

Abstract—To enhance Java programming educations, we

have proposed a Web-based Java Programming Learning

Assistant System (JPLAS) that provides a variety of

programming assignments to cover different learning levels. As

fundamental programming exercises for novice students,

JPLAS offers the Code Fill-in-blank Problem (CFP) and the

Code Fixing Problem (CXP), to learn Java grammar and basic

programming skills through code reading. A CFP instance

requires filling in the blank elements in the problem code

generated by applying the coding rule check function and the

blank element selection algorithm. A CXP instance involves

correcting the error elements made by the error injection

algorithm. In both problems, all answers from the students will

be marked through string matching with the stored correct one.

In this paper, we propose the Code Amendment Problem (CAP)

as a practical problem for learning the debugging process by

combining CFP and CXP in JPLAS. As a mixture of CFP and

CXP instances, a CAP instance is generated by randomly

selecting either blank or error for each element with a given

blank probability BP. For evaluations, we apply 12 CAP

instances to 21 students in Japan and Myanmar, where the

results show that BP = 50% offers the highest difficulty level,

and CAP is harder than CFP and CXP.

Index Terms—Blank element selection algorithm, code

amendment problem, coding rule check function, error

injection algorithm, Java programming, JPLAS.

I. INTRODUCTION

Nowadays, the object-oriented programming language

Java has been widely applied in various systems in societies

and industries due to its exceptional reliability, portability,

and scalability. Java was selected as the most popular

programming language in 2015 [1], and still remains as the

mainstream [2]. To respond to the strong demand from

industries for Java programming educations, a plenty of

universities and professional schools have introduced various

Java programming courses to meet this challenge.

A typical Java programming education consists of two

elements, namely, grammar study using a textbook and

programming exercises with a computer. That is, we have

developed a Web-based Java Programming Learning

Assistant System (JPLAS) [3]-[7], which provides several

types of programming exercises to support self-studies of

students at different learning stages.

Among them, Code Fill-in-blank Problem (CFP) 1 [8] and

Manuscript received April 6, 2020; revised June 22, 2020.

H. H. S. Kyaw and N. Funabiki are with Okayama University, Okayama,

Japan (e-mail: pxs93q36@s.okayama-u.ac.jp, funabiki@okayama-u.ac.jp).

W-C. Kao is with the Department of Electrical Engineering, National

Taiwan Normal University, Taipei, Taiwan (e-mail: jungkao@ntnu.edu.tw).
1 In this paper, we use Code Fill-in-blank Problem (CFP) instead of Code

Completion Problem (CCP) in previous papers to clarify the problem nature.

the Code Fixing Problem (CXP) [9] are elementary

programming exercises designed for novice, to learn Java

grammar and basic programming skills through code reading.

A CFP instance requires filling in the blank elements in the

problem code that is generated by applying the blank element

selection algorithm to a high-quality source code. This code

is also generated by applying the coding rule checking

function. A CXP instance needs correcting the error elements

that are made by applying the error injection algorithm to the

blank elements selected by the blank element selection

algorithm. In both problems, all answers will be marked

through string matching with the stored correct one.

In addition, the readability of a source code plays an

important role in achieving the maintainability and the

uniformity of the code for corrections, modifications, and

extensions. A readable code can be realized by following

coding rules, which may be composed of naming rules,

coding styles, and potential problems [10]. The coding rule

check function will examine the adherence of the coding rules

of a given Java source code, then return the locations that do

not follow them. By applying this function, only a readable

source code is used to generate CFP and CXP instances.

The blank element selection algorithm selects as many

blank elements as possible that have the unique answers from

a given Java source code. An element represents the

minimum unit in a code, which includes a reserved word, an

identifier, and a control symbol. A reserved word signifies a

fixed sequence of characters that has been defined in the Java

grammar to imply a specific function. An identifier is a

sequence of characters defined in the code by the author to

represent a variable, a class, or a method. A control symbol in

this paper indicates other grammar elements such as "." (dot),

":" (colon), ";" (semicolon), "(,)"(bracket), "{,}" (curly

bracket).

The error injection algorithm injects errors into the source

code by changing elements with similar but incorrect ones.

The algorithm injects errors into the source code by chang-

ing the data type, the name of a class, a method or a variable,

and important Java Keywords. It may also change an operator,

a constant number, or a constant name in an equation or a

conditional expression, to inject errors into the behavior of

the code.

In this paper, we propose the Code Amendment Problem

(CAP) in JPLAS to offer feasible exercises on code

debugging process. As a mixture of CFP and CXP instances,

a CAP instance is generated by randomly selecting either

blank or error for each element that is selected by the blank

element selection algorithm. For a generated CAP instance,

the difficulty level can be controlled by adjusting the

probability of selecting blank, which is specified as the blank

probability (BP) for convenience in this paper.

A Proposal of Code Amendment Problem in Java

Programming Learning Assistant System

Htoo Htoo Sandi Kyaw, Nobuo Funabiki, and Wen-Chung Kao

International Journal of Information and Education Technology, Vol. 10, No. 10, October 2020

751doi: 10.18178/ijiet.2020.10.10.1453

For evaluations, we generated 12 CAP instances using

source codes in [11] and [12] with 30%, 50%, and 70% for

BP, and assigned them to 21 students in Japan and Myanmar.

The results show that BP = 50% offers the highest difficulty

level among them, and CAP is harder than CFP and CXP.

The rest of this paper is organized as follows: Section II

shows a brief survey of related works in literature. Section III

reviews our related previous works to this paper. Section IV

presents the code amendment problem. Section V evaluates

the proposal. Finally, Section VI concludes this paper with

future works.

II. RELATED WORKS IN LITERATURE

In this section, we overview the literature related to the

programming study through code debugging and code

reading.

In [13], Ahmandzadeh et al. showed that even students

with knowledge of programming do not acquire the skills of

debugging codes effectively. Skills at debugging seems to

make the programmer confident and they suggested that

more emphasis should be placed on debugging skills in the

teaching of programming.

In [14], Ichinco et al. performed an exploratory study of

novices using examples to complete programming tasks. To

analyze programming behaviors, they defined the realization

point at the time when a participant discovered the crucial

concept in an example. It is observed that it may take a

participant much time to reach the realization point because

the time he/she spent on executing the example code was

longer than on reading the example code.

In [15], Griffin discussed several lines of research, in order

to support the premise that people learning programming can

do more effectively and efficiently if they spend as much

time on deconstructing codes as on writing codes. The term

deconstruction is referred to as reading, tracing, and

debugging a code.

In [16], Kakeshita et al. developed a programming tool

supporting education called Pgtracer. Pgtracer utilizes

fillin-the-blank questions composed of a source code and a

trace table. The blanks in the code and the trace table must be

filled by the students to improve the code reading while

solving the questions.

III. PREVIOUS WORKS

In this section, we review our previous works related to

this paper.

A. Coding Rule Check Function

Coding rules [17] represents a set of rules or conventions

for producing high quality source codes. By following coding

rules, the uniformity of the code will be maintained, which

enhances the readability, maintainability, and scalability.

Coding rules consist of naming rules, coding styles, and

potential problems.

1) Naming Rules: Naming rules describe the rules for

detecting the naming errors in the source code. Here, the

Camel case [18] is adopted as the common Java naming

rule. For an identifier representing a variable, a method,

or a method argument, the first character should be a

lower case, where the delimiter character between two

words should be an upper case. For an identifier

indicating a class, both of them should be an upper case.

For an identifier signifying a constant, any character

should be an upper case. An English word should be

used as an identifier name, whereas Japanese or Roman

Japanese should not be used.

2) Coding Styles: Coding styles indicate the rules for

detecting the layout errors in the source code. They

include the position of an indent or a bracket, and the

existence of a blank space. By following coding styles,

the layout of a source code will become more consistent

and readable.

3) Potential Problem: Potential problems illustrate the

rules for discovering the portions of the source code that

can pass the compilation but may include functional

errors or bugs with high possibility. They include a dead

code and overlapping codes. A dead code represents the

portion of the source code not executing, and

overlapping codes indicate the multiple portions of the

source code with similar structure and functions to each

other. By solving potential problems, the code can not

only improve the maintainability and scalability, but also

speed up the execution.

B. Blank Element Selection Algorithm

The blank element selection algorithm [7] uses the

constraint graph that is generated to describe the constraints

in the blank element selection. Then, the fill-in-blank

problem will be generated through the following five steps:

1) Vertex generation for constraint graph: each vertex

represents a candidate element for being blank.

2) Edge generation for constraint graph: an edge is

generated between any pair of two vertices or elements

that should not be blanked at the same time.

3) Compatibility graph generation: by taking the

complement of the constraint graph, the compatibility

graph is generated to represent the pairs of elements that

can be blanked simultaneously.

4) Clique extraction: a maximal clique of the compatibility

graph is generated by a simple greedy algorithm to

identify the maximal number of blank elements with

unique answers from the given Java code. This greedy

algorithm repeats to: 1) select the vertex that has the

largest degree in the compatibility graph for the clique,

2) remove this vertex and its non-adjacent vertices of the

graph, until the graph becomes null.

5) Control symbol limitation: the ratio between the number

of blanks for control symbols and that for other elements

is controlled.

C. Error Injection Algorithm

The error injection algorithm injects errors into the source

code by changing elements with similar but incorrect ones.

To be specific, this algorithm injects the source code with

errors by changing the access modifier of a class or a method,

the data type of a method or a variable, and the name of a

class, a method, or a variable. Besides, it injects errors into

the behavior of the source code by changing the operator, the

constant number, the constant variable name in an equation

or a conditional expression, or Java keywords defined in the

keyword list. The procedure of the algorithm is as below:

International Journal of Information and Education Technology, Vol. 10, No. 10, October 2020

752

1) Access modifier: An access modifier, public, protected,

and private, of a class or a method is randomly changed

to another one among them.

2) Data type: For the data type of a method or a variable,

any of byte, short, int, and long is changed to double, or

float randomly, and vice versa. Besides, String is

changed to char, and vice versa. Here, void is not

changed.

3) Loop: For the loop statement, any of for and while is

changed to if.

4) Control: For the control statement, if is changed to while,

and switch is changed to do.

5) Java keywords in list: The keywords in the keyword list

are changed as follows:

• import is changed to implements, and vice versa.

• extends is changed to instanceof, and vice versa.

• Scanner is changed to System, and vice versa.

• static is changed to super, and vice versa.

• continue is changed to break, and vice versa.

6) Behavior: An operator, a constant number, or a constant

name in an equation or a conditional expression is

changed:

• an arithmetic operator, such as +, *, -, or /, is

randomly changed to another one.

• a conditional operator, such >, <, &&, ==, or !=, is

randomly changed to another one.

• a constant number is randomly changed to the

similar number.

• a constant name is changed to another name by

applying the error name generation method.

7) Name: A name of a class, a method, or a variable will be

switched to another name by applying the error name

generation method in the next sub section.

D. Error Name Generation Method

The following procedure illustrates the error name

generation method.

1) Error name generation using dictionary: A set of

candidates for error names that have similar meanings as

the original name, are extracted from the dictionary,

WordNet, using the similar word estimating function.

Then, one candidate will be randomly selected from this

set for the error name.

2) Error name generation using word list: If a proper error

name is not found by 1), the word whose spelling is most

similar to the original name among the word in the word

list is selected for the error name. The word list needs to

be prepared by the user of the algorithm.

3) Error name random generation: If a proper error name is

still not found in the second step, the error name will be

generated by randomly adding or removing one

character, or changing to another character, in the

original name.

It is noted that a combined name using Camel case is first

divided into a set of individual names, and then, the above

procedure is applied to each individual name. Subsequently,

the individual generated error names will be combined into

one name.

E. Answer Interface of JPLAS

Fig. 1 demonstrates the answer interface for answering a

CXP instance. The interface for CXP shows the problem

code that has erroneous elements, which should be corrected

by the students.

Fig. 1. Answer interface for CXP.

IV. PROPOSAL OF CODE AMENDMENT PROBLEM

In this section, we present the code amendment problem

(CAP) with the generation procedure.

A. Overview of Code Amendment Problem

In a CAP instance, a Java source code that has several

missing or error elements, called a problem code, is shown to

students, where one input form corresponds to one whole

statement or line in the code. A student needs to identify the

locations of missing or error elements in the code, then fill in

or correct them with the correct elements. The correctness of

the answer will be marked through string matching of the

whole statement with the corresponding original one in the

code.

B. Generation Procedure of CAP Instance

A CAP instance can be generated through the following

steps:

1) Select a Java source code related to the current topic,

from a website or a textbook.

2) Apply the coding rule check function to this source code

for readable code.

3) Register each statement in the source code as the correct

answer unit for string matching.

4) Apply the blank element selection algorithm to the

source code to select blank elements from the code.

5) Select randomly blank elements found by the algorithm

for error elements.

6) Apply the error injection algorithm to each selected

element to make an error element.

7) Remove the remaining blank elements for generating the

problem code.

For the automatic execution of this procedure, we

implemented the necessary programs in Java and the script by

Bash.

C. Instance Example

To clarify the CAP instance generation procedure, we

explain the details by using the source code for class

PalindromeExample.

International Journal of Information and Education Technology, Vol. 10, No. 10, October 2020

753

1) Source Code Selection: This class classifies whether the

given number is a palindrome number or not. A

palindrome number is a number that becomes the same

number after reversing the digits. For example, 121,

34543, 343, 131, and 48984 are palindrome numbers.

2) Application of Coding Rule Check Function: The coding

rule check function is applied to the source code for class

PalindromeExample. code 1 shows the source code after

the application.

code 1

01: public class PalindromeExample {

02: public static void main(String[] args) {

03: int num = 121, temp = num, ans = 0;

04: while (num != 0) {

05: ans = (ans * 10) + (num % 10);

06: num = num / 10;

07: }

08: if (temp == ans)

09: System.out.println(“Palindrome number!”);

10: else

11: System.out.println(“Not palindrome number!”);

12: }

13: }

3) Application of Blank Element Selection Algorithm: The

blank element selection algorithm is applied to this code,

to select the blank elements from the code. That is, 9

blank elements are selected shown in code 2.

code 2

01: public class PalindromeExample {

02: public _1_ void main(_2_[] args) {

03: _3_ num = 121, temp = num, ans = 0;

04: _4_ (num _5_ 0) {

05: _6_ = (ans * 10) + (num % 10);

06: num = num _7_ 10;

07: }

08: _8_ (temp == ans)

09: System.out.println(“Palindrome number!”)_9_

10: else

11: System.out.println(“Not palindrome number!”);

12: }

13: }

4) Error Element Selection: Error elements are randomly

selected from the blank elements found by the blank

element selection algorithm. Here, we change the blank

probability (BP) at 30%, 50% and 70% to investigate the

effect of BP in controlling the level of difficulty in a

CAP instance.

5) Application of Error Injection Algorithm and Blank

Element Removal: The error injection algorithm is

applied to the selected blanks to inject errors, and the

remaining blank elements are removed to generate the

problem code. code 3 shows the generated problem code

for a CAP instance.

code 3

01: public class PalindromeExample {

02: public void main([] args) {

03: num = 121, temp = num, ans = 0;

04: (num == 0) {

05: ANS = (ans * 10) + (num % 10);

06: num = num 10;

07: }

08: while (temp == ans)

09: System.out.println(“Palindrome number!”),

10: else

11: System.out.println(“Not palindrome number!”);

12: }

13: }

6) Answer Interface of CAP: Fig. 2 specifies the answer

interface of CAP where there are several erroneous input

statement and students need to recognize and correct the

erroneous element.

Fig. 2. Answer interface for CAP.

V. EVALUATION

In this section, we evaluate the code amendment problem

(CAP) in JPLAS through applications to 21 students in Japan

and Myanmar who have studied Java programming more

than one year.

A. Assigned Problems in Evaluation

For evaluations, we generated 12 CAP instances by

following the procedure in Section IV using six source codes

in [11] and six source codes in [12]. These 12 source codes

cover the topics of exception, array, recursive, and method

overloading. We used 30%, 50%, and 70% for BP, and

generated four CAP instances with each BP. Here, we chose

four source codes for each BP such that the average difficulty

level becomes similar at any BP. Then, we asked the students

to solve all the CAP instances.

B. Solution Results by Students

Table I shows the average and the standard deviation (SD)

of the correct solution rates (%) for the students. When we

compare the results for three different BP, BP = 50% results

in the smallest average rate with the largest SD. Thus, BP =

50% can offer the highest difficulty level among them for a

CAP instance.

TABLE I: CORRECT SOLUTION RATES FOR CAP (%)

 30% 50% 70% all

ave. 97.70 94.63 96.64 96.34

SD 10.35 13.18 8.72 10.60

Then, when we compare with the results for the code

fill-in-blank problem (CFP) and the code fixing problem

(CXP) in Table II in [19], the average rate for CAP is smallest

and the SD is largest among the three problems. These results

indicate that CAP is harder than CFP and CXP. Thus, CFP

International Journal of Information and Education Technology, Vol. 10, No. 10, October 2020

754

and CXP should be given to beginners who just start studying

Java programming, earlier than CAP.

TABLE II: CORRECT SOLUTION RATES FOR CFP AND CXP (%)

 CFP CXP

ave. 99.89 99.66

SD 0.25 0.97

This time, we could not apply CAP instances to novice

students of Java programming, due to the limited time.

Therefore, the effect of BP in the difficulty level of CAP and

the comparison of the difficulty level among CAP, CFP, and

CXP should be investigated through applications to novice

students in Java programming courses, which will be

included in our future works.

VI. CONCLUSION

This paper proposed the code amendment problem (CAP)

in Java Programming Learning Assistant System (JPLAS) to

assist students in learning debugging process of Java

programming. As a mixture of code fill-in-blank problem

(CFP) and code fixing problem (CXP), a CAP instance

requires students to locate the missing or error elements in the

code and amend them. The correctness of the answer is

verified through string matching of the whole statement

amended by a student and the corresponding correct one. For

evaluations, 12 CAP instances were applied to 21 students in

Japan and Myanmar, where the results show that BP = 50%

offers the highest difficulty level, and CAP is harder than

CFP and CXP. In future works, we will generate a variety of

CAP instances, and apply them to novice students to verify

the observation of this paper and examine the effectiveness in

learning debugging process by them.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Htoo Htoo Sandi Kyaw designed and implemented the

proposal, conducted the experiments, and wrote the paper as

the main author. Nobuo Funabiki gave the idea of the

proposal and supervised the whole activities including the

experiments and the paper writing. Wen-Chung Kao advised

on the experiments and improved the paper writing. All the

authors had approved the final version.

ACKNOWLEDGMENT

We are very grateful to our laboratory members for fruitful

discussions of advancing this research. We would also like to

thank to all the students participated in the experiments.

REFERENCES

[1] S. Cass. The 2015 top ten programming language. [Online]. Available:

http://spectrum.ieee.org/computing/software/the-2015-top-ten-progra

mming-language/?utm_so

[2] Why does Java remain so popular? [Online]. Available:

https://blogs.oracle.com/oracleuniversity/why-does-java-remain-so-po

pular

[3] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, “A Java

programming learning assistant system using test-driven development

method,” IAENG Int. J. Comput. Sci., vol. 40, no. 1, pp. 38-46, Feb.

2013.

[4] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace

problem for algorithm code reading in Java programming learning

assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, Sep. 2015.

[5] N. Ishihara, N. Funabiki, and W.-C. Kao, “A proposal of statement

fill-in-blank problem using program dependence graph in Java

programming learning assistant system,” Inf. Eng. Express, vol. 1, no.

3, pp. 19-28, Sept. 2015.

[6] Y. Korenaga, N. Funabiki, K. K. Zaw, N. Ishihara, S. Matsumoto, and

W.-C. Kao, “A fill-in-blank problem workbook for Java programming

learning assistant system,” Int. J Web Inform. Sys., vol. 13, no. 2, pp.

140-154, 2017.

[7] N. Funabiki, Y. Korenaga, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A

graph-based blank element selection algorithm for fill-in-blank

problems in Java programming learning assistant system,” IAENG Int.

J. Comput. Sci., vol. 44, no. 2, pp. 247-260, May 2017.

[8] H. H. S. Kyaw, S. T. Aung, H. A. Thant, and N. Funabiki, “A proposal

of code completion problem for Java programming learning assistant

system,” in Proc. VENOA2018, July 2018, pp. 855-864.

[9] N. Funabiki, H. H. S. Kyaw, and K. K. Zaw, “A proposal of

element/code fixing problem in Java programming learning assistant

systeme,” in Proc. ICSE2019, Dec. 2019.

[10] D. Boswell and T. Foucher, The Art of Readable Code, O’Reilly, 2011.

[11] P. J. Deitel and H. M. Deitel, Java: How to Program, 9th ed. Prentice

Hall, 2011.

[12] Y. Daniel Liang, Introduction to Java Programming, 8th ed. 2011.

[13] M. Ahmadzadeh, D. Elliman, and C. Higgins, “An analysis of patterns

of debugging among novice computer science students,” in Proc.

ITiCSE, 2005, pp. 84-88.

[14] M. Ichinco and C. Kelleher, “Exploring novice programmer example

use,” in Proc. IEEE VL/HCC, Oct 2015, pp. 63-71.

[15] J. M. Griffin, “Learning by taking apart: Deconstructing code by

reading, tracing, and debugging,” in Proc. SIGITE, Sep. 2016, pp.

148-153.

[16] T. Kakeshita and M. Murata, “Application of programming education

support tool pgtracer for homework assignment,” Int. J. Learning

Technologies and Learning Environments, vol. 1, no. 1, pp. 41-60,

2018.

[17] N. Funabiki, T. Ogawa, N. Ishihara, M. Kuribayashi, and W.-C. Kao,

“A proposal of coding rule learning function in Java programming

learning assistant system,” in Proc. CISIS, Sep. 2016, pp. 561-566.

[18] Camel case definition. [Online]. Available:

http://searchsoa.techtarget.com/definition/CamelCase

[19] H. H. S. Kyaw, N. Funabiki, and M. Kuribayashi, “An implementation

of hint function for code completion problem in Java programming

learning assistant system,” in Proc. FIT. Conf., Sept. 2019, pp.

307-308.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Htoo Htoo Sandi Kyaw received the B. E. and M. E.

degrees in information science and technology from

University of Technology (Yatanarpon Cyber City),

Myamar, in 2015 and 2018, respectively. She is

currently a Ph.D candidate in Graduate School of

Natural Science and Technology at Okayama

University, Japan. Her research interests include

educational technology and Web application systems.

She is a student member of IEICE.

Nobuo Funabiki received the B.S. and Ph.D. degrees

in mathematical engineering and information physics

from the University of Tokyo, Japan, in 1984 and

1993, respectively. He received the M. S. degree in

electrical engineering from Case Western Reserve

University, USA, in 1991. From 1984 to 1994, he was

with Sumitomo Metal Industries, Ltd., Japan. In 1994,

he joined the Department of Information and

Computer Sciences at Osaka University, Japan, as an

assistant professor, and became an associate professor

in 1995. He stayed at University of Illinois, Urbana-Champaign, in 1998, and

at University of California, Santa Barbara, in 2000-2001, as a visiting

researcher. In 2001, he moved to the Department of Communication

Network Engineering (currently, Department of Electrical and

Communication Engineering) at Okayama University as a professor. His

research interests include computer networks, optimization algorithms,

educational technology, and Web technology. He is a member of IEEE,

IEICE, and IPSJ.

to

International Journal of Information and Education Technology, Vol. 10, No. 10, October 2020

755

http://searchsoa.techtarget.com/definition/CamelCase
https://creativecommons.org/licenses/by/4.0/

Wen-Chung Kao received the M.S. and Ph.D.

degrees in electrical engineering from National

Taiwan University, Taiwan, in 1992 and 1996,

respectively. From 1996 to 2000, he was a Department

Manager at SoC Technology Center, ERSO, ITRI,

Taiwan. From 2000 to 2004, he was an assistant vice

president at NuCam Corporation in Foxlink Group,

Taiwan. Since 2004, he has been with National Taiwan Normal University,

Taipei, Taiwan, where he is currently a research chair professor at

Department of Electrical Engineering and the dean of College of Technology

and Engineering. His current research interests include system-on-a-chip

(SoC), flexible electrophoretic display, machine vision system, digital

camera system, and color imaging science. He is a Fellow of IEEE.

to

International Journal of Information and Education Technology, Vol. 10, No. 10, October 2020

756

	1453-T049

