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Abstract—In this paper, a wavelet-based image transmission 

scheme has been proposed. The proposed scheme has used 

discrete wavelet transform to transform a digital image from 

spatial domain into frequency domain. For wavelet 

transformation phase, Haar wavelet transformation has been 

used. However, it is computationally rigorous. Use of 

concurrent computing has significantly reduced computation 

time overhead as well as the transmission time up to 80% to 

82% as compared to the existing sequential discrete wavelet 

based transmission. The experimental result shows that the 

proposed scheme maintains the accuracy of reconstructed 

image.  

 
Index Terms—Wavelet transform, concurrent computing, 

progressive image transformation, haar wavelet 

transformation. 

 

I. INTRODUCTION 

The internet has become an obligatory component of 

today’s transacting world. However, the internet is not 

always able to quickly transfer the image data of the web 

page. These images not only take huge time to reach the 

destination but also often completely slow down or block 

other traffic on the network. This demands the development 

and improvement of the compression approaches of the 

image data to be transferred. 

The initial breakthrough in the compression of 

one-dimensional signals [1] was easily extended to the image 

domain by concatenating image rows or columns into a 

single stream. Some techniques such as Shannon Fano 

coding [2] and Huffman coding [3]-[8] use 

redundancy-reduction mechanisms which result in shorter 

codes for more frequently appearing samples. It is necessary 

to scan the data samples in order to calculate their 

probabilities of occurrence and create an exact code. 

Run-length coding [9] is another redundancy-reduction 

coding method where in a scan-line each run of symbols is 

coded as a pair that specifies the symbol and the length of the 

run. While most redundancy-reduction methods are lossless, 

other arbitrarily lossy coding methods have achieved higher 

levels of compression. Transform coding [10], subband 

coding [11] -[14], vector quantization [15]-[17] and 

predictive coding [18] [19]-[27] are among the ones that have 

achieved high levels of lossy compression. The major 
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transform coding techniques include cosine/sine [28], 

Fourier [29], Hadamard [30], Haar [30], [10], slant [10] and 

principal-component (Karhunen-Loeve) transforms. 

The browsing image on the internet has become a common 

activity as a means of communication with the emergence of 

World Wide Web. However, it often becomes frustrating due 

to low speed internet connection. As there are several phases 

like encoding and decoding of image while transmitting over 

the internet, it takes much time to transmit the whole of a 

large sized image. Fast downloading of high quality images is 

of increasing importance in many applications including 

photo agencies, geographical information systems, medical 

databases, distance learning etc. So, requiring long time to 

complete the whole image transmission process is a big 

problem. Sometimes, the image presented is not the actual 

one that the user wants. So, it is necessary to allow the user to 

have a preview before the whole transmission is completed 

so that he is allowed to save time by aborting the transmission 

if required. 

Here a better technique has been proposed to send the core 

portion of the original image and then refining it 

progressively. The technique divides the original image into 

several parts. The sender transmits the image to the receiver 

via different stages, and the receiver has to combine the data 

from all stages to recover the image from initially blurred to 

progressively clear. Thus using this method, user can get a 

glance of the image earlier and can decide whether it is the 

correct image or abort it. In case of large sized images, the 

encoding and decoding processes for transmitting image also 

takes mentionable time, because the traditional way followed 

for these are computationally rigorous.  

The target of our method is to encode the original image 

into a data stream from which image can be reconstructed 

efficiently. Moreover, it provides a fast glance of the image to 

the user. The encoding and decoding processes have been 

manipulated in such a way that it fulfills the criteria. This 

paper has proposed a scheme where concurrent computing 

has been used in both encoding and decoding phase to reduce 

the computation time. Also concurrent technique is applied 

during the data stream transmission. Though concurrent 

computing technique has been applied in both phases the 

quality of reconstructed image has been ensured. Haar 

Discrete Wavelet Transformation has been selected and 

applied in order to transform the digital image into the 

frequency domain to decompose the spatial pixels into 

frequency coefficients. 
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II. HAAR WAVELET TECHNIQUE 

To understand how wavelets work, let us start with a 

simple example. Assume we have a 1D image with a 

resolution of four pixels, having values [9 7 3 5]. Haar 

wavelet basis can be used to represent this image by 

computing a wavelet transform. To do this, first the average 

the pixels together, pairwise, is calculated to get the new 

lower resolution image with pixel values [8 4]. Clearly, some 

information is lost in this averaging process. We need to store 

some detail coefficients to recover the original four pixel 

values from the two averaged values. In our example, 1 is 

chosen for the first detail coefficient, since the average 

computed is 1 less than 9 and 1 more than 7. This single 

number is used to recover the first two pixels of our original 

four-pixel image. Similarly, the second detail coefficient is -1, 

since 4 + (-1) = 3 and 4 - (-1) = 5. Thus, the original image is 

decomposed into a lower resolution (two-pixel) version and a 

pair of detail coefficients. Repeating this process recursively 

on the averages gives the full decomposition shown in Table 

I:  
TABLE I: DECOMPOSITION TO LOWER RESOLUTION 

Resolution Averages Detail Coefficients 

4 [9 7 3 5]  

2 [8 4] [1 -1] 

1 [6] [2] 

 

Thus, for the one-dimensional Haar basis, the wavelet 

transform of the original four-pixel image is given by [6 2 1 

-1]. We call the way used to compute the wavelet transform 

by recursively averaging and differencing coefficients, filter 

bank. We can reconstruct the image to any resolution by 

recursively adding and subtracting the detail coefficients 

from the lower resolution versions.  

Compression of 2D image with Haar Wavelet Technique  

It has been shown in previous section how one 

dimensional image can be treated as sequences of 

coefficients. Alternatively, we can think of images as 

piecewise constant functions on the half-open interval [0, 1). 

To do so, the concept of a vector space is used. A one-pixel 

image is just a function that is constant over the entire 

interval [0, 1). Let V0 be the vector space of all these functions. 

A two pixel image has two constant pieces over the intervals 

[0, 1/2) and [1/2, 1). We call the space containing all these 

functions V1. If we continue in this manner, the space Vj will 

include all piecewise-constant functions defined on the 

interval [0, 1) with constant pieces over each of 2j equal 

subintervals. We can now think of every one-dimensional 

image with 2j pixels as an element, or vector, in Vj. Note that 

because these vectors are all functions defined on the unit 

interval, every vector in Vj is also contained in Vj+1. For 

example, we can always describe a piecewise constant 

function with two intervals as a piecewise-constant function 

with four intervals, with each interval in the first function 

corresponding to a pair of intervals in the second. Thus, the 

spaces Vj are nested; that is, V 0 V 1 V 2 …… This nested 

set of spaces Vj is a necessary ingredient for the mathematical 

theory of multiresolution analysis. It guarantees that every 

member of V0 can be represented exactly as a member of 

higher resolution space V1. The converse, however, is not 

true: not every function G(x) in V1 can be represented exactly 

in lower resolution space V0; in general there is some lost 

detail. 

Now we define a basis for each vector space V j. The basis 

functions for the spaces V j are called scaling functions, and 

are usually denoted by the symbol . A simple basis for Vj is 

given by the set of scaled and translated box functions: 
 

i
j (x) : =  (2jx – i)    i = 0, 1, 2…..2j -1 where 

 

                                     1   for 0x<1 

                     0  otherwise  

The wavelets corresponding to the box basis are known as 

the Haar wavelets, given by- 

i
j (x) : =  (2jx – i)    i = 0, 1, 2…..2j -1 where 

                        1   for 0x<1/2 

                      -1 for 1/2x<1 

                    0  otherwise  

Thus, the DWT for an image as a 2D signal will be 

obtained from 1D DWT. We get the scaling function and 

wavelet function for 2D by multiplying two 1D functions. 

The scaling function is obtained by multiplying two 1D 

scaling functions: (x,y)=(x)(y). The wavelet functions are 

obtained by multiplying two wavelet functions or wavelet 

and scaling function for 1D. For the 2D case, there exist three 

wavelet functions that scan details in horizontal (1)(x,y)= 

(x)(y), vertical (2)(x,y)= (x)(y) and diagonal directions: 

(3)(x,y)= (x) (y). This may be represented as a four 

channel perfect reconstruction filter bank as shown in Fig. 1. 

Now, each filter is 2D with the subscript indicating the type 

of filter (HPF or LPF) for separable horizontal and vertical 

components. By using these filters in one stage, an image is 

decomposed into four bands. There exist three types of detail 

images for each resolution: horizontal (HL), vertical (LH), 

and diagonal (HH). The operations can be repeated on the 

low low (LL) band using the second stage of identical filter 

bank. Thus, a typical 2D DWT, used in image compression, 

generates the hierarchical structure shown in Fig. 2. 

 
LL HL3  

HL2 

 

HL1 LH3 HH3 

 

LH2 

 

HH2 

LH1 HH1 

Fig. 2. Structure of wavelet decomposition. 

The transformation of the 2D image is a 2D generalization 

of the 1D wavelet transformed already discussed. It applies 

the 1D wavelet transform to each row of pixel values. This 

operation provides us an average value along with detail 
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Fig. 1. One filter stage in 2D discrete wavelet transform. 
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coefficients for each row. Next, these transformed rows are 

treated as if they were themselves an image and apply the 1D 

transform to each column. The resulting values are all detail 

coefficients except a single overall average co-efficient.  In 

order to complete the transformation, this process is repeated 

recursively only on the quadrant containing averages. 

 

III. RELATED WORKS 

Progressive image transmission (PIT) has been studied by 

many researchers and several schemes have been proposed. 

Two sub-bands refining method is based on wavelet. This 

PIT method consists of three steps: decomposition, 

transmission and reconstruction. In the decomposition step, 

the scheme performs Haar DWT on the image. Then the 

wavelet coefficients are represented by sub-bands [31].  

In the transmission step, the sender transmits the sub-band 

along with some selected coefficients in the next sub-band to 

the receiver for image reconstruction.  If the coefficients in 

the sub-band have been submitted, then the scheme transmits 

all the coefficients in the next sub-band. A concurrent scheme 

[32] for wavelet transform of image was proposed earlier. 

There the image plane is divided into n horizontal sections 

which are horizontally transformed concurrently. After then 

the image is divided into n vertical sections which are then 

vertically transformed concurrently. This system allows 

beginning of vertical transformation on some vertical 

sections before horizontal transformation in all sections is 

completed. Vertical sections that are already horizontally 

transformed can be vertically transformed. 

----       1 

----       2 

----       3 

----       … 

----       … 

----       … 

----       … 

----       N 

Fig. 3. Ordering the transformation. 

Here it is possible for threads that completed horizontal 

transformation to go on to vertical transformation without 

having to wait on other threads to complete horizontal 

transformation. The gray color in Fig. 3 indicates sections of 

image data that are horizontally transformed. The white color 

indicates sections of image data that are not yet horizontally 

transformed. The gray vertical section with dotted spots can 

be assigned to a thread for vertical transformation. 

 

IV. PROPOSED METHOD 

This part demonstrates how the concurrent computing 

technique works over Discrete Wavelet Transformation 

(DWT). There are several algorithms for wavelet based 

compression such as Embedded Zerotree Wavelet (EZW), 

Set Partitioning in Hierarchical Trees (SPHIT), Wavelet 

Difference Reduction (WDR), Adaptively Scanned Wavelet 

Difference Reduction (ASWDR) etc. However, here we have 

considered the very basic technique called Haar Discrete 

Wavelet Transformation for color image transformation. 

First of all, the image matrix is mapped from the digital 

image. For horizontal transformation, horizontal 

transformation threads are initialized. We have used separate 

process for every pair of rows of the matrix. We have made a 

little change with the algorithm of traditional Haar wavelet 

transform and thus the vertical transformation process is also 

embedded in the row transformation process to speed up the 

computation process and to avoid complexity. We have used 

separate threads for transforming red, green and blue (RGB) 

components. Thus multiple threads are started at a time. The 

threads normally transform the rows following the discrete 

Haar wavelet transformation. But as soon as the pair of 

elements of the same column is transformed the column 

transformation for those two components is also done. In the 

concurrent transformation scheme proposed in [32] vertical 

transformation starts after first element of last row has 

horizontally transformed. With our new proposal it speeds up 

the transformation process as no waiting time required for the 

column transformation after row transformation has been 

finished.  

After completion of encoding process the matrix with 

detail coefficients and average coefficients is found. Then the 

required thresholding is applied on it and the final matrix is 

ready to transmit to the receiver. At the transmission phase 

we have transmitted the matrix by pair of columns. This is 

also done by several threads. The decoding process is done as 

the reverse of encoding. Thus the reconstruction of image 

requires comparatively lower time. 

As illustrated in Fig. 4 (a), threads for horizontal 

transformation are started for each pair of rows at the same 

time. The region blue shaded region is horizontally 

transformed. In figure 4(c) horizontal transformation for the 

first two elements of the second row is completed. Then the 

vertical transformation is also done for available elements. 

The blue shaded region with dotted spots is vertically 

transformed (Figure 4 (d)). 

 

 

 

 

 

                 

 

(a)           (b) 

 

 

 

 

 
 

  

                    (c)           (d) 
Fig. 4. Concurrent transformation a) Threads for each pair of row, b) Row 

transformation in progress, c) Column transformation done when pair of 

column elements are ready, d) Row and column transformation are in 

progress. 

This method forms the output image with fractions as 

illustrated in Fig. 5. But as the fractions are parts of the 

original image without modification and it appears very fast 
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the person can identify whether the image is the actual one or 

not within very short time. 

   

   

Fig. 5. Reconstructed image after receiving  pairs of column concurrently, 

PSNR values (i) 25.2837dB (ii)26.5822 dB (iii) 27.2201 dB (iv) 28.1388 dB 

(v) 30.6938dB (vi) Reconstructed image 40.71 dB 

 

V. EXPERIMENTAL RESULT 

We tested some commonly used color images for image 

processing of various dimensions in the experiment. In Table 

II, the time required for one stage of encoding and decoding 

for images for normal discrete wavelet transformation and 

concurrent computing are shown. Column A’s represent the 

time required for concurrent wavelet transformation and 

column B’s represent the time required for normal discrete 

wavelet transformation.   

The data presented in Table II shows how much the 

encoding and decoding time has been reduced by applying 

concurrent computing with comparison to normal sequential 

computing. Though the transmission time may vary because 

of transmission lines, the time required will be reduced much 

as the two main phases requires far less time. From our 

experimental result we have found that the required time for 

encoding and decoding is up to 90% or more less than the 

sequential computing. The performance may vary on 

different machines but still it gives much better time 

overhead. 

TABLE II: TIME COMPARISON BETWEEN NORMAL DISCRETE WAVELET 

TRANSFORMATION AND CONCURRENT DISCRETE WAVELET 

TRANSFORMATION 

 Encoding time (ms) Decoding time (ms) 

Images A B A B 

lenna(512x512) 0.8 52 0.3 78 

baboon(480x480) 0.6 126.7 0.3 215 

moon(1986x1986) 11 2173.1 5 2840 

airplane(512x512) 2 143 0.7 216 

pepper(512x512) 0.9 144 0.3 234 

The required time to complete the whole process of image 

transmission for several images is shown in table II. In the 

two sub band refining method image data is divided into sub 

bands and then transmitted. Here all the sub bands have to 

transmit one by one. Thus the time required for completing 

the whole transmission process is as same as if the image data 

is transmitted in a sequential way. Thus the transmission time 

required without applying concurrency can be considered as 

the time required for sub band refining method. Table III 

shows the extent of better performance found after applying 

concurrent computing rather than sequential computing. 

TABLE III: COMPARISON OF REQUIRED TIME OF TRANSMISSION 

Images with concurrency(ms) without 

concurrency(ms) 

lenna 124 646 

baboon 128 597 

moon 1644 9524 

airplane 120 677 

pepper 120 650 

A computer with Intel Core 2 CPU (2 GHz) is used as 

client and another one with Intel Pentium 4(2.66 GHz) CPU 

is used as server to collect data. On average applying 

concurrent computing it requires 80% to 82% less time than 

the sequential discrete wavelet transformation. Also the 

quality of reconstructed image holds acceptable visual 

quality. 

A commonly used measure for quantifying the error 

between images is the Peak Signal to noise Ratio (PSNR). 

The PSNR for gray scale image (8 bits/pixel) is defined by-  

)
255

(log20)( 10
MSE

dBPSNR   

where MSE is the Mean Squared Error defined by- 

 
 
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m

y

n

x
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mn

MSE
1 1

21 ),(),(
1

 

where I is original image, I1 is approximation of decompressed 

image and m, n are dimensions of the image. 

Generally, when the PSNR is 40dB or larger, then the 

original image and the reconstructed image after transmission 

are virtually indistinguishable by human observers. Thus the 

PSNR of 37 dB or above is acceptable. In this case we’ve 

found that with our method, it provides good level of details 

to the output. Comparing with other wavelet-based PIT 

schemes [31] the output is acceptable. We have tested several 

images and found good quality of the reconstructed image 

compared with other PIT schemes. C.C. Chang has shown the 

PSNR [31] of ‘lenna’ found with his proposed approach is 

33.03. With our approach this measure has found 40.71. In 

Table IV we have shown PSNR values for different images. 

TABLE IV: PSNR OF RECONSTRUCTED IMAGE 

Images PSNR of 

concurrency 

method 

PSNR of Two 

sub-bands refine 

method 

lenna 40.71 33.03 

barbara 36.34 37.16 

baboon 38.97 38.46 

 

VI. CONCLUSION 

We have presented a method to enhance the progressive 

image transmission. The method uses concurrent computing 

on Discrete Wavelet Transformation to get the enhancement. 

This scheme is basically to reduce the image browsing time. 

Our method reconstructs the image with a few distortions and 

within far less time than the traditional one. 
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APPENDIX 

 

Code for the general Haar wavelet transformation 
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