
 
1 Abstract—Based on a mix of real world data and a 

simulated dataset for predicting the students’ academic 

performance, we study/compare various decision tree (DT) 

based algorithms (which include ID3, C4.5 and CART) with 

different choices of information entropy metrics (which 

include Shannon, Quadratic, Havrda and Charvát, Rényi, 

Taneja, Trigonometric and 𝐑 − 𝐧𝐨𝐫𝐦  entropies) to build a 

decision tree in order to provide appropriate counseling/advise 

at an earlier stage. DT is one such important technique in 

educational data mining (EDM) which creates hierarchical 

structures of classification rules “If ⋯, Then ⋯” building a tree 

structure by incrementally breaking down the datasets in 

smaller subsets. The results suggest that basic training of the 

students has no significant predictive power on performance, 

while information about their abilities, diligence, motivation 

and activity in the learning process can predict their grades. 

As such, the resulting forecasts can be used by the instructor in 

optimizing the learning process and designing the course 

content and schedule. 

 
Index Terms—Decision tree algorithms, educational data 

mining, entropy metrics and students’ academic performance. 

 

I. BACKGROUND 
The prediction of students’ academic performance (e.g., 

[1]), which is one of the well-studied educational data 

mining problems, can be accomplished by the three stages 

below: 

Descriptive analytics - we get students’ historical data 

through an on-line survey and introduce seven attributes (or 

features) (e.g., [2]-[4]) to help us predict and make 

decisions related to their academic status. 

Predictive analytics - we use various DT algorithms (e.g., 

[5], [6]) to get a predictive final grade for a student, namely, 

a student’s learning outcome and pattern based on his/her 

past data. 

Prescriptive analytics - we show how we used different 

decision tree algorithms, e.g., ID3, C4.5 and CART, with 

various feature selection methods for further/deeper analysis, 

e.g., we display the If-Then figure and show the precision 

and accuracy of each method. Based on their final learning 

outcomes, we can create a better strategy for designing 

various MATH related course content and schedules at the 

Chinese University of Hong Kong (CUHK). 

There is a significant number of articles (e.g., [1], [7]-[9]) 

that relate to different choices of information entropy 

methods used in this study. Despite a comparative study of 
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various information entropy methods with eight real world 

datasets discussed in [1], analysis and prediction of 

student’s learning performance from an algorithmic 

perspective is not fully investigated yet. 

 

II. PURPOSE OF STUDY 

In this paper, we address the following issues: 

A. Handling Large Data Samples 

We test our homemade codes on a set of students’ 

learning data samples and show how effective DT rule-

based algorithms are. As the size of the required data 

increases, will the obtained results of student’s learning 

patterns/features be more relevant and have the same result 

using different DT and entropy measures? 

B. Understanding Data Mining Actionable Trends 

To generate multiple sets of the student’s learning data, 

inspired from [10], the random nested sampling for 

evolving data streams is used. Hence, many of the original 

data are repeated in the resulting simulated date set. As the 

size of the required data increases, for each evolution stage 

we added 10% more noisy data from the previous data 

samples. A random selection procedure was used to obtain 

the noisy data from the normal distribution function. 

Therefore, we randomly generated seven feature values that 

were significantly related to students’ end of semester 

marks. In other words, these data are drawn from the 

random sampling, but are not obtained from the students’ 

survey. Hence, we called it noisy data. How will the noisy 

data in the synthetic dataset affect the students’ prediction 

results? This process acts like real-time instances of 

overfitting. We used the so-called back-track pruned (BT-

pruned) algorithm [11] to reorganize the nodes of the 

constructed tree in order to overcome this drawback when 

large data samples were used. 

C. Gaining Perceptive Knowledge in Teaching 

Purposes 

In order to examine the training and testing datasets, the 

ten-fold cross validation model will be used. Will our 

predictions match the testing dataset? 

 

III. SOURCES OF EVIDENCE 

A． Problem Description: Studying Students’ Learning 

Activities 

The dataset used here is collected from three sources: 

Sample A 

We used an observed dataset from [12] as a seed; the size 

Measuring Students' Academic Performance through 

Educational Data Mining 

Jeff Chak Fu Wong and Tony Chun Yin Yip 

International Journal of Information and Education Technology, Vol. 10, No. 11, November 2020

797doi: 10.18178/ijiet.2020.10.11.1461



of the required data is 50 (see Table I). Then, we combined 

this seed data set with our real data set, where the size of 

our required data is 25 (see Table II). Then, we added 10% 

of the noisy data we mentioned earlier through the normal 

distributed function into the mix of the two combined data 

sets (75). Using the concept of random nested sampling, we 

generated different sets of repeated multiple data depending 

on the designed size of the data set 𝑛 =
200,400,800,1600,3200,6400. 

 
TABLE I: THE TRAINING DATASET 

ID OSM CT SP AP PP ATT LC ESM 

1 First Good Good Yes Yes Good Yes First 

2 First Good Average Yes No Good Yes First 

3 First Good Average No No Average No First 

4 First Average Good No No Good Yes First 

5 First Average Average No Yes Good Yes First 

6 First Poor Average No No Average Yes First 

7 First Poor Average No No Poor Yes Second 

8 First Average Poor Yes Yes Average No First 

9 First Poor Poor No No Poor No Third 

10 First Average Average Yes Yes Good No First 

11 Second Good Good Yes Yes Good Yes First 

12 Second Good Average Yes Yes Good Yes First 

13 Second Good Average Yes No Good No First 

14 Second Average Good Yes Yes Good No First 

15 Second Good Average Yes Yes Average Yes First 

16 Second Good Average Yes Yes Poor Yes Second 

17 Second Average Average Yes Yes Good Yes Second 

18 Second Average Average Yes Yes Poor Yes Second 

19 Second Poor Average No Yes Good Yes Second 

20 Second Average Poor Yes No Average Yes Second 

21 Second Poor Average No Yes Poor No Third 

22 Second Poor Poor Yes Yes Average Yes Third 

23 Second Poor Poor No No Average Yes Third 

24 Second Poor Poor Yes Yes Good Yes Second 

25 Second Poor Poor Yes Yes Poor Yes Third 

26 Second Poor Poor No No Poor Yes Fail 

27 Third Good Good Yes Yes Good Yes First 

28 Third Average Good Yes Yes Good Yes Second 

29 Third Good Average Yes Yes Good Yes Second 

30 Third Good Good Yes Yes Average Yes Second 

31 Third Good Good No No Good Yes Second 

32 Third Average Average Yes Yes Good Yes Second 

33 Third Average Average No Yes Average Yes Third 

34 Third Average Good No No Good Yes Third 

35 Third Good Average No Yes Average Yes Third 

36 Third Average Poor No No Average Yes Third 

37 Third Poor Average Yes No Average Yes Third 

38 Third Poor Average No Yes Poor Yes Fail 

39 Third Average Average No Yes Poor Yes Third 

40 Third Poor Poor No No Good No Third 

41 Third Poor Poor No Yes Poor Yes Fail 

42 Third Poor Poor No No Poor No Fail 

43 Fail Good Good Yes Yes Good Yes Second 

44 Fail Good Good Yes Yes Average Yes Second 

45 Fail Average Good Yes Yes Average Yes Third 

46 Fail Poor Poor Yes Yes Average No Fail 

47 Fail Good Poor No Yes Poor Yes Fail 

48 Fail Poor Poor No No Poor Yes Fail 

49 Fail Average Average Yes Yes Good Yes Second 

50 Fail Poor Good No No Poor No Fail 

 

TABLE II: THE TESTING DATASET 
ID OSM CT SP AP PP ATT LC ESM 

1 Second Good Average  Yes  Yes  Average  Yes  First 

2 First Good Good  Yes  Yes  Average  Yes  First 

3 Second Good Good  Yes  Yes  Good  Yes  First 

4 First Good Good  Yes  No  Good  No  Second 

5 Third Average Average  Yes  No  Good  Yes  Third 

6 Third  Average Average  Yes  Yes  Good  Yes  Second 

7 Third Average Average  Yes  No  Average  Yes  Third 

8 First Good Average  Yes  Yes  Average  Yes  First 

9 First Good Average  Yes  Yes  Good  Yes  First 

10 Third Average Good  No  No  Good  Yes  Third 

11 First Good Average  Yes  No  Good  Yes  First 

12 Second Average Average  Yes  Yes  Poor  Yes  Second 

13 First Good Good  No  No  Good  Yes  First 

14 Second Good Good  Yes Yes  Good  No  First 

15 Second Average Good  Yes  Yes  Good  Yes  Second 

16 First Average Good  Yes  Yes  Good  Yes  First 

17 Second Average Average  Yes  Yes  Good  Yes  Second 

18 Second Average Average  Yes  Yes  Good  Yes  Second 

19 Second Good Average  Yes  Yes  Good  Yes  Second 

20 Second Good Good  Yes  No  Good  Yes  First 

21 First Good Good  Yes  Yes  Good  Yes  First 

22 First  Good Good  Yes  Yes  Average  Yes  First 

23 First Average Average  Yes  Yes  Good  Yes  First 

24 First Average Average  Yes  Yes  Good  No  Second 

25 First Good Average  Yes  No  Average   No  Second 

 

Sample B 
As a real pilot study, we collected a dataset from the 

SAYT1510 course offered by the Chinese University of 

Hong Kong. We conducted an on-line survey via Studying 

Students’ Learning Activities. Students who took 

SAYT1510 were international and local high school 

students. 

Sample C 

To validate our models, we combined two data samples 

sets, Sample A and Sample B, called Sample C, and 

repeated the same random nested sampling procedure as 

above. 

B． Training Dataset 

Our goal here is to study/predict students’ learning 

activities based on a set of attributes described in [12]. 

Similar works are found in [13] and [14]. The training 

datasets that are combined from Sample A are used to build 

the model as shown in Table I (from one to fifty samples). 

We set the size of the data samples, 𝑛 =
200,400,800,1600,3200,6400, where the training set for 

our example is defined by the target class “students’ 

learning activities” using the end of the semester marks with 

four modalities: 

We assume:End of semester marks =  First, =  Second, 

=  Third, or =  Fail 
The seven attributes describing the observations are: 

“Overall Semester Marks (OSM)”, “Class Test (CT)”, 

“Seminar Performance (SP)”, “Assignment Performance 

(AP)”, “Paper Presentations (PP)”, “Attendance (ATT)”, 

and “Laboratory Classes (LC)”, which can take the 

following values: 

In terms of the set notations, we have: 

OSM  =  {First,  Second,  Third,  Fail } CT  =  {Good,  Average, Poor }

SP  =  {Good,  Average, Poor } AP  =  {Yes,  No }

PP  =  {Yes,  No } ATT  =  {Good,  Average, Poor }

LC  =  {Yes,  No }

 

a) Overall Semester Marks (OSM): OSM are 

obtained from the secondary school programme. It is 

divided into four values: First: > 60%; Second: > 45% and 

≤ 60%; Third: > 36% and ≤ 45%; Fail: ≤ 36% 

b) Class Test (CT): Each semester two class tests are 

conducted. CT is split into three classes: Good: > 60%; 

Average: > 40% and ≤ 60%; Poor: ≤ 40% 

c) Seminar Performance (SP): SP is divided into three 

classes: Poor: Presentation and confidence are low; Average: 

Either presentation is good or confidence is good, but not 

both; Good: Both presentation and confidence are good 

d) Assignment Performance (AP): Each semester two 

assignments are given to students by each teacher. AP is 

divided into two classes: Yes: Student submitted the 

assignment; No: Student did not submit the assignment 

e) Paper Presentations (PP): At the end of the year a 

Paper Presentation must be done by the student. PP is 

divided into two classes: Yes: Student participated in the 

Presentation; No: Student did not participate in the 

Presentation 

f) Attendance (ATT): Attendance is compulsory for 

the Students. A minimum of 75% attendance is needed to 

participate in the End Semester Examination. ATT is 

divided into three classes: Poor: ≤ 60%; Average: > 60% 
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and ≤ 80%; Good: > 80% 

g) Laboratory Classes (LC): LC is divided into two 

classes: Yes: Student completed the Practical lab; No: 

Student did not complete the Practical lab 

h) End Semester Marks (ESM): ESM is obtained in 

the secondary school programme and can be predicted 

based on the above seven attributes. It is divided into four 

values: First:> 60%; Second: > 49% and ≤ 60%; Third: 

> 34% and ≤ 49%; Fail: ≤ 34%. 

C． Testing Dataset 

The testing dataset was composed of the data from 25 

students’ in the SAYT1510 course, as shown in Table II. 

D． Methodology: Decision Tree Algorithms 

Decision tree classifiers are used to predict students’ final 

marks. A decision tree is a flowchart like structure where 

the leaf nodes represent class labels and the non-leaf nodes 

represent attributes. 

1) ID3 
ID3 developed by Quinlan in 1979 [15] constructs a 

decision tree by employing a top-down, greedy search 

through the given sets of training data to test each attribute 

at every node, where the greedy search is based on the 

concept of heuristic problem solving by making an optimal 

local choice at each node. By making these local optimal 

choices, we reach the approximate optimal solution globally. 

The ID3 algorithm can be summarized as: 

a) At each level (or stage or node), select out the best 

feature as the test condition (in this paper, seven features are 

considered). 

b) Now split the node into the possible outcomes 

(internal nodes). 

c) Repeat the above steps until all the test conditions 

have been exhausted into leaf nodes. 

In (a), to make that decision, we need to have some 

knowledge about entropy and information gain. Based on 

the computed values of entropy and information gain, we 

choose the best attribute at any particular step. 

To be more precise, the ID3 algorithm selects the 

attribute to be split based on two metrics: 

a) Measuring Impurity: An entropy metric measures 

the amount of information in an attribute. Entropy is 

calculated for all the remaining attributes. Split occurs at the 

attribute that has smallest entropy. Given probabilities 

𝑝1, 𝑝2, ⋯ , 𝑝𝑠, where 𝑝𝑖 ≥ 0,  𝑖 = 1, ⋯ , 𝑠,, where 𝑠 is the total 

number of attributes. ∑ 𝑝𝑖
𝑠
𝑖=1 = 1. Entropy is defined as 

𝐻(𝑝1, 𝑝2, ⋯ , 𝑝𝑠) = ∑ −

𝑠

𝑖=1

(𝑝𝑖log 𝑝𝑖). 

Shannon entropy finds the amount of order in a given 

database state. A value of 𝐻 = 0  identifies a perfectly 

classified set. In other words, the higher the entropy, the 

higher the potential to improve the classification process. 

b) Splitting Criteria: An information gain is a 

statistical property which measures how well a given 

attribute separates training examples into targeted classes. 

The one with the highest information (information being the 

most useful for classification) is selected based on entropy. 

The information gain, Gain(𝐷, 𝐴) of an attribute 𝐴, relative 

to a collection of examples 𝐷, is defined as 

Gain(𝐷, 𝐴) = 𝐻(𝐷) − ∑
|𝐷𝑖|

|𝐷|
𝑖∈Value(𝐴)

𝐻(𝐷𝑖) 

where Value(𝐴) is the set of all possible values for attribute 

𝐴, and 𝐷𝑖 is the subset of 𝐷 for which attribute 𝐴 has value 𝑖 
(i.e., 𝐷𝑖 = {𝑠 ∈ 𝐷|𝐴(𝑠) = 𝑖}). 

2) C4.5 

C4.5 known as J48 in WEKA (Waikato Environment for 

Knowledge Analysis) is a successor of ID3 developed by 

Quinlan in 1992 [15] that is also based on Hunt’s algorithm. 

C4.5, not only handles both categorical and continuous 

attributes to build a decision tree, but also makes use of the 

Gain Ratio(𝐷, 𝐴) which is computed as follows: 

Gain Ratio(𝐷, 𝐴) =
Gain(𝐷, 𝐴)

Split Information(𝐷, 𝐴)
 

where Split Information(𝐷, 𝐴)  represents the information 

generated by splitting the training set 𝐷  into 𝑖  partitions 

which correspond to the 𝑖 results of a test on attribute 𝐴. 

Attribute 𝐴 with the highest Gain Ratio is selected as the 

splitting attribute. Compared to the ID3 algorithm, the 

expected entropy described by this second term is simply 

the sum of the entropies of each subset, weighted by the 

fraction of examples 
|𝐷𝑖|

|𝐷|
 that belong to Gain(𝐷, 𝐴), and is 

therefore the expected reduction in entropy caused by 

knowing the value of attribute 𝐴: 

Split Information(𝐷, 𝐴) = − ∑
|𝐷𝑖|

|𝐷|

𝑠

𝑖=1

log2

|𝐷𝑖|

|𝐷|
. 

3) Classification and regression tree (CART) 

CART was introduced by Breiman et al. in 1984 [16] and 

is also based on Hunt’s algorithm. CART handles both 

categorical and continuous attributes to build a decision tree. 

It handles missing values. CART uses the Gini Index as an 

attribute selection measure to build a decision tree. Unlike 

the ID3 and C4.5 algorithms, CART constructs binary splits. 

Hence, it constructs binary trees. The Gini Index measure 

does not use probabilistic assumptions like ID3, and C4.5. 

CART uses cost complexity pruning to remove the 

unreliable branches from the decision tree to improve the 

accuracy. Gini impurity is defined as 1 minus the sum of the 

squares of the class probabilities in a dataset: 

Gini Impurity = 1 − ∑ 𝑝𝑖
2𝑠

𝑖=1 . 

The Gini index is then defined as the weighted sum of the 

Gini impurity of the different subsets after a split: 

Gini Index = ∑
|𝐷𝑖|

|𝐷|
𝑖∈Value(𝐴)

Gini Impurity(𝐷𝑖 , 𝐴). 

The Gini Index of a pure table which consists of a single 

class is zero because the probability is 1. Similar to Entropy, 

the Gini Index also reaches maximum value when all 

classes in the table have equal probability. 

4) Entropy metrics 

In what follows, we examine various entropy metrics in 

order to relax the complexity of the DT constructions with 

respect to the increasing number of nodes and leaves: 

• Quadratic entropy ([17]) - 

𝐻𝑄(𝑝1, 𝑝2, ⋯ , 𝑝𝑠) = ∑ 𝑝𝑖

𝑠

𝑖=1

(1 − 𝑝𝑖) 
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• Havrda and Charvát entropy ([18]) - 

𝐻𝐶𝛼(𝑝1, 𝑝2, ⋯ , 𝑝𝑠) =
1

1 − 𝛼
(∑ 𝑝𝑖

𝛼

𝑠

𝑖=1

− 1) 

where 𝛼  is a parameter adjusted by the user, i.e., 

lim𝛼→1𝐻𝐶𝛼 = 𝐻. 
• Rényi entropy ([19]) - 

𝑅𝛼(𝑝1, 𝑝2, ⋯ , 𝑝𝑠) =
1

1 − 𝛼
log  ∑ 𝑝𝑖

𝛼

𝑠

𝑖=1

 

where 𝛼 is a parameter adjusted by the user. Rényi entropy 

tends to 𝐻 as 𝛼 → 1, i.e., lim𝛼→1𝑅𝛼 = 𝐻. 
• Taneja entropy ([20]) - 

𝑇𝛼,𝛽(𝑝1, 𝑝2, ⋯ , 𝑝𝑠) =
1

1 − 𝛼
log  ∑

𝑝𝑖
𝛽+𝛼−1

𝑝𝑖
𝛽

𝑠

𝑖=1

 

where 𝛼  and 𝛽  are constant inherent parameters. Taneja 

entropy tends to 𝐻 as 𝛼 → 1,  𝛽 → 1, i.e., lim𝛼→1, 𝛽→1𝑇𝛼,𝛽 =

𝐻. 
• Trigonometric entropy ([21]) - 

𝐶𝛾(𝑝1, 𝑝2, ⋯ , 𝑝𝑠) =
1

𝜋(𝛾 − 1)
cos (

𝜋

2
∑ 𝑝𝑖

𝛾

𝑠

𝑖=1

) 

where 𝛾 is a parameter adjusted by the user. Trigonometric 

entropy tends to 𝐻 as 𝛾 → 1, i.e., lim𝛾→1𝐶𝛾 = 𝐻. 

• R −norm entropy ([21]) - 

RNormR(𝑝1, 𝑝2, ⋯ , 𝑝𝑠) =
R

R − 1
(1 − ∑(𝑝𝑖

R)
1/R

𝑠

𝑖=1

) 

where 𝛾  is a parameter adjusted by the user. R − norm 

entropy tends to 𝐻 as R → 1, i.e., limR→1RNormR = 𝐻. 
To the very best of our knowledge, using Trigonometric 

entropy and R − norm entropy for analyzing student 

performance has not been done yet. 

 

IV. MAIN ARGUMENT 

We have established a list of the R scripts used for our 

predictions and to find interesting patterns in different 

educational data mining models. First, we used the ID3 

algorithm with the Shannon entropy and compared our 

results with the WEKA tool. Both results, in terms of the 

decision tree figures, have no significant differences. Hence, 

the results using our source codes were reported as follows. 

Fig. 1 provides the decision tree based on the ranking of 

seven attributes the C4.5 algorithm with the Shannon 

entropy and a 70%:30% split, where we took 75 data 

samples from Table I and Table II. 

 

 
Fig. 1. Decision tree of a 70%: 30% split. 

 

The knowledge represented by the decision tree can be 

extracted and represented in the form of If-Then rules. We 

only list some of easier If-Then rules. 

• If 

– AP - No → SP - Poor → OSM - Fail 

• Then 

– Fail 

• If 

– AP - Yes → CT - Poor → ATT - Average 

• Then 

– Third 

• If 

– AP - Yes → CT - Good → OSM - Third → SP - 

Good → ATT - Average 

• Then 

– Second 

• If 

– AP - Yes → CT - Good → OSM - Third → SP - 

Good → ATT - Good 

• Then 

– First 

The confusion matrix is an expression that shows the 

reliability of an algorithm, i.e., how accurate it is, in terms 

of containing information on actual values and predictions 

on classification, as illustrated in Table III: 
 

TABLE III: CONFUSION MATRIX 

 Prediction outcome 

Yes No 

Actual value Yes True Positive False Negative 

No False Positive True Negative 

 

where True Positive (TP) is the amount of positive data 

that is correctly classified, True Negative (TN) is the 

amount of negative data that is correctly classified, False 
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Negative (FN) is the amount of negative data and 

incorrectly classified, False Positive (FP) is the number of 

positive data and incorrectly classified. 

By expressing values as a percentages, we have the 

following: 

• Precision is the fraction of retrieved instances that 

are relevant, which is given by 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
True positives

True positives +  False positives
× 100%. 

• It is calculated as the total number of true positives 

divided by the sum of the total number of true positives and 

the total number of false positives. 

• Recall is the fraction of relevant instances that are 

retrieved. 

𝐑𝐞𝐜𝐚𝐥𝐥 =
True positives

True positives +  False negatives
× 100%. 

• It is calculated as the total number of true positives 

divided by the sum of the total number of true positives and 

the total number of false negatives. 

• Accuracy is the overall correctness of the model 

and is calculated as the sum of correct classifications 

divided by the total number of classifications, i.e., 

Accuracy

=
True positives +  True negatives

True positives +  False positives +  True negatives +  False negatives
× 100% 

A. Accuracy Measures 

1) Comparison of different entropy measures 

Let us examine the mix of Sample A, Sample B and 

Sample C datasets. The accuracy comparison of three 

different DT algorithms with and without using the BT-

pruned algorithm are summarized in Table IV when the 

synthetic training and testing data ratio using the Shannon 

entropy for each 𝑛 is 70%:30%. Increasing the size of the 

synthetic samples showed the accuracy and the convergence 

of each algorithm using both the BT-pruned and unpruned 

algorithms. Table IV shows that using the Sample A dataset, 

the BT-pruned algorithm not only has a similar accuracy 

trend as the unpruned algorithm but also in terms of the 

number of nodes greatly reduced significance when large 

data samples were used. For different BT-pruned DT 

algorithms performance at 𝑛 = 6400, we have 

CART > ID3 > C4.5 

While for different unpruned DT algorithms performance, 

we have 

CART > C4.5 > ID3. 

For further validation testing, we compared our C4.5 

decision tree with the one generated by WEKA, where both 

figures for each sample size 𝑛 are the same. Until otherwise 

stated, we used our homemade codes to test different 

entropy results using the BT-pruned algorithm. 

 

TABLE IV: ACCURACY OF DIFFERENT DT METHODS WITH THE BT-PRUNED ALGORITHM AGAINST DIFFERENT SAMPLE SIZES FOR A 70%: 30% SPLIT 

 BT-pruned DT algorithms 

ID3 (Shannon Entropy) C4.5 (Shannon Entropy) CART (Gini Index) 

Accuracy # of Nodes Accuracy # of Nodes Accuracy # of Nodes 

n = 200 25.00% 32 31.67% 51 28.33% 55 

n = 400 20.83% 123 21.67% 112 15.83% 124 

n = 800 19.17% 167 20.00% 159 18.33% 160 

n = 1600 47.71% 205 48.96% 260 47.08% 204 

n = 3200 69.48% 286 68.23% 263 69.27% 283 

n = 6400 77.66% 305 77.55% 276 78.70% 301 

 Unpruned DT algorithms 

ID3 (Shannon Entropy) C4.5 (Shannon Entropy) CART (Gini Index) 

Accuracy # of Nodes Accuracy # of Nodes Accuracy # of Nodes 

n = 200 28.33% 79 33.33% 76 28.33% 79 

n = 400 15.00% 149 17.50% 148 16.67% 149 

n = 800 15.83% 235 17.92% 249 15.83% 235 

n = 1600 46.88% 323 48.12% 332 46.46% 322 

n = 3200 68.96% 329 68.65% 330 68.96% 329 

n = 6400 78.07% 352 78.23% 351 78.44% 350 

 

TABLE V: DETAILED ACCURACY OF CLASSIFIERS USING DIFFERENT BT-PRUNED DT METHODS WITH N = 6400 FOR THE SHANNON ENTROPY AND A 70%: 

30% SPLIT 

 Detailed Accuracy of Classifiers 

True Positive True Negative False Positive False Negative 

(TP) (TN) (FP) (FN) 

ID3 First 433 1268 87 132 

Second 412 1291 97 120 

Third 380 1355 128 57 

Fail 266 1476 117 6 

C4.5 First 430 1266 90 134 

Second 410 1277 99 134 

Third 393 1335 115 77 

Fail 256 1473 127 64 

CART First 437 1265 83 135 

Second 415 1289 94 122 

Third 381 1360 127 52 

Fail 278 1460 105 77 

 

Concerning the choice of different parameters against 

different choices of entropy methods, the results of the 

application of two BT-pruned ID3 and C4.5 DT algorithms 

with regard to the TP, TN, FP and FN are summarized in 
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Table V. The asterisk placed in the table represents the 

highest number of true positives from the testing data. Here 

is a list of interesting findings: 

• The CART DT algorithm with the Gini Index 

attribute split is the best TP measure, as shown in Table V. 

• Table VI summarizes the accuracy of each entropy 

method and reveals that, with a specified choice of 

parameters, the Havrda and Charvát entropy is the best one. 

We used the Naíve Bayes classifier and studied the same 

problem using WEKA, where its accuracy was 59.22. 

• Table VI shows that using Quadratic, Havrda and 

Charvát, Rényi, Taneja, Trigonometric and R − norm of 

entropies, results in better accuracy rates than the Shannon 

entropy. Here are a few observations: 

– We agreed with [17] that using the Quadratic 

entropy, the accuracy of the BT-pruned ID3 algorithm is 

better than that of BT-pruned C4.5 one. 

– We agreed with [19] that using the Rényi entropy 

is better than using the Shannon one in terms of the 

accuracy measurement. 

– We agreed with [20] that if large values are 

selected for a pair of parameters (𝛼, 𝛽) , the accuracy of 

using Taneja entropy will close to that of the Shannon 

entropy. 

– Our findings show that using the Trigonometric 

and R − norm  entropies with a specified choice of 

parameters will maintain good accuracy. 

For illustrative purposes, using the BT-pruned DT 

algorithm with the Rényi entropy, we set 𝑛 = 6400  and 

calculated the mean decreasing gain (or the mean 

decreasing information gain), the mean decreasing gain 

ratio and the mean decreasing Gini for ID3, C4.5 and CART 

respectively against a set of attributes. Hence, we extracted 

the rank of attributes based on a set of the mean decreasing 

values, as shown in Fig. 2. Inspection of Table VII indicates 

that the lowest mean decreasing value is the parent node, 

e.g., OSM for ID3. 

 
TABLE VI: ACCURACY OF DIFFERENT ENTROPY METHODS WITH 

SPECIFIED PARAMETER(S) N = 6400 STUDENT SAMPLES 

 BT-pruned DT algorithms 

ID3 C4.5 

Entropy 

Methods 

Shannon Entropy 77.66 % 77.55 % 

Quadratic Entropy 78.70 % 77.40 % 

Havrda and Charvát 

Entropy 
78.96 % (𝛼 =

0.01) 

78.18 % (𝛼 =
5) 

Rényi Entropy 78.91 % (𝛼 =
0.01) 

78.49 % (𝛼 =
20) 

Taneja Entropy 78.28 % (𝛼 =
2.0, 𝛽 = 0.6) 

78.12 % (𝛼 =
2.0, 𝛽 = 1.0) 

Trigonometric 

Entropy 
78.28 % (𝛾 =

2.0) 

78.28 % (𝛾 =
2.0) 

R − norm Entropy 78.44 % (R =
2) 

78.49 % (R =
0.5) 

 
TABLE VII: SORTING THE ATTRIBUTES USING THE INFORMATION GAIN, 

THE GAIN RATIO AND THE GINI INDEX THROUGH THE BT-PRUNED DT 

ALGORITHMS WITH RÉNYI ENTROPY 

 ID3 C4.5 CART 

1 OSM AP OSM 

2 SP OSM LC 

3 LC CT ATT 

4 PP ATT CT 

5 ATT SP SP 

6 AP LC AP 

7 CT PP PP 

 

 

 
a. ID3                                       b. C4.5                                c. CART 

Fig. 2. Attributes against mean decreasing information gain, mean decreasing gain ratio and mean decreasing Gini. 

 

TABLE VIII: THE RESULTS OF THE ACCURACY OF THE BT-PRUNED C4.5 DT METHOD 

Experiment 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Overall Accuracy 72 % 84 % 76 % 92 % 56 % 72 % 68 % 72 % 76 % 

Accuracy First 80 % 84 % 88 % 96 % 76 % 84 % 84 % 88 % 92 % 

Second 92 % 92 % 88 % 96 % 84 % 88 % 88 % 88 % 88 % 

Third 100% 100% 100 % 100 % 96 % 100 % 96 % 96 % 96 % 

Fail 100% 100% 100 % 100 % 100 % 100 % 100 % 100 % 100 % 

Precision First 100% 84.61% 100 % 100 % 100 % 100 % 100 % 100 % 100 % 

Second 100% 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 

Third 100% 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 

Fail − − − − − − − − − 

Recall First 61.53% 84.61% 76.92 % 92.30% 53.84 % 69.23 % 69.23 % 76.92 % 84.61 % 

Second 77.77% 77.77% 66.67 % 88.89% 55.56 % 66.67 % 66.67 % 66.67 % 66.67 % 

Third 100 % 100 % 100 % 100 % 66.67 % 100 % 66.67 % 66.67 % 66.67 % 

Fail − − − − − − − − − 

 
2) Split validation tests 
In what follows, we only report the result of using the 

BT-pruned C4.5 DT algorithm with Shannon Entropy, the 

information gain feature selection model and 𝑛 = 6400. By 

adopting the split validation, a training experiment will be 

conducted based on a predetermined split ratio: For example, 
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we used 10% of the Sample C dataset. For each experiment, 

we repeated calculations 10 times and took the average of 

these 10 accuracy values, e.g., their precision and recall 

values. The overall accuracy of each experiment is 

summarized in Table VIII, where the 

accuracy/precision/recall values of each modality are given. 

Since the Sample B testing dataset does not contain any 

Fail grades, the last row of Table VIII has no value of its 

own. What we learned here is that the more data we 

collected, the likelier the predicted outcome will be accurate. 

In other words, if the training dataset contains a large 

volume of students’ learning performances, then the user 

will certainly predict their learning outcome with high 

precision when the suitable EDM algorithm is used. 

 

V. CONCLUSIONS 

This paper describes a study for predicting student 

academic performance by using only an online 

questionnaire survey. Although we only used a limited 

amount of real data (from 25 students), we used the random 

nested sampling method to generate a large class of data 

based on published results. We have implemented different 

BT-pruned decision tree algorithms with different entropy 

methods. Using the split validation, we have shown that our 

homemade codes yield good prediction accuracy even when 

the size of the training dataset is large and also influenced 

by noisy data. Hence, the If-Then decision rules provide 

more accurate results. 

Properly used, the BT-pruned decision tree algorithms 

developed in this study could help us to predict students’ 

learning performances, which could be used to identify 

students that would benefit from early intervention or to 

design students’ activities according to their skills and 

knowledge. By following the procedures described in the 

paper, when facing noisy or contaminated data from the old 

data, practitioners may use the pruning decision tree 

algorithm to improve the generalization performance in 

decision tree induction and get more insight into their 

students’ performances. 

Direction for further research emerged while this study 

was being conducted. The most significant direction would 

be to extract data from the qualitative approach. Based on 

these data, we will have a better understanding of students’ 

needs. In addition, when the size of data samples increases, 

the visualization of the decision tree is nearly impossible. 

Tracing the If-Then rules is also our next research objective. 

Based on our preliminary work, for further studies, in order 

to obtain a big picture of Students’ Academic Performance 

in our courses, we will collect more data, examine our 

proposed algorithms and publish our results elsewhere. 
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