



Abstract—For the past decade, video game- and

gamification-elements get used in different fields of research.

However, a contextualized usage of these elements is still

underrepresented in the current research. For that reason, this

research tries to identify contextualized game-elements in

e-learning environments for computer science education. A

systematic literature review examines the current overlap of

feedback in computer science education by the use of

game-elements. The relevant papers were identified by a

combination of search-terms and analyzed according to a

defined scope, that focuses on formative and summative

feedback. In a nutshell, the majority of provided feedback in

computer science education, that is not just given by an

instructor, is often implemented by automated code tests. These

are supported through techniques to monitor the performance

of the student and their progress towards the set goal. Game- or

gamification-elements do play a subordinate role, when

providing feedback and are often just to enhance the

monitoring process.

Index Terms—Formative feedback, gamification, computer

science, programming, education.

I. INTRODUCTION

Comparable to learning different educational subjects, the

handling of video games is a subject of its own, where

players have to understand the different mechanics and

possibilities, that are offered by a game. An important factor

for both video games and education is feedback. As [1]

describes feedback as one of the defining traits of games,

since in this way knowledge about the objective outcome is

provided to the players. Similarly, feedback provided to

students can easily influence their overall learning behavior.

Feedback can therefore advance or destroy the engagement,

that a player has with a game or a student has with a course

and its content.

For this reason, this research focuses on the feedback

given to students. Hence, the general research question is:

“What parallels exist between feedback in games or

game-like applications and the use of feedback in education”.

Especially in computer science education, there are different

ways of providing feedback to the students. They range from

automated testing, monitoring, scaffolding to different

educational and instructional designs. This study investigates

the different implementations of feedback in computer

science education using a systematic literature review [2]. A

deeper analysis of the publications allows to gather an

overview of the current use of game- or game-like elements

Manuscript received December 15, 2020; revised June 2, 2021.

Nico Willert is with the Information Systems Institute, University Leipzig,

Leipzig, Germany (e-mail: willert@wifa.uni-leipzig.de).

in the educational field and to work on an approach for a

collective use of the different types of feedback.

II. RELATED WORK

Prior to this work, the publication of [3] was found in the

process of gathering information about the current status of

gamification research and [4] was found while researching

effective feedback in computer science education.

Reference [3] conducted a comprehensive literature

review of the gamification research and analyzed research

models and results of empirical studies on gamification. They

classified the found research based on employed method,

type of game-element used, psychological, and behavioral

outcome. In addition, a sample of literature consisting of

experimental quantitative studies was reviewed for their

results and domain. The clear majority of research, reported

mixed results, with only 28.7% only positive research

findings.

Based on these results they conclude thematic, theoretic,

and methodological agenda points that future gamification

research should address. These include the context, in which

the gamification is deployed or the different types of

feedback that can be delivered by different kinds of

game-elements and their effect on system users.

Reference [4] investigated theories for effective feedback

in higher education and translate their characteristics for

feedback in computer science education. Based on the

various publications they worked with, they created a

roadmap for effective feedback in computer science, that

stretches over task, process, and self-regulation level. This

roadmap also addresses a time perspective for goals,

performance, and improvement feedback, as well as the right

communication at each stage of the learning process.

In addition, 5 literature reviews were identified in the field

of computer science education. These reviews investigate

different aspects for introductory programming and software

engineering courses. With the focus on feedback given to the

students, there are multiple approaches and recommendations

given by the publications. The most frequently used approach

for assessment and feedback is automated testing to support

the development process and to verify the correctness of the

assignments [5], [6]. These automated tests can be extended,

so that targeted feedback can be provided for specific test

cases [7]-[9]. Other kinds of feedback include code

visualization [5], code quality analyzation [5], [9] or the

delivery of feedback via hints and the use of scaffolding to

help students continue and improve their assignments [6], [8],

[9] Especially noticeable is the review of [7] with their

research about different types of feedback (based on the

A Systematic Literature Review of Gameful Feedback in

Computer Science Education

Nico Willert

International Journal of Information and Education Technology, Vol. 11, No. 10, October 2021

464doi: 10.18178/ijiet.2021.11.10.1551

taxonomy of [10]), that is given by the examined tools. The

feedback is divided into the knowledge about task constraints,

concepts, mistakes, how to proceed, and metacognition. The

highest amount of provided feedback is knowledge about the

mistakes (96% of all reviewed tools) especially test failures

and solution errors, followed by the knowledge about how to

proceed (44.6%), especially bug-related hints for error

correction.

As detailed above, these 7 preceding studies have

examined various aspects of effective feedback and

gamification-techniques as well as different approaches for

feedback and testing in computer science education.

The different studies in computer science education do not

specifically explore the concept of using game- or

gamification-elements for providing feedback to the students.

Of these 5 studies, only [8] presents a separate paragraph for

games as teaching tools, where students can learn

introductory programming knowledge and experience, by

playing a game or using some game-like structured process.

From the focus of gamification, [3] showed, that the

contextual adaption and usage of game- or

gamification-elements is underrepresented in the past and

current gamification research. Equally underrepresented is

the focus of gamification-research on different feedback

types, how these can be delivered through said elements and

how they can affect the system users. Therefore, it is

important to look at feedback in the context of computer

science education from a gameful point of view, to close the

current gap of research.

III. METHOD

For this study a systematic literature review [2] was

conducted, to obtain an overview of research issues relating

to feedback in computer science courses with respect to their

use of game-elements.

To define the research questions and the scope of this

study, the population, intervention, and outcome were set.

The population defines where the evidence is collected,

therefore which group of people, programs or businesses are

of interest for the review. The intervention describes the

specific technology and the outcome refers to the expected

measurable results.

Firstly, for conducting the review, the publications were

identified by generating a search strategy and criteria to

select suitable studies. A classification scheme was designed

based on the defined scope and research questions, to extract

data from each publication.

A. Define Scope and Research Questions

The focus of this study is on the different types of feedback

and methods how this feedback is provided to students. The

population, which should be affected by the intervention

consists of students and learners of computer science as well

as specialized scholars from the field of gamification and

education. The intervention, which is under observation,

refers to types of feedback or assessment given to the defined

population. The frame of the intervention is thereby limited

to formative and summative feedback, to tighten the overall

focus. This also eliminates unwanted results, like feedback,

that is gathered from students. They are compared to the use

of game- or gamification-elements, that are used to provide

feedback in a gameful way. The studies outcome revolves

around the overall impact of the feedback implementation on

the student performance, their motivation, and their

engagement with the course and its learning contents.

The goal is to integrate the findings from the publications

to create a general view of feedback usage in computer

science education and enhance and apply the gained

knowledge to our own educational work.

To analyze the use of feedback in computer science

education and investigate which role gamification-elements

play in its implementation, the following research questions

are derived from the scope and serve to approach the general

research question mentioned in the introduction,

 RQ1: How are the types of feedback distributed in

computer science education?

 RQ2: How is the feedback implemented?

 RQ3: Which gamification-elements are used?

 RQ4: For what reason is the feedback/implementation

used?

 RQ5: What is the actual outcome of the implementation?

B. Identification of Research

For the identification of research, the digital libraries of

ACM, ScienceDirect, and IEEE were searched. Based on the

defined scope and a preliminary study the search terms were

selected. The terms programming, computer science or

software development were searched in the abstract or title.

In addition, the terms “gameful”, “game-based” or

“gami*“ were searched and the combinations of “formative”

or “summative” with “feedback”, “assessment” or

“evaluation”.

This resulted in the following search string. (("formative

feedback" OR "formative evaluation" OR "formative

assessment" OR "summative feedback" OR "summative

evaluation" OR "summative assessment") AND ("Abstract":

"programming" OR "Abstract": "computer science" OR

"Abstract": "software developement" OR "Document Title":

"programming" OR "Document Title": "computer science"

OR "Document Title": "software developement") AND

(game* OR gami*)).

C. Study Selection Criteria

The screening process for each paper includes title,

abstract and conclusion for the research questions, and

further parts for the findings. The following inclusion and

exclusion criteria were used to select the relevant papers. The

publication is included, if the following criteria are met:

 It deals with one or more of the mentioned types of

feedback or implements its feedback through game- or

game-like elements.

 The feedback is in the context of computer science

education.

 It is peer reviewed including full and short papers.

The publication is excluded, if one of the following criteria

is met:

 The feedback given is not in computer science context.

 The feedback given is solely about the gathered feedback

from students.

International Journal of Information and Education Technology, Vol. 11, No. 10, October 2021

465

 It is about some form of mechanical or physical feedback

of a system.

 It is another literature study.

D. Classification Scheme

The classification scheme was designed based on the

established definitions from the literature to identify the

different facets. The classification scheme, was extended, if a

paper introduced a new category. The important facets are

feedback, game elements, type of implementation, and the

stated reasons of usage. The classification scheme was

checked by a preliminary study. The categories and facets are

summarized in Table I.

1) Feedback in education

The categories for feedback are based on [4] and have been

extended by the findings. Each aspect is described to

illustrate the overlapping results in RQ1 beforehand.

Formative feedback is concerned with how assessments

about the quality of student responses, can shape and

improve the student competence [11].

In contrast to formative feedback, summative feedback is

concerned with summing up or summarizing the achievement

status of a student or the end of a course unit. Therefore, it

does not have an immediate impact on the learning but can

influence future decisions [11].

Immediate Feedback refers to feedback given virtually at

the time of test. In addition, rapid feedback focusses on

feedback that is not given immediately after the submission

of the results, but fast enough to have an impact on the

student for the next task [12].

Self-regulation feedback serves the role of enhancing

student self-regulation, by supporting the students in

monitoring and self-observing their actions towards the

learning goal and thus helps them to strategically adjust their

goals, further actions and reactions [13].

Scaffolding is mostly used in the form of a support

structure, serves to support the students in their learning

process by either inserting these structures, when they are

needed or providing the support from the start and gradually

fading it out, when the competence of the students increases

[14].

Social or peer feedback based on the practice, that

feedback to tasks and assignments is given from one student

to another.

2) Game elements

The differentiation of game-elements is based on the

identified game-elements in [3].

3) Type of implementation

The categories for different types of implementation were

mainly created from the preliminary study.

4) Reason of usage

Reference [3] and [4] identified different categories for the

use of feedback or game-elements.

IV. RESULTS

In total 247 publications were found using the initial

search. Initially, 11 of them were duplicates that were

included by the search. Due to the exclusion criteria or

availability 186 were rejected. Finally, 50 papers were

included. Their year of publication ranges from 2001 to 2020

with the majority of publications (44) published after 2013.

A. RQ1: How Are the Types of Feedback Distributed in

Computer Science Education?

From the 50 accepted and analyzed papers, 31 are

formative or process feedback, 19 summative or corrective

feedback, 17 immediate or rapid feedback, 12 self-regulation

feedback, 9 social or peer feedback, and 4 about feedback

through scaffolding. As these results include contextual

overlaps, Fig. 1 shows the distribution of these feedback

types and how often they occurred together. The top row

shows the total amount of each type, as stated above. The

following rows show, how often each type occurred with

another one or itself. The percentage indicator is referring to

the total amount of occurrences and the numbers in each

section of a bar, refers to the individual of occurrences as a

pair or alone.

TABLE I: CLASSIFICATION SCHEME FOR THE STUDY

Facet Category

Feedback in Education

Formative Feedback [11]

Summative Feedback [11]

Immediate Feedback [12]

Self-Regulation Feedback [13]

Scaffolding [14]

Social/Peer Feedback

Game Elements [3]

Assistance

Badges/Achievements

Block-programming Puzzles

Challenges

Customization/Avatars

Increasing/Changing Difficulty

Rankings

Onboarding

Performance Statistics

Points/Scores/XP

Progress/Status Bars

Rewards

Type of Implementation

Scaffolding System

Monitoring

Gamification

Game/Game-Development

Code Testing

Course Redesign

Development Environment

Questionnaire

Block Programming

Instant Feedback

Social/Peer Feedback

Reason of Usage [3] & [4]

Correctness

Empowerment

Enhancing Engagement

Enjoyment/Fun

Goal/Progression

Help/Cues/Reinforcement

Immersion

Motivation

Perceived Competence

B. RQ2: How Is This Feedback Implemented?

The results for the implementation type include overlaps

for reporting multiple techniques in one publication. Code

testing is implemented or taught by 13 papers, whereby the

participants were either given feedback through automated

tests or they could self-evaluate their work by using test

driven development procedures.

International Journal of Information and Education Technology, Vol. 11, No. 10, October 2021

466

Fig. 1. Distribution of feedback.

Fig. 2. Implementation type of the feedback.

In 9 papers the participants played a serious or educational

game or got taught about game development, where in both

parts the participants received feedback by the game they

played or programmed. The implementation of immediate

feedback is done by 7 papers, through mostly prewritten

feedback for certain code cases or compiler states. Another 6

papers report about the redesign of the educational courses.

These redesigns range from working with large groups or

global learning, over monitoring and motivation to the time,

when feedback should be given. Additionally, 4 papers each

reported about the implementation of multiple-choice

questionnaires for knowledge assessment, gamification to

boost participants motivation, monitoring of progress or code

performance and block programming like Scratch to program

simple application or control a game. Social or peer

assessment is used as feedback by 3 papers. Another 2 papers

report the implementation of a development environment to

help students through the development process, further 2

papers report the use of scaffolding as prewritten helping

instructions either from the start of the exercise or when the

participant needs them. Fig. 2 shows the different

implementations for feedback in the examined publications.

The individual implementations for the feedback are

describes in the findings section.

C. RQ3: Which Gamification-Elements Are Used?

Only 15 papers are specifically in gamification or

game-like context and 10 aren’t connected to this context.

The results include the overlap for multiple uses of

gamification-elements. Overall, 16 papers report using

feedback about the performance, 16 allow a better

monitoring of lecture and exercise progress, 13 offer

additional assistance either automatic or on demand, 13 use

points, 10 promote challenges like social challenges against

other participants, 8 use badges or achievements, 6 use an

escalating difficulty to drive the participants knowledge

forward, 4 allow some sort of customization, mostly in the

design of the application or its content, 4 include an

onboarding process or tutorial, 4 are block programming

puzzles, 3 include rewards, mostly in the game, and 2 had a

ranking or leaderboard, where students get ranked based on

their points or performance. This distribution is shown in Fig.

3.

Fig. 3. Used gamification-elements.

D. RQ4: For What Reason Is the Feedback

Implementation Used?

From the studied work, 10 papers did not explicitly report

any reasons for the research, 28 want to enhance student

engagement, 23 to give a better sense of progression and goal

orientation, 17 to help the students in their work or progress,

15 for better correctness of the submitted assignments, 12 to

enhance the student motivation, 11 for better perceived

competence, 7 for student empowerment, 6 for enjoyment

and fun, and 1 paper wants to enhance the immersion for the

tasks. Fig. 4 shows the stated reasons for which the authors

used their implementation, which contains overlaps for

multiple stated reasons.

Fig. 4. Stated reasons of usage.

E. RQ5: What is the actual outcome?

Overall, 17 papers miss any indication of an outcome

related to the feedback and 1 reports a neutral outcome where

no significant difference between the groups was reported.

Another paper reported a negative outcome, that related to

the overall content and teaching staff.

Related to a positive outcome, 9 papers describe an overall

satisfaction with the new course or system, but that where

without any control group. Therefore, Fig. 5 shows the

outcome reported by the authors, respectively the reported

outcome through evaluation of their design or

International Journal of Information and Education Technology, Vol. 11, No. 10, October 2021

467

implementation. The majority of which were compared to

traditional teaching methods. In total, 10 papers report a

better engagement of the participants, 9 report an overall

better performance, which resulted in a higher rate of

submitted assignments, 6 report a higher student motivation,

3 report that the students were better at self-pacing their

learning, 3 report a qualitative better code, 2 report a higher

student satisfaction, and 1 has a better onboarding for

inexperienced participants.

Fig. 5. Actual reported outcome.

V. FINDINGS

Based on the classification for different feedback types in

combination with their respective type of implementation and

use of game-elements, there seem to be promising

approaches that have a positive influence on the learning

behavior of students. For this purpose, automated code

assessment can be viewed as an aspect of feedback that can

be used in different formative or summative ways. Similar to

automated assessment, game or game-like elements can

represent driving or supporting feedback by different forms

of implementations. A general approach that has not yet been

named, is problem learning, which emerges as regulation

feedback and supports social feedback factors. The other

forms of feedback that shall be mentioned here, is scaffolding

as helpful structures and feedback mechanism and

monitoring as self-regulation feedback, since these can help

students in overcoming the obstacles and help them to not

lose sight of their learning goals.

A. Automated Assessment as Feedback

As automated feedback is the most frequently mentioned

part of feedback in computer science education, there are

different varieties explored by the reviewed publications.

These can be divided into automated testing of code,

automated feedback that is displayed at certain cases,

qualitative code assessment like metrics and the teaching

about testing or test-driven development, so that students can

assess themselves.

As previously shown in Fig. 2, code testing is the most

prominent option to provide formative feedback, since these

tests can be created to guide the students step by step towards

the correct solution, by showing them in an easy to

understand way, what is and isn’t working [15]-[17].

However, one has to distinguish between these test as

formative and as summative assessment, because many

publications use automated testing in the background to

assess and grade their students, but do not give them direct

feedback until the end of the assignment [18].

Besides these uses of tests, [9], [19]-[21], describe the

effective use of feedback that is provided to the students, in

reaction to certain test results. Thereby prewritten feedback is

displayed, based on certain criteria, like failed or successful

tests or certain values for code metrics.

Other publications like [22], [23] teach about testing and

test-driven development. They rely on the students to

develop tests and ensure that their assignments work

according to them. This can improve the motivation of

students, but as [22] found, students that are especially

confident in their programming skills, tend to skip writing

tests, when the assignments difficulty does not demand their

full attention.

In a similar way, code or test metrics can be used to give

students a direction of how to improve their assignments. [9].

This approach requires further knowledge from students

especially in the context of an introductory computer science

course.

Besides the differences in the implementation, the

different scholars highlight the importance of rapid or

immediate feedback, so that students can assess themselves

on their own terms and improve their assignments.

B. Game-Like Feedback

Since the use of feedback in games is an essential part, it

seems more than relevant to check in which gameful way

feedback is and can be provided for computer science

education. As the results of this study show, there are already

different game-like elements in play, that distribute over the

application of gamification, serious games, block-based

programming and elements of game development in the

educational field.

As [24] argues, the use of game-elements should not just

be an “-ification”, meaning that just the use of points and

badges as extrinsic rewards will not be able to foster the

motivational benefits, that some scholars like to achieve with

gamification. Therefore, the key concept, that connects

formative assessment and good games is their ability to show

a clear progress and achievable goals [24]. Depending on the

design of the gamification, this can still result in different

implementations. As it is shown by [24] or [25] badges and

points can be applied in meaningful ways to give students a

better understanding about their progress. In addition, both

provide the students with multiple choice questionnaires for

self-assessment and construct programming challenges either

with automated tests [24] or with scaffolding and stepwise

instructions [25] to guide the students through the learning

process.

Since gamification applies the concepts of a game to the

environment, serious games are somewhat going the opposite

way, by applying the programming context to the game.

Approaches like [26], [27], or [28] let students play a game,

wherein certain programming related tasks should be

performed, which allows to especially enhance the

computational thinking of the students, without learning the

specifics of a programming language. These games can

provide direct visual feedback, especially when visualizing

the execution of a programmed algorithm and they can

International Journal of Information and Education Technology, Vol. 11, No. 10, October 2021

468

inform the students about different performance stats like

runtime or memory usage.

Meeting both approaches in the middle is block-based

programming. Different publications take this approach, by

letting their student’s program with a visual block-based

programming language like Scratch [29]-[31]. Similar to a

game, the feedback is provided by a visual output for the

students inputted code and in addition to this, additional

information like scaffolding or hints can be provided.

Similar to the teaching about test-driven development,

some scholars teach about game development [32]-[36]. This

approach allows the students to apply their knowledge and

then see the results based on the executing game. Therefore,

the feedback is mostly about the visible progress, students

can make towards the functional parts of the game.

C. Problem Learning

Some scholars redesign educational courses with the focus

on problem-learning/-solving for programming exercises.

The feedback given to students, differs in this respect from

the other publications, since it is not focused on being

automated feedback, rather the focus lies on feedback based

on the problem context [37], [38]. Therefore, the feedback

given is specifically contextualized onto the problem space

and encourages to correct and improve the current solution.

In addition to the contextual feedback, [39] remarks that

this feedback should be fast and regular, as well as identify

and reflect on specific aspects of performance that can be

improved. Reference [40] shows, that by focusing on

tangible problems, students can help each other and thus

promote peer evaluation as formative assessment.

D. Scaffolding

Scaffolding itself is not essential part of feedback, but it

can help the learners with their assignments. References [25]

and [26] take scaffolding as prewritten part of code, which

can be provided as a form of feedback, when the learners

don’t know how to begin with a certain task. This scaffolding

feedback can also be used in the form additional comments in

the code to nudge learners in the right direction [26], [41].

Therefore, the scaffolding feedback can result in a change of

difficulty or amount of work, that the tasks present to the

learners [42].

E. Monitoring and Self-paced Learning

Monitoring as part of the feedback giving process. Many

monitor the process of the course or the tasks done by the

learners [16], [17], [25], [43]. These include the test results

from automated tests and other performance statistics like

code-metrics. This part of goal tracking can also enhance

self-paced learning, when options are provided to the learners,

to set their own goals.

VI. CONCLUSION

The goal of this paper is to give an overview of research

issues relating to feedback in computer science courses with

respect to their use of game-elements. In conclusion, there

are multiple different techniques used to provide feedback,

that are either general or otherwise specific to the

programming domain.

The results show, that a high amount of feedback in

computer science education is provided by tests, that evaluate

automatically and can generate additional feedback.

Although the use of game elements for feedback is often not

the focus of research, but merely a byproduct, their

application almost always brings some way of

self-monitoring or goal orientation with it.

The effects of feedback and game-elements with respect to

the improvement of student results and motivation are mainly

positive. Especially the goal orientation, which can be

created with the help of various game-elements, contributes

to an increase in said motivation. However, only a fraction of

the possible game-elements is used for feedback and most

often than not, these game-elements are not adapted to meet

the context in which they are presented. Therefore, the use of

contextualized game-elements as a means of presenting

feedback to students should be considered, when developing

tools or environments to assist students with their learning

process.

AUTHOR CONTRIBUTIONS

This research was solely conducted by Nico Willert.

CONFLICT OF INTEREST

The author declares no conflict of interest.

REFERENCES

[1] J. McGonigal, “Reality is broken: Why games make us better and how

they can change the world,” Penguin Group, 2011.

[2] B. Kitchenham, “Procedures for performing systematic reviews,”

Keele, UK, Keele University, 2004.

[3] J. Koivisto and J. Hamari, “The rise of the motivational information

systems: A review of gamification research,” International Journal of

Information Management, vol. 45, pp. 191-210, 2019.

[4] C. Ott, A. Robins, and K. Shephard, “Translating principles of effective

feedback for students into the CS1 context,” ACM Trans. Comput.

Educ., vol. 16, issue 1, 2016.

[5] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams et al., “A survey

of literature on the teaching of introductory programming,” ACM

SIGCSE Bulletin, vol. 39, issue 4, pp. 204–223, 2007.

[6] T. Clear, S. Beecham, J. Barr, M. Daniels, R. McDermott et al.,

“Challenges and recommendations for the design and conduct of global

software engineering courses: A systematic review,” in Proc. the 2015

ITiCSE on Working Group Reports, New York, USA, pp. 1–39, 2015.

[7] H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review

of automated feedback generation for programming exercises,” ACM

Trans. Comput. Educ., vol. 19, issue 1, article 3, 2019.

[8] A. Luxton-Reilly, I. Albluwi, B. A. Becker, M. Giannakos, A. N.

Kumar et al., Introductory programming: A systematic literature

review,” ITiCSE 2018 Companion, NY, USA, pp. 55–106, 2018.

[9] L. P. Scatalon, J. C. Carver, R. E. Garcia, and E. F. Barbosa, “Software

testing in introductory programming courses: A systematic mapping

study,” SIGCSE 19, New York, NY, USA, pp. 421–427, 2019.

[10] S. Narciss, “Feedback strategies for interactive learning tasks,”

Handbook of Research on Educational Communications and

Technology, 3rd. edition, pp. 125–144, 2008.

[11] D. R. Sadler, “Formative assessment: Revisiting the territory,”

Assessment in Education: Principles, Policy & Practice, vol. 5, no. 1,

pp. 77-84, 1998.

[12] J. Metcalfe, N. Kornell, and B. Finn, “Delayed versus immediate

feedback in children's and adults' vocabulary learning,” Memory &

Cognition, vol. 37, pp. 1077-87, 2009.

[13] Y. B. Chung and Y. Mantak, “The Role of Feedback in Enhancing

Students' Self-Regulation in Inviting Schools,” Journal of Invitational

Theory and Practice, vol. 17, pp. 22-27, 2011.

[14] P. Geert and H. Steenbeek, “The dynamics of scaffolding,” New Ideas

in Psychology, vol. 23, no. 3, pp. 115-128, 2005.

International Journal of Information and Education Technology, Vol. 11, No. 10, October 2021

469

[15] D. Croft and M. England, “Computing with CodeRunner at coventry

university: Automated summative assessment of Python and C++

code,” CEP 2020, New York, NY, USA, Article 1, pp. 1–4, 2020.

[16] N. Barreiro and C. Matos, “A blended learning model for practical

sessions,” FedCSIS, Gdansk, pp. 903-912, 2016.

[17] M. Rahman, R. Paudel, and M. H. Sharker, “Effects of infusing

interactive and collaborative learning to teach an introductory

programming course,” 2019 IEEE Frontiers in Education Conference

(FIE), Covington, KY, USA, pp. 1-8, 2019.

[18] J. Park, Y. Park, J. Kim, J. Cha, S. Kim et al., “Elicast: Embedding

interactive exercises in instructional programming screencasts,” ACM

Conference on Learning at Scale, vol. 5, pp. 1-10, 2018.

[19] H. Blau and J. B. Moss, “FrenchPress gives students automated

feedback on java program flaws,” ITiCSE, New York, NY, USA, pp.

15–20, 2015.

[20] D. Croft and M. England, “Computing with codio at coventry

university: Online virtual Linux boxes and automated formative

feedback,” CEP, New York, NY, USA, Article 16, pp. 1–4, 2019.

[21] Q. Hao, J. Wilson, C. Ottaway, N. Iriumi, K. Arakawa, and D. Smith,

“Investigating the essential of meaningful automated formative

feedback for programming assignments,” 2019 IEEE Symposium on

Visual Languages and Human-Centric Computing, Memphis, TN,

USA, pp. 151-155, 2019.

[22] K. Buffardi and S. Edwards, “A formative study of influences on

student testing behaviors,” SIGCSE, New York, NY, USA, pp.

597–602, 2014.

[23] V. Ramasamy, H. Alomari, J. Kiper, and G. Potvin, “A minimally

disruptive approach of integrating testing into computer programming

courses,” SEEM, Gothenburg, pp. 1-7, 2018.

[24] M. Fuchs and C. Wolff, “Improving programming education through

gameful, formative feedback,” EDUCON, Abu Dhabi, pp. 860-867,

2016.

[25] B. Morrison and B. DiSalvo, “Khan academy gamifies computer

science,” SIGCSE, NY, USA, pp. 39–44, 2014.

[26] A. Chaffin, K. Doran, D. Hicks, and T. Barnes, “Experimental

evaluation of teaching recursion in a video game,” ACM SIGGRAPH

Symposium on Video Games, New York, NY, USA, pp. 79–86, 2009.

[27] T. Barnes, E. Powell, A. Chaffin, and H. Lipford, “Game2Learn:

Improving the motivation of CS1 students,” GDCSE, New York, NY,

USA, pp. 1–5, 2008.

[28] J. Zhu, K. Alderfer, A. Furqan, J. Nebolsky, B. Char, B. Smith et al.,

“Programming in game space: how to represent parallel programming

concepts in an educational game,” FDG '19, New York, NY, USA,

article 4, pp. 1–10, 2019.

[29] K. Katchapakirin and C. Anutariya, “An Architectural Design of

ScratchThAI: A conversational agent for Computational Thinking

Development using Scratch,” IAIT, New York, NY, USA, article 7, pp.

1–7, 2018.

[30] S. Grover, M. Bienkowski, J. Niekrasz, and M. Hauswirth, “Assessing

problem-solving process at scale,” L@S '16, New York, NY, USA, pp.

245–248, 2016.

[31] W. Wang, R. Zhi, A. Milliken, N. Lytle, and T. Price, “Crescendo:

Engaging Students to self-paced programming practices,” SIGCSE '20,

New York, NY, USA, pp. 859–865, 2020.

[32] K. Sung, R. Rosenberg, M. Panitz, and R. Anderson, “Assessing

game-themed programming assignments for CS1/2 courses,” GDCSE

'08, New York, NY, USA, pp. 51–55, 2008.

[33] A. Basawapatna, A. Repenning, and K. Koh, “Closing the

cyberlearning loop: Enabling teachers to formatively assess student

programming projects,” SIGCSE '15, New York, NY, USA, pp. 12–17,

2015.

[34] A. Domínguez, L. de-Marcos, and J. Martínez-Herráiz, “Effects of

competitive and cooperative classroom response systems on quiz

performance and programming skills in a video game programming

course,” ITiCSE '20, New York, NY, USA, pp. 398–403, 2020.

[35] P. Neve, G. Hunter, D. Livingston, and J. Orwell, “NoobLab: An

Intelligent learning environment for teaching programming,” 2012

IEEE/WIC/ACM International Conferences on Web Intelligence and

Intelligent Agent Technology, Macau, pp. 357-361, 2012.

[36] S. Basu, B. Disalvo, D. Rutstein, Y. Xu, J. Roschelle, and N. Holbert,

“The role of evidence centered design and participatory design in a

playful assessment for computational thinking about data,” SIGCSE '20,

New York, NY, USA, pp. 985–991, 2020.

[37] P. Piwek, M. Wermelinger, R. Laney, Robin, and R. Walker, “Learning

to program: From problems to code,” Third Conference in Computing

Education Practice (CEP), Durham, UK, 2019.

[38] E. Rahimi, E. Barendsen, and I. Henze, “An instructional model to link

designing and conceptual understanding in secondary computer

science education,” WiPSCE '18, New York, NY, USA, article 11, pp.

1–4, 2018.

[39] C. Izu and B. Alexander, “Using unstructured practice plus reflection to

develop programming/problem-solving fluency,” ACE '18, New York,

NY, USA, pp. 25–34, 2018.

[40] Y. Guo, H. Zhao, K. Wang, and M. Li, “Formative and summative

assessment in university programming course: Mediation of

problem-based learning and moderation of peer evaluation,” 15th

ICCSE, Delft, Netherlands, 2020, pp. 112-117, 2020.

[41] M. Dorodchi, A. Benedict, and E. Al-Hossami, “CS1 Scaffolded

activities: The rise of students' engagement,” ICER '19, New York, NY,

USA, 299, 2019.

[42] A. Bart, E. Tilevich, S. Hall, T. Allevato, and C. Shaffer,

“Transforming introductory computer science projects via real-time

web data,” SIGCSE '14, New York, NY, USA, pp. 289–294, 2014.

[43] C. Law, J. Grundy, A. Cain, R. Vasa, and A. Cummaudo, “User

perceptions of using an open learner model visualisation tool for

facilitating self-regulated learning,” ACE '17, New York, NY, USA, pp.

55–64, 2017.

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

N. Willert earned his master degree in business

informatics at the University of Leipzig, Germany, in

2019. His major field of study is the gameful-design of

systems. Currently he is part of the Scientific Staff at

the information systems institute of the University

Leipzig. Previously, he worked as a quality assurance

engineer.

International Journal of Information and Education Technology, Vol. 11, No. 10, October 2021

470

https://creativecommons.org/licenses/by/4.0/

