



Abstract—In this paper, we introduce an original,

classroom-based approach for teaching Scratch programming

to 6
th

 grade elementary school students. Scratch is a

programming language that involves assembling icon-based

command blocks. It was designed to avoid the complex syntax

errors seen in other programming languages, making it

especially accessible for younger learners. While Scratch does

provide a visual programming environment in which

potentially just about anyone can learn to read and write

programming code, there can still be a reduced overall interest

in learning programming, because younger learners in

particular can find it difficult to intuitively understand or be

stimulated by abstract concepts of programming such as

sequences, conditions, and repetition, which are present in

Scratch. Our research involves the development of a tangible,

electronic block system that allows students to manipulate

physical objects with their hands to perform programming

tasks. The system consists of a Scratch simulator and physical,

Scratch electronic blocks embodying Scratch user interface

shapes. We devised and delivered a programming course to 6
th

grade Korean elementary school students using our block

system. The results are encouraging.

Index Terms—Scratch programming, tangible block

programming, electronic block system, programming education,

elementary school students’ programming class.

I. INTRODUCTION

With the progression of the 4th industrial revolution, the

importance of computing technology such as AI, big data,

and cloud computing continues to grow. Computer science

education is critical for nurturing the next generation of tech

experts, and various studies have been conducted to better

promote computer science education in schools [1], [2].

In the case of elementary schools, block-based

programming languages are frequently employed to develop

students’ computational thinking [3]. Among these, Scratch

[4] is very popular and available in more than 40 languages

and 150 countries. Scratch is based on a Graphical User

Interface (GUI), and it is highly suited to complete

newcomers to computer programming because it minimizes

grammatical errors, thus is potentially simpler to learn [5],

[6].

Manuscript received November 25, 2020; revised June 12, 2021.

Seok-Ju Chun is with Seoul National University of Education, Republic

of Korea (e-mail: chunsj@snue.ac.kr).

Yunju Jo is with Sin-Mook Elementary School, Republic of Korea

(e-mail: yunju0514@gmail.com).

Seungmee Lee is with Guui Elementary School, Republic of Korea

(e-mail: me1226@sen.go.kr).

However, younger learners in particular can still feel a

cognitive burden when it comes to how to interact with the

Scratch interface and programming concepts, because these

can appear very advanced and abstract (e.g., the concepts of

sequence, loops, and conditionals) [7]. According to an

analysis of Scratch use among 4th–6th grade students, students

can take a long time to find blocks to use in Scratch interface.

Also, the longer the codes are, the harder it is for students to

understand the relationship between blocks [8], [9]. In

addition, one study found that students’ perceptions of

programming change for the worse after block-based

programming classes, and their overall motivation and

enjoyment decrease [10].

To address these problems, we developed physical Scratch

blocks that allow students to program by assembling Scratch

blocks directly with their hands. This is based on a Tangible

User Interface (TUI) concept, a concept which allows

computer system users to interact with digital content

through the manipulation of tangible objects [11]. Using our

blocks, we taught classes to 6th grade elementary school

students. We evaluated the students’ interest in programming

through a survey before and after classes, and we interviewed

the students at the end of the course. Our hope is that

elementary school students will learn Scratch programming

more easily and more enjoyably by taking advantage of our

system.

II. RELATED WORK

Scratch [4] is an educational programming language

developed by the Lifelong Kindergarten Group at MIT

Media Lab in the U.S. It is based on a GUI, meaning users

make algorithms by clicking on or dragging and dropping

blocks on a computer screen. Scratch is appropriate for

novice programmers to learn the basic principles of

programming (sequences, conditionals, and loops) because it

presents fewer grammatical and logical errors than other

programming languages. It provides an effective way for

elementary school students to learn coding and programming

because of being more accessible and the appeal of creating

various multimedia projects [6].

For beginners, however, there is still a relatively high

cognitive burden when it comes to the Scratch interface.

Scratch presents a number of different kinds of blocks needed

for programming on the screen, so it takes students a long

time to find the blocks they need [8]. Also, because command

blocks are presented graphically, the longer and more

complex the connection of the command blocks, the more

The Effect of Programming Classes with Tangible Scratch

Blocks on the Programming Interest of 6th Grade

Elementary School Students

Seok-Ju Chun, Yunju Jo, and Seungmee Lee

International Journal of Information and Education Technology, Vol. 11, No. 9, September 2021

405doi: 10.18178/ijiet.2021.11.9.1542

difficult it is for students to understand the relationship

between the blocks [9]. To aid with overcoming concepts that

are difficult and abstract, intuitive manipulation becomes

effective [12]. Therefore, in this work, Scratch 3.0 blocks

were implemented as physical electronic blocks. Users can

produce code by touching and connecting these physical

electronic blocks with their hands, and the results are

immediately verified by the simulator.

These physical electronic blocks are tangible

programming tools. A TUI-based learning environment is an

environment that helps coders understand difficult concepts

by lowering abstract concepts to a level that can be easily

manipulated in a physical environment using the body [12].

Various tangible programming tools have been developed

to help students understand abstract programming concepts

(sequences, conditionals, loops, variables, functions, etc.)

through specific manipulation activities, and their

effectiveness has been published in various work [13]-[16].

Tern [15] is a tangible programming tool for writing code

by combining pieces of puzzle-shaped commands.

Comparing the task performance of students and adult

participants in programming classes using Tern and Scratch,

students using Tern solved problems better than students

using Scratch. According to student interviews, students

reported that touching and manipulating wooden puzzles felt

like a fun game, and that touching a real puzzle was more

enjoyable than manipulating a mouse.

Toque [16] is a cooking-based programming language that

uses the Nintendo Wiimote and Nunchuk. Users can open

and close a Loop via the Wiimote’s up and down buttons and

control the number of counts in a Loop via the + and -

buttons. The programming results can be viewed on the

screen. Toque provides a good environment for learning a

procedural workflow, but it does not have enough learning

content.

TurTan [14], based on Logo, is a tangible programming

system designed for turtle geometry. TurTan is designed to

make it easier for 4–7 year olds to understand the basic

principles of programming and to enjoy learning

programming. However, even though it is intended for

children, the tool use is complex, and it is expensive to

purchase an interactive desktop. Therefore we developed

Scratch electronic blocks as part of a tangible programming

toolkit targeted at elementary school students.

III. THE SCRATCH ELECTRONIC BLOCK SYSTEM

Our Scratch electronic block system consists of one event

block and several kinds of command blocks. We designed

our electronic blocks to mimic the Scratch blocks provided

by MIT Scratch 3.0 (Fig. 1) in terms of their shape and

functionality. Our Scratch electronic block solution allows

users to connect blocks with their hands just like LEGO

blocks instead of dragging and dropping virtual blocks in a

GUI-based Scratch programming environment using a mouse.

The blocks are magnetic and connect to each other easily.

They are similar to their virtual counterparts in functionality.

After connecting an event block to several command blocks,

a user can push a green flag button and trigger the event block

to communicate with the command blocks and read the

overall block structure.

Fig. 1. MIT Scratch 3.0.

(a) Scratch Electronic Blocks (b) System Structure

Fig. 2. Scratch electronic blocks.

Fig. 3. Scratch simulator.

Fig. 2 shows the connected Scratch electronic blocks and

the system structure. When a user completes programming

with Scratch electronic blocks in a tensible manner, the

Scratch electronic block system starts operation by the

pressing of the green button on the event block. Initially, the

event block sends a control signal to identify the ID

(identification) of the command block directly below it.

When the command block receives a control signal from the

event block, it sends its own ID to the event block and sends

the control signal to the command block connected below it.

In this same way, when the bottom-most command block

receives a control signal, it sends its ID to the event block.

International Journal of Information and Education Technology, Vol. 11, No. 9, September 2021

406

Each time an event block receives an ID from the command

block, it is sent to the Scratch simulator.

As shown in Fig. 3, when the scratch simulator obtains ID

information of all command blocks from the event block, it

interprets the sequence of all the IDs (that is, the algorithm)

so that sprites (images) move around.

Our work adopted 22 electronic blocks for teaching 6th

graders Scratch programming in an elementary school

classroom in Korea. To do this, we first analyzed the CS

Framework’s K-12 standard [17]. We chose the Algorithm

and Programming Concept as our core for the lessons out of

the five concepts available in the CS Framework [17]. From

our chosen concept, we then selected the associated goal in

the grades 6–8 (ages 11–14) band: “Design and iteratively

develop programs that combine control structures, including

nested loops and compound conditionals.” Considering the

6th grade level in elementary education, we finalized the

choice of Scratch 3.0 blocks for teaching sequences, loops,

and conditionals. Table I lists the details of the Scratch

electronic blocks we used.

TABLE I: SCRATCH ELECTRONIC BLOCKS FOR 6TH

 GRADE STUDENTS

Category Implemented electronic blocks

Event block When flag clicked

C

o

m

m

a

n

d

b

l

o

c

k

s

Control

Forever

Repeat 4

Repeat 24

If-then

If-then-else

Wait 1 sec

Wait 2 sec

Motion

Move 50 steps

Move 100 steps

Turn right 15 degrees

Turn right 90 degrees

Go to random position

Sound
Play sound meow

Play sound record

Sensing Touch mouse-pointer

Variable

Set var to 0

Set var to 1

Change var by 1

Change var by 10

Pen
Pen down

Pen up

Our Scratch electronic blocks utilize most of the existing

Scratch 3.0 blocks, although some differences exist around

the shape of the blocks. Where a Scratch block represents a

pair of commands (e.g., looping commands like forever and

repeat or conditional commands like if-then and if-then-else),

we implemented them as separate blocks. The differences are

minor and do not cause any issues when students use the

blocks to undertake Scratch programming.

IV. EXPERIMENT

Our research subjects comprised sixteen South Korean 6th

grade elementary students (i.e., 12 year olds). We all

gathered in a classroom to work through our designed course

for three weeks on Fridays for 80 minutes per meeting in June

and July 2020. All students who participated in our course

had prior experience in block coding, and one student had

experience in using Scratch. In the first class, all students

received a pre-test that measured their interest of programing,

and in the last class, they received a post-test in the form of

asking about their interest of programing in addition to

conducting an interview.

Our research question was: “Will the use of tangible

Scratch electronic blocks in a taught course affect students’

interest in programming?” Our hypothesis was: “Students

will have a greater interest in programming after the course

than before the course.”

TABLE II: SCRATCH PROGRAMMING COURSE FOR 6TH
 GRADE STUDENTS

Session Syllabus

1
· Course overview

· Pre-test: interest in programming

2

·Learning the basic concept of programming “Sequence”

· Move 50, Move 100, Move 150, Move 200

· Draw a line by 50, change the color and draw a new line by

100

· Arrange blocks appropriately to make cat move 50 to the right,

turn 90˚, and play “Hello” sound

3

· Learning the basic concept of programming “Loop & Nested

Loop”

· Draw rectangles using “repeat 4 times”

· Draw 4 different rectangles

· Draw figures using “go to random position” block

·Draw 10 squares at random locations, and make code as short

as possible

4

· Learning the basic concept of programming “Events”

· Understanding how to use the “If–then” and “If-then-else”

block

· Let cat move 50 if touching mouse-pointer

· Arrange blocks appropriately to make cat say meow when it

touches the mouse pointer while moving 200

5
· Draw own picture using tangible Scratch electronic blocks

· Verify result and share with peers

6
· Post-test: interest in programming

· Interview

To explore these questions, we designed course content to

meet the CS Framework standard, and we used our tangible

Scratch electronic blocks. The course comprises a total of six

sessions, and in them, students learn about sequences, loops,

and conditionals. Table II shows how our syllabus develops

over the sessions. The course consists of activities that offer

experience in implementing simple programs with the

tangible Scratch electronic blocks and simulators, and

correcting errors in already-made programs. In the fifth class,

students worked on a personal art project. Students

assembled their tangible blocks and displayed their results in

a simulator.

As shown in Fig. 4, we shared a video of assembling

blocks to implement algorithms with the students.

We assessed the level of interest in programming before

and after the course by issuing a survey. In it, students

expressed their level of interest by responding to survey

questions, marking responses on a five-point Likert scale.

The survey consisted of a total of nine questions and was

developed by ourselves. The survey questions were oriented

International Journal of Information and Education Technology, Vol. 11, No. 9, September 2021

407

to the areas of: interest toward programming, interest toward

programming education, interest toward programming

activities, willingness to continue programming class,

interest toward programming-related careers, and anxiety

about programming lessons.

Fig. 4. Demonstration of scratch electronic blocks in a 6th grade classroom.

TABLE III: THE 6TH
 GRADE PRE-POST TEST RESULT OF INTEREST IN

PROGRAMMING

 Mean SD T P

Pre-class 3.4 .947 -3.393 .000**

Post-class 3.769 .208

To prove the effectiveness of our course, we assessed the

changes before and after the course We conducted a paired

t-test for a single group. Table III shows the result. The

p-value is 0.000 and less than 0.05. Therefore, there is a

significant statistical difference between before and after.

The students’ interest in programming improved from 3.4 to

3.769 out of a five-point scale. Students were also more

attentive during their classes because they were eager to test

their results using the simulator after finishing the tangible

block-based coding.

Students were also interviewed about their reflections on

their use of the tangible Scratch electronic blocks, and this

also revealed a heightened curiosity and interest in Scratch

programming. Below are some extracts from the student

interviews.

 “It was amazing to program in a different way than usual.

And if I had the chance, I would like to make my own game

with these tangible blocks.”

“It was great to program using three-dimensional things,

and it felt like it was a game.”

“I want to do programming using tangible blocks at home.

Even if there was an error in the programming, I could

correct it quickly with my hands.”

This curiosity and interest in turn led to an increased

concentration in the programming classes.

Programming based on a TUI is more effective for getting

students to associate programming as playing or a game than

programming based on a GUI, which refers to manipulating

drag-and-drop command blocks on a computer screen.

V. CONCLUSION

In our study, Scratch electronic blocks that made use of

tangible programming language were used to enhance

programming learning. Elementary school students were able

to experience Scratch programming immersively by

assembling physical Scratch electronic blocks in their hands.

A programming course using the tangible Scratch electronic

blocks was developed and delivered and the students’

programming interest was analyzed. The analysis showed

that the students’ interest level increased from 3.4 to 3.769,

and the concentration during class was likewise greater.

Following end-of-course interviews, the 6th grade students

with prior experience in block coding based on a GUI felt that

programming felt more like a fun game when using the

tangible Scratch blocks based on a TUI.

This study only involved a total of 16 students in a 6th

grade class, so it is difficult to generalize and fully interpret

the effectiveness of the tangible Scratch electronic blocks.

Therefore, it is important to apply our programming classes

using tangible Scratch electronic blocks to more students and

to analyze the effectiveness. A comparative analysis study of

differences in programming interest by dividing the same

course content into GUIs and TUIs would also be useful.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Dr. Chun managed the project and designed the

programming courses. Ms. Jo supervised the programming

class and analyzed the results. Ms. Lee taught the

programming courses and administered students survey. All

authors co-wrote the paper and approved the final version.

ACKNOWLEDGMENT

This work was supported by the 2021 Research Fund of

Seoul National University of Education.

REFERENCES

[1] Swkim and Yjlee, “Deveolment and application of arduino-based

education program for high school students,” Journal of Theoretical &

Applied Information Technology, vol. 95, no. 18, 2017.

[2] Swkim and Yjlee, “The effect of robot programming education on

attitudes towards robots,” Indian Journal of Science and Technology,

vol. 9, no. 24, pp. 1-11, 2016.

[3] N. Smith, C. Sutcliffe, and L. Sandvik, “Code club: Bringing

programming to UK primary schools through scratch,” SIGCSE, pp.

517-522, 2014.

[4] Scratch. [Online]. Available: http://scratch.mit.edu.

[5] M. Rednick, J. Maloney, A. M. Hernádez, N. Rusk, E. Eastmond, K.

Brennan, A. Millner, E. Rosenbaum, and J. Silver. “Scratch:

Programming for all,” Communication of the ACM, vol. 52, no. 11, pp.

60-67, 2009.

[6] N. B. Dohn, “Students' interest in Scratch coding in lower secondary

mathematics,” Br. J. Educ. Technol, vol. 51, no. 1, pp. 1-83, 2020.

[7] J. Moons and C. Backer, “The design and pilot evaluation of an

interactive learning environment for introductory programming

influenced by cognitive load theory and constructivism,” Comput.

Educ., vol. 60, no. 1, pp. 368-384, 2013.

[8] C. Hill, H. A. Dwyer, T. Martinez, D. Harlow, and D. Franklin, “Floors

and flexibility: Designing a programming environment for 4th-6th

grade classrooms,” SIGCSE, pp. 546-551, 2015.

[9] D. Franklin, J. Salac, C. Thomas, Z. Sekou, and S. Krause, “Eliciting

student scratch script understandings via scratch charades,” SIGCSE,

pp. 780-786, 2020.

[10] J. Denner, L. L. Werner, and E. Ortiz, “Computer games created by

middle school girls: Can they be used to measure understanding of

computer science concepts?” Comput. Educ., vol. 58, no. 1, pp.

240-249, 2012.

[11] M. Paul, R. Yvonne, and H. Eva, “Are tangible interfaces really any

better than other kinds of interfaces?” In CHI'07 Workshop on Tangible

User Interfaces in Context & Theory, 2007.

[12] M. U. Bers, L. Flannery, E. R. Kazakoff, and A. Sullivan,

“Computational thinking and tinkering: Exploration of an early

International Journal of Information and Education Technology, Vol. 11, No. 9, September 2021

408

childhood robotics curriculum,” Computer & Education, vol. 72, pp.

145-157, 2014.

[13] M. Bers and M. Horn, “Tangible programming in early childhood:

Revisiting developmental assumptions through new technologies,”

Greenwich, CT: Information Age Publishing, 2010.

[14] D. Gallardo et al., TurTan: A Tangible ́Programming Language for

Creative Exploration, IEEE Computer Society Press, pp. 89–92, 2008.

[15] S. H. Michael, Comparing the Use of Tangible and Graphical

Programming Languages for Informal Science Education, ACM CHI,

pp. 975-984, 2009.

[16] S. Tarkan, V. Sazawal, A. Druin et al., “Toque: Designing a

cooking-based programming language for and with children,” CHI,

ACM, pp. 2417–2426, 2010.

[17] The K-12 Computer Science Framework. [Online]. Available:

http://k12cs.org

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Seok-Ju Chun is received the PhD degree in

information and communication engineering from

KAIST. From 1997 to 2004, he was an assistant

professor in the Department of Internet Information

at the Ansan University, Korea. Since 2004, he has

been a professor of computer education at Seoul

National University of Education (SNUE), Korea.

Dr. Chun is the PI of the "Development and

Application of Coding Robot Kit for Silver Care in

Aging Society" project supported by the NRF. His current research interests

include programming education, AI education, OLAP, and data mining.

Yunju Jo is Sin-Mook elementary school teacher.

From 2014 to 2020, She worked as an elementary

teacher in Seoul Metropolitan Office of

Education(SMOE). She is received the master`s

degree in computer education from Seoul National

University of Education (SNUE) in 2017. She is

taking a Ph.D in computer education at SNUE. She is

the master of SW education at the SMOE. Her

current research interests include programming

education, AI education, and online learning.

Seungmee Lee is Guui elementary school teacher.

From 2016, She worked as an elementary teacher in

Seoul Metropolitan Office of Education(SMOE). She

is received the bachelor`s degree in computer

education from Korea National University of

Education (KNUE) in 2016. She is taking a master`s

degree in computer education at Seoul National

University of Education (SNUE). Her current

research interests include programming education,

AI education.

International Journal of Information and Education Technology, Vol. 11, No. 9, September 2021

409

https://creativecommons.org/licenses/by/4.0/

