facilitate the optimum

knowledge transfer process [5]. A new paradigm with the use

of intelligent agents will help along with identified

ontologies.

An Agent Coordination Perspective on Software

Ontologies with Knowledge Grid

 Praveen Desai, Dinesh Acharya, and Ashalatha Nayak, Member, IACSIT

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

111

These agents should fulfil characteristics such as :

• classify attributes, roles, and concepts through

ontology in software engineering, project

management, respective domains

• identify issues and solutions ontology that rise up

during software life cycle

• effectively communicate with developers and

classify queries and provide autonomous answers

Knowledge sharing at different levels may lead to

complete or partial reuse or just a kind of heuristic

information which in turn help other team members to

accomplish their development task [6]. Based upon the

activity, following ontology’s can be defined in multisite

development activity.

A. Ontology on Software Engineering Concepts:

The software engineering discipline covers aspects of

software development such as business function and logic,

security and fault tolerance as well as legacy systems. Since

each project differs from one another, only a subset of

ontology is required. This allows generating a subset

ontological knowledge pertaining to software engineering.

This leads to instance ontology which is specifically meets a

particular project need. The use of UML to model the

underlying ontology is shown in Fig. 1.

Fig. 1. Illustration of software engineering ontology.

The above mentioned ontology represents the commonly

agreed knowledge along with relationships between the

concepts and notations, documents and tools[7]. Hence we

can propose the platform divided into various segments of

knowledge.

Thus we can define five different knowledge levels

according to member's cognitive characteristics.

Code Level knowledge helps the team members to share

programming skills during development activity described as

a set of problem solution pairs.

Component Level knowledge reflects reusable components

being developed by the corresponding team members,

Method Level knowledge enables the related team

members to reuse the problem solving method described as

problem-method pair for process, pattern, algorithms

applicable.

Rule Level knowledge defines the knowledge cooperation

rules based on work flow execution. These rules may help

new team members to cooperate with the team in

condition-action-result [CAR] form.

Decision Level knowledge provides the reference for

succeeding team members to make their decisions as per

Situation-Evaluation-Decision pattern.

The ontology hierarchy based on knowledge levels is

shown in Fig. 2.

 Fig. 2. Hierarchy of software engineering ontology.

B. Ontology on Project Management Concepts:

Every organization has specific approach towards

execution of projects; however it is necessary to have

consistent knowledge when discussing the project matters.

Hence there should be a generic and specific ontology as

shown in Fig. 3.

Fig. 3. Example of Project Management ontology.

C. Challenges and Solutions Ontology:

In today’s complex scenario, the issues will increase and

becomes harder to solve the project progress and lack of just

in time solution increase issues like a balloon eventually

burst causing project failure. Based on historical data, the

project failure is due to requirements -process-product

segments. It is necessary to understand how IT can be aligned

with business instead of focusing only on technology. The

ambiguity of definitions related to the business models,

technical terms of software engineering or project

management. Therefore all software issues can be classified

into 3 major issues namely; Technical-Managerial and

Ontological segments. This is shown in Fig 4.

Any issue raised initially passed through Knowledge grid

platform where software agent carries out initial

communication with members and classifies the problem or

issue. The problem-solution ontology can be defined as an

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

112

organizational strategic metrics such as task, goal, budget and

time.

Fig. 4. Example for issue-solution ontology.

D. Ontology Based on Business Concepts

A fundamental knowledge of business related domain/area

such as financial, logistics, retails etc. is necessary for the

success of the software implementation. Hence it is necessary

for project architects or managers to work in such industry to

understand the process completely. This helps in gaining the

fundamental knowledge for the team even when the software

developer has little or no knowledge about the domain. Thus

the entire business process is represented in this ontology.

This is illustrated in Fig. 5.

Fig. 5. Example of domain specific business ontology.

The above mentioned ontology helps in standardizing

business operations and workflow, vocabulary and concepts

used across the geography. Thus it incorporates

internationally agreed workflow, process, objectives where

each organization can customize for their business needs.

It helps in no common understanding or unified

understanding of the same domain in same project and all

team members will benefit by this knowledge from software

agents.

IV. ROLE OF AGENTS IN KNOWLEDGE GRID

An agent as referring to a component of software and/or

hardware which is capable of acting exactingly in order to

accomplish tasks on behalf of its user. Given a choice, it is an

umbrella term, meta-term or class, which covers a range of

other more specific agent types.

A. Characteristics of Software Agent

An agent system is essentially a component system

exhibiting several of the characteristics. There is six

orthogonal characteristics [7] work together to make

agent-oriented systems more flexible and robust to Change.

1) Adaptability - The degree to which an agent’s behaviour

may be changed after it has been deployed.

2) Autonomy- The degree to which an agent is responsible

for its own thread of control and can pursue its own goal

largely independent of messages sent from other agents.

3) Collaboration - The degree to which agents

communicates and works cooperatively with other

agents to form multi-agent systems working together on

some task.

4) Knowledgeable - The degree to which an agent is

capable of reasoning about its goals and knowledge.

5) Mobility - The ability for an agent to move from one

executing context to another, either by moving the

agent’s code and starting the agent afresh, or by

serializing code and state, allowing the agent to continue

execution in a new context, retaining its state to continue

its work.

6) Persistence - The degree to which the infrastructure

enables agents to retain knowledge and state over

extended periods of time, including robustness in the

face of possible run-time failures.

B. Agent Decision Making Process:

Interaction is the main driver for agent decision making.

The difference between reasoning and decision making is

that reasoning is based on “single thread of control” practice

[8]. That is, in reasoning only one decision making entity is

present and active. However, in decision making, multiple

decision making entities are running simultaneously and

independently and the outcome of one’s action may affect the

others.

An agent’s decision making process is summarized as

follows:

1) Gathering relevant data/information from the other

agents.

2) Organizing and interpreting data/information.

3) Identifying the interaction class and appropriate decision

making methods.

4) Building the representation model based on the

interaction class, using different classes of games in

game theory, utility theory or other uncertainty

management theories.

5) Calculating the expected utilities of all possible

alternative solutions associated with each class of games,

selecting the best one, and using it to select a proper

action.

6) Taking action.

7) Evaluating the results.

Basically, each agent should decide firstly its engagement

with the other agent belongs to which interaction class (step 3)

and secondly try a decision making model for that scenario

(steps 4 and 5). The problem of steps 4 and 5, i.e., how

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

113

different decision making methods can be adopted when an

agent is in competitive MAS environment and how to deal

with different levels of uncertainty were addressed. Game

theory and decision theory are considered to be the

fundamental theories to handle an agent’s decision making

under uncertainty. They provide a powerful tool and a set of

mathematical techniques for making decisions about the

actions to take when the outcomes of the possible actions are

not certain.

The representation of software engineering concepts,

software development activities [9], software models,

processes, issues as well as software documentation using

generic and specialize ontology representation will help to

provide cognitive, clear, precise concepts and ideas,

knowledge and classified issues. The ontology defines the

concepts, principles, ideas, knowledge and domain

assumptions explicitly, hence allows the complete

interpretation and common understanding by teams. These

ontologies can be transformed to a software development

resource using resource description framework.

The Environment is the outside world in a distributed scale.

• This could be invokable applications which are

interacting with the system

• A human interface that is part of work place

environment

• autonomous activity that implements the tasks

without human intervention

Software agent consults knowledge specified in ontology

as well as in knowledge base. The ontology is a computer

readable description of knowledge. It describes classes of

objects such as components, documents, projects et al and

their attributes, relationships and processes and their

respective instances are stored in databases. Such enumerated

knowledge used by agents for getting answers from user

queries, making decisions, conveying results autonomously.

The plan of service agent encapsulates the business logics

of how to use the Web service operations to achieve a certain

business goal, which dictates how the Web service operations

can be combined, synchronized and coordinated. Each plan

denotes one of capabilities that the service agent has.

The Execution and Communication component helps the

agent to communicate and react with the environment.

• include issues such as trust, reputation, obligations,

contract management, and management of

large-scale open systems.

• provide implementation methods and middleware,

enabling the easy creation of infrastructures for

agent-based systems,

• Standardised methods for discovery and

communication between heterogeneous services.

The service agent model is composed of four fundamental

elements that are Beliefs, Actions and Plans.

Beliefs represent the current state of the agent’s internal

and external worlds.

Actions are the set of actions that the service agent is able

to perform.

Plans are the set of plans that the service agent has. Each

plan is a partially ordered set of activities that is executed in a

unit of action.

Through the execution and monitor component, the agent

can communicate with the environment and react to the

environment. The set of beliefs is the knowledge base for the

service agent, which denotes the knowledge about itself and

the environment. The knowledge of service agent is

classified into three categories that are basic knowledge,

constraint knowledge and social knowledge. In order to

represent these three categories of knowledge, the beliefs set

of service agent is divided into three sub-models that are

world model, constraint model and acquaintance model

respectively [11].

Agent Coalition or coordination algorithm is based on the

decision making of the autonomous service agents and

addresses the distributed nature of internet based services.

The service agent [12] encapsulates the business logic of how

to use the internet platform to achieve a certain business goal,

which describes how the web based service operations, can

be combined, synchronized and coordinated.

Each plan denotes one of the capabilities that the service

agent has. The plan is defined as tuple (Os, Ra, Goal), where:

1) Os is a set of Web service operations.

2) Ra is a set of relations among Web service operations

in Os, Ra = DfCf, where Df and Cf are data flows set and

control flows set, respectively.

3) Goal is the business goal that the plan achieves, which is

denoted as tuple (Inputs, Outputs), where Inputs and

Outputs denote the input parameters and output

parameters of the plan respectively.

Fig. 6. Service agent model structure.

During the process of service composition [13], the plan of

a certain service agent can be one of three statuses that are

Unexplored, Exploring and Explored. The status Unexplored

means that the plan has not been searched, the status of

Exploring means that the plan is being searched and the status

of Explored means that the search for the plan has been

finished.

Dependence Relation [DR]:

An agent is said to be dependent on another if the latter can

help to achieve its goal [14]. Considering Agent Services Si

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

114

and Sj such that Si={ Ai,Bi,Pi} ;Sj={Aj,Bj,Pj}

If PLAN ‘i’ of Si is dependent on PLAN ‘j’ of Sj, then

dependency relation DR (Si,Pi,Sj,Pj,x)

where x-> parsing of [Goal Pi ∩ Goal Pj].

If Goal Pi = Goal Pj => independent Relation else

dependence Relation.

Using DR, the dependence graph [DRG] /directed graph

among service agent can be constructed as DRG{ V,

E}where V is a vertex or node and E is Edge or a link.

The proposed methodology includes following 3 steps [14],

[15], [16].

Step1 Initialization

Once the user submits the service requirement, a user agent

is created. Following, the user agent sends a message

Broadcast (UserAgent, ri, ro) to all service agents to notify

that a new task arrives. When the service agent sai receives

the message Broadcast (UserAgent, ri, ro). The service agent

sai checks whether there is a plan p whose output parameters

can help the user agent to achieve the service requirement. If

it is true, it sends a message denoted as Provide(sai, p, ro)∩

GetGoalOutputs (p)) to the user agent with the aim to tell the

user agent that service agent sai can provide the parameters

set ro n GetGoalOutputs (p) for the user agent by the output

parameters of its plan p.

--

1: If(Message Ms =Null)

2: Notify the user that the requirement cannot be achieved;

3: Else

4: Choose the minimal cover solution S with the minimum

length from Ms;

5: Ms=Ms-S;

6: For each (sai, p, x) €S

7: Send the message Request(UserAgent, null, sai, p, x) to

sai;

8: Sr=Sr U Request (UserAgent, null, sai, p, x);

9: End for

10:End if

Step 2 Tracing Phase

This step is to construct the dependence graph based on the

dependence relations among service agents. The user agent

checks whether the set of the minimal cover solutions is

empty. If it is true, then notify the user that the requirement

cannot be achieved, otherwise, a minimal cover solution S

with the minimum length is chosen to search by sending

request messages.

Once the service agent sai receives Request (s, p’, sai, p, x)

message, following algorithm is executed.

According to the status of the plan p, two cases are

distinguished. One is the status of Unexplored, which means

it is the first time that the service agent receives the request

message about the plan p and the search for the plan has not

been carried out before. The other is the status of Explored,

which means that the search for the plan p has been finished.

--

----When service agent sai receives Request (s, p’, sai, p, x)

--

1: Rrp=Rrp U Request(s, p’, sai, p, x);

2: If(p.status=”Unexplored”)

3: If((GetGoalInputs (p)Ø ri) and (Dssp = Ø))

4: Set p.status=”Explored”;

5: Set p.feasible=false;

6: Send the message Response (sai, p, s, p’, x, false, null) to s;

7: Set p.status=”Exploring”;

8: Choose a minimal cover dependence solution S with the

 minimum length from Dssp;

9: Dssp = Dssp -S;

10: For each Depoi (sai, p, saj, pq, y € S

11: Send the message Request (sai, p, saj, pq, y) to saj;

12: Srp= Srp U Request (sai, p, saj, pq, y);

13: End for

14:Else if(p.status=”Explored”) AND (p.feasible =true)

15: Send the message Response (sai, p, s, p’, x, true, pw’) to

S;

16: end if

Step 3 Forward Phase: When service agent SA receives

the Response Message RSm, it forwards the same to other SA.

Thus the communication among peer SA’s will be

established.

V. CONCLUSION

Agent-oriented techniques represent an exciting new

means of analysing; designing and building complex

software systems.Agents collaborate by means of social

networks. They can produce the high quality solution at a low

cost of communication and addresses the distributed nature

of Web service composition.

A formal service agent model is proposed, which

integrates the Web service and software agent technologies

into a cohesive entity. Based on the service agent model, a

agent coalition algorithm in distributed environment for

autonomic Web service composition is presented, which

formalizes the Web service composition as a graph search

problem according to the dependence relations among

service agents.

The future work challenges the need of enterprise

framework to establish the team based learning.

ACKNOWLEDGMENT

The authors would like to thank parent institution for their

support and necessary guidance along with anonymous

reviewers for their constructive comments and suggestions

during the conference.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,

“Recovering Traceability Links between Code and Documentation,”

IEEE Transactions on Software Engineering, 2002.

[2] J. H. Clelang, R. Settimi, C. Duan, X. Zou, A. Marcus, J. I. Maletic, and

A. Sergeyev, “Recovery of"Utilizing Supporting Evidence to Improve

Dynamic Traceability Links Between Software Documentation and

Requirements Traceability,” Proceedings International Source Code,

International Journal of Software Engineering Requirements

Engineering Conference (RE'05), 2005.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

115

[3] G. Antoniol, G. Canfora, G. Casazza, and A. Lucia, “Identifying the

Starting Impact Set of a Maintenance Request: A Case Study,” in

Proceedings 4th European Conference on Software Maintenance and

Reengineering, Zurich, Switzerland, 2000.

[4] F. Crestani, M. Lalmas, C. J. Van Rijsbergen, and I. Campbell, “Is this

document relevant...probably: a survey of probabilistic models in

information retrieval,” ACM Computing Surveys, 1998.

[5] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Enhancing an

Artifact Management System with Traceability Recovery Features,” in

Proceedings IEEE International Conference on Software Maintenance

(ICSM'04), Chicago, IL, 2004.

[6] S. Deerester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.

Harshman, “Indexing by Latent Semantic Analysis,” Journal of the

American Society for Information Science, 1990.

[7] W. Frakes, “Software Reuse Through Information Retrieval,” in

Proceedings 20th Hawaii International Conference On System

Sciences, Kona, HI, 1997

[8] R. Homes and Murphy, “CG. Using Structural Context to Recommend

Source Code Examples.” Proc. of Int’l Conf. on Software Engineering,

2005.

[9] H. Zhuge, X. Sun, J. Liu, E. Yao, and X. Chen, “A Scalable P2P

Platform for the Knowledge Grid,” IEEE Transactions on Knowledge

and Data Engineering, vol. 7, 2007.

[10] W. Pohs, G. Pinder, C. Dougherty, and M. White, “The Lotus

knowledge discovery system: tools and experiences,” IBM Systems

Journal, vol. 4, 2006.

[11] C. Lin , K. M. Kavi, F. T. Sheldon, K. M. Daley, and R. K.

Abercrombie, “A methodology to evaluate agent oriented software

engineering techniques,” Software Agents and Semantic Web

Technologies Minitrack, 2007, IEEE Proc. HICSS-40

[12] B. H. Sellers, “Evaluating the feasibility of method engineering for the

creating of agent-oriented methodologies,” M. Pechoucek, P. Petta, and

L. Z. Varga (Eds.), CEEMAS 05, pp. 142–152, 2005

[13] G. Sakarkar and N. M. Shelke “A New classification Scheme for

Autonomous Software Agent,” IEEE Int. Conf. IAMA’09, 2009.

[14] G. Sakarkar and S. Upadhya, “A Survey of Software Agent and

Ontology,” International Journal of Computer Applications (0975 –

8887), vol. 1, no. 7, 2010

[15] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Multi-Agent

Systems as Computational Organizations: The Gaia Methodology,” In

B. Henderson-Sellers and P. Giorgini (Eds.), Agent-oriented

methodologies, 2005, ch. 6, Hershey, PA: Idea Group.

[16] S. Wang, W. Shen, and Q. Hao, “An Agent-based Web service

Workflow Model for Inter-enterprise Collaboration,” Expert Systems

with Application, 2006.

Praveen Desai obtained his Master’s degree from

National Institute of Technology, Surathkal and

Engineering degree from Mangalore University. He

started his career as an IT professional before joining

academics. He is pursuing his research interest in

Machine Learning. Currently he is working for

Manipal Institute of Technology, a constituent

Institution of Manipal University, Manipal ,India.

Mr. Desai is an active member of professional bodies such as Indian Society

for Technical Education [ISTE], IEEE and International Association of

Computer Science and Information Technology [IACSIT], Singapore. He

has published research papers in International conferences. He is an invited

speaker as well as a well-known resource person.

International Journal of Information and Education Technology, Vol. 2, No. 2, April 2012

116

