

Abstract—Currently, C programming is taught as the first

programming language in many universities around the world

due to the easy-to-learn and middle-level nature. However, the

confusing concepts of keywords and unfamiliar formality make

it difficult for students to study. Therefore, we have previously

developed C programming learning assistance system (CPLAS)

for self-studies of novice students. CPLAS offers several types of

exercise problems with the automatic answer marking by string

matching. In this paper, we propose a mistake correction problem

(MCP) for code debugging study as a new problem type in

CPLAS. MCP requests to answer every mistaken element and its

correction in a given corrupt source code. We list up reserved

words and common library functions in C programming for

candidates of mistaken elements, and implement the MCP

instance generation algorithm. To help solving MCP instances by

a student, we implement the answer interface that shows the line

number of each mistake, the corrupt code and answer forms in

parallel, and the hint of suggesting the first character of each

answer. For evaluations of the proposal, we generate 20

instances with 91 mistakes for basic grammars, and assign them

to 18 university students in Japan, China, and Indonesia. Their

answer results confirm the effectiveness of MCP.

Index Terms—C programming, CPLAS, mistake correction

problem, automatic generation, answer interface.

I. INTRODUCTION

Currently, C programming is taught to undergraduate stu-

dents in many universities across the world in the first pro-

gramming courses. C programming will be a springboard for

learning more advanced and practical programming

languages such as Java or Python. In addition, it is necessary

for students in information technology or computer science

departments to study how to access memories or registers by

computer programs at learning computer architecture [1],

[2].

To enhance C programming studies, we have developed a

web-based C programming learning assistance system

(CPLAS). CPLAS offers a variety of programming exercise

problems at different levels, including the grammar-concept

understanding problem (GUP) [3], the value trace problem

(VTP) [4], the element fill-in-blank problem (EFP) [5], the

Manuscript received April 4, 2022; revised July 3, 2022.

Yanhui Jing, N. Funabiki, S. T Aung, X. Lu, and A. A. Puspitasari are

with the Department of Information and Communication Systems, Okayama

University, Okayama, Japan (e-mail: pf709l29@s.okayama-u.ac.jp,

funabiki@okayama-u.ac.jp).

H. H. S. Kyaw is with Division of Advanced Information Technology and

Computer Science, Tokyo University of Agriculture and Technology, Tokyo,

Japan (e-mail: htoohtoosk@go.tuat.ac.jp).

W.-C. Kao is with Department of Electrical Engineering National Taiwan

Normal University, Taipei, Taiwan (e-mail: jungkao@ntnu.edu.tw).

code completion problem (CCP) [6], and the phrase fill-in-

blank problem (PFP) [7]. In any problem type, the answer

from a student is instantly marked through string matching

with the stored correct one at the offered answer interface

using a web browser [8].

Unfortunately, the current problem types in CPLAS do not

cover code debugging study, although code debugging should

be a central skill for students [9]. Actually, GUP covers

grammar study in a new programming language by

answering the keyword in the given source code that

corresponds to each question. VTP covers code reading study

by tracing important variables or messages in the code. EFP

and CCP cover coding study partially by filling in the blanks

in the code. Therefore, a new type to cover code debugging

study should be implemented in CPLAS.

In this paper, we propose a mistake correction problem

(MCP) for code debugging study as a new problem type in

CPLAS. For a given source code, a MCP instance requests to

answer each mistaken element and its correction. In the

answer interface for MCP, a pair of the input forms for the

mistaken element and the correction are prepared for one

mistaken element in the corrupt source code, where a student

needs to fill in both forms correctly.

To help generating new MCP instances by a teacher, we

present the MCP instance generation algorithm by

modifying the one for GUP instances in [10]. First, reserved

words and common library functions in C programming are

listed up for candidates of mistaken elements in a code. A

total of 67 elements are selected here. Second, these elements

are categorized into 11 groups such that the elements having

similar roles with each other belong to the same group. Third,

the algorithm finds any listed element in the given source

code, and replaces it with other randomly selected element in

the same group to compose the corrupt source code, assuming

that novice students can be often confused among them at

programming.

Besides, to help solving MCP instances by a student, we

implement the MCP answer interface by modifying the one

in [8]. This new interface displays the given corrupt source

code and the answer input forms at two columns in parallel.

Thus, a student can fill in the forms while seeing the code at

the same time. To avoid unnecessary difficulty of the

problem, the line number of each mistaken element is shown

there. Moreover, the first character of each answer will be

given as a hint when the student needs.

For evaluations of the proposal, we generate 20 MCP

instances with 91 mistaken elements using C source codes

for basic grammars, and assign them to 18 university students

in Japan, China, and Indonesia. Their answer results confirm

the effectiveness of MCP.

A Proposal of Mistake Correction Problem for Debugging

Study in C Programming Learning Assistant System

Yanhui Jing, Nobuo Funabiki, Soe Thandar Aung, Xiqin Lu, Annisa Anggun Puspitasari, Htoo Htoo

Sandi Kyaw, and Wen-Chung Kao

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1158doi: 10.18178/ijiet.2022.12.11.1733

mailto:jungkao@ntnu.edu.tw

The rest of this paper is organized as follows: Section II

discusses related works in literature. Section III presents the

mistake correction problem in CPLAS. Section IV shows the

implement of the answer interface. Section V evaluates the

MCP. Finally, Section VI concludes this paper with future

works.

II. RELATED WORKS IN LITERATURE

In this section, we discuss related works in literature on

code debugging studies by novice students.

In [11], Lin et al. proposed to observe the cognitive process

of a student using an eye tracker at debugging programs to

see if and how high- and low-performing students behave

differently. Based on the findings, adaptable instructional

strategies for students at various performance levels can be

devised to improve linked cognitive activities during

debugging and foster learning during debugging and

programming.

In [12], McCauley et al. reviewed literatures related to

learning and teaching of debugging computer programs.

Debugging is an important skill and has been difficult for

novice programmers to learn meanwhile being challenging

for computer science educators to teach. They organized four

questions: 1) what causes bugs to occur?, 2) what types of

bugs occur?, 3) what is the debugging process?, and 4) how

can we improve debugging learning and teaching?.

In [13], Luxton-Reilly et al. presented an online tool called

Ladebug that is designed to scaffold the learning of

debugging skills. Students follow the structured debugging

process to find and fix errors in predefined exercises.

In [14], Lee et al. created a generic system architecture and

process used in university classes as well as a tool, called the

Virtual Debugging Advisor (ViDA), based on the strong

relationship observed between common wrong outputs and

the corresponding common bugs in students’ programs. Their

findings are positive, indicating that with ViDA enabled, a

higher percentage of students were able to modify their own

faulty codes, and an overwhelming majority of the

respondents deemed ViDA to be beneficial to their

programming learning.

In [15], Ardimento et al. proposed an approach based on

reuse of existing bugs of open source systems to provide the

informed guidance from the failure sites to the fault positions,

and to allow novice programmers to gain debugging

experience quickly. The goal is to help novices in reasoning

on the most promising paths to follow and conditions to

define. They implemented the proposal as a tool named

Debugging Teaching Environment (DTE) that exploits the

knowledge about fault and bug positions.

III. PROPOSAL OF MISTAKE CORRECTION PROBLEM

In this section, we present the mistake correction problem

(MCP) and the MCP instance generation algorithm.

A. Definition of Mistake Correction Problem

A MCP instance consists of a corrupt source code that

have several mistaken elements and their correct elements

with the line numbers in the source code. Any answer from a

student is marked through string matching with the

corresponding correct element.

Fig. 1 shows the answer interface for an example MCP

instance. The source code in the left column has three mis-

takes: int at line 3 should be double from lines 5 and 7,

scanf at line 4 be printf, and /lf at line 5 be %lf. In the

right column, the corresponding line number is shown to

each pair of input forms for the mistaken element and the

correct element.

B. Mistaken Element Candidates

To generate a MCP instance automatically, the candidates

for mistaken elements are selected from reserved words and

common library functions in C programming that often

appear in source codes and should be studied by novice

students. Actually, a total of 67 elements are selected here.

Then, these candidates are categorized into 11 groups such

that the ones having similar roles with each other belong to

the same group. Table I shows the selected elements with 11

groups. For a given source code, each candidate element will

be replaced by randomly selected another element in the

same group, since novice students may be confused among

the elements in the same group at writing a source code.

C. MCP Generation Algorithm

A MCP instance is generated through the following

procedure:

1) Read a C programming source code file.

2) Select a mistaken element candidate in Table I that

appears in the source code if all the following conditions

are satisfied:

2-1) The same candidate is not selected before.

2-2) Any other element at the same line is not selected

before.

2-3) The generated 0-1 random number for the selection is

smaller than 0.5.

3) Generate the corresponding mistaken element to this

selected candidate.

3-1) Choose another candidate in the same group as the

mistaken element randomly.

3-2) Replace the selected candidate by it in the source code

to make the corrupt source code.

3-3) Keep the mistaken element, the original one, and the

line number in the source code for the correct answers.

4) Combine the corrupt source code and correct answers

into one text file.

5) Run the answer interface generator with the text file to

make the HTML/CSS/JavaScript files for the MCP

instance.

D. MCP Instance Generation Example

Code 1 shows the original source code for this example.

This code requests to get two double-type values from the

standard input and outputs their multiplication in the standard

output.

Code 2 shows the corrupt source code generated by the

algorithm. From the original source code, three candidates in

Table I, namely, double at line 3, printf at line 4, and % at

line 5, are selected. Then, int, scanf, and /, are selected from

the same groups for their corresponding mistaken elements.

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1159

TABLE I: MISTAKEN ELEMENT CANDIDATES FOR MCP
group mistaken element candidates

1 int short long float double char
2 while if for switch case
3 + - * / % & ++ –
4 == != ><>= <=
5 %d %ld %lf %c %s
6 printf scanf

7
stdio stdlib ctype string math
time assert signal stddef

8 getchar putchar gets puts

 9

strlen strcpy strncpy strcmp fopen fclose exit
fputc fgetc fscanf fputs fgets

10 malloc calloc
11 ([{ }])

Code 1: Original source code example.

1: # include < stdio.h >

2: int main() {

3: double a, b, product;

4: printf("Enter two numbers:");

5: scanf("%lf%lf", &a, &b);

6: product = a*b;

7: printf("Product = %.2lf", product);

8: return 0;

9: }

Code 2: Corrupt source code example.

1: # include < stdio.h >

2: int main(){

3: int a, b, product;

4: scanf("Enter two numbers:");

5: scanf("/lf%lf", &a, &b);

6: product = a*b;

7: printf("Product = %.2 lf", product);

8: return 0;

9: }

IV. MCP ANSWER INTERFACE

In this section, we present the MCP answer interface by

modifying the existing interface in [8].

This new interface shows the given corrupt source code

and the answer input forms at two columns in parallel. Thus, a

student can fill in the input forms while seeing the code at the

same time. To avoid unnecessary difficulty of the problem,

the line number of each mistaken element is shown there.

Moreover, the first character of each answer will be given as a

hint when the student needs help.

A. Two-Column Layout

The interface or the web page in [8] has the one-column

layout. In this interface, the corrupt source code appears first,

and then, the answer input forms appear. Thus, a student has

to scroll the page many times to see the code and input the

forms.

On the other hand, the new interface has the two-column

layout as shown in Fig. 1. In this interface, the corrupt source

code and the answer input forms appear in parallel.

Thus, a student does not need to scroll the page to see the

code and input the forms, unless the code is very long or a lot

of mistaken elements are included. To deal with a long code,

the designated scroll bar is prepared to scroll the corrupt

source code.

B. Answering Time and Count Display

To encourage a student to solve the given MCP instances

in a short time with the less number of answer submissions,

the MCP answer interface shows the elapsed time since the

student started to solve the current instance and the number

of answer submission times by clicking the ‖Answer‖ button,

as shown in Fig. 2. It indicates that 9min. 52sec. have passed

since the student started solving the instance and clicked the

button 8 times.

Fig. 1. MCP answer interface.

Fig. 2. Answering time and count example.

C. Hint Button

To avoid giving up solving an MCP instance by a student,

the first character of each correct element in the instance will

appear as the hints, when he/she clicks the ‖Hint‖ button, as

shown in Fig. 3. The reason of showing the first character is

that this hint can be easily generated from the stored correct

element in the text file.

However, to prevent a student from using the hint button

facilely, the hint will appear only when the answering time

exceeds 10 minutes and the number of answers exceeds 5

times.

Fig. 3. Hint button.

TABLE II: GENERATE MCP INSTANCES

ID topic
of
lines

of
mistakes

1 95.83 3.22 4

2 88.89 3.28 8

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1160

3 94.44 3.17 6

4 90.28 2.56 4

5 95.56 4.06 10

6 89.58 3.11 8

7 88.19 7.00 8

8 94.44 1.83 6

9 97.22 2.22 10

10 93.25 5.39 14

11 95.83 2.17 8

12 69.50 8.33 12

13 90.74 2.94 6

14 97.22 2.28 10

15 88.89 6.27 14

16 86.67 6.06 10

17 88.10 4.83 14

18 84.26 6.94 12

19 88.89 4.94 8

20 88.61 9.50 8

average 90.32 4.51 9

SD 6.04 2.17 3

V. EVALUATION

In this section, we evaluate the proposed MCP in CPLAS

through applications to 18 university students in Japan, China,

and Indonesia.

A. Generate MCP Instances

For evaluations, we generate 20 MCP instances with the

total of 91 mistaken elements using 20 source codes for basic

C programming grammar topics. Table II shows the topic, the

number of lines in the source code, and the number of

mistaken elements in each instance.

B. Solution Results for Individual MCP Instances

First, we analyze the solution results for the individual

MCP instances by all the students. Fig. 4 shows the average

correct answer rate and the average number of answer

submission times for each MCP instance. The average and

standard deviation (SD) among all the instances are 90.32%

and 6.04% for the correct rate, and are 4.51 and 2.17 for

submission times, respectively. These results suggest that the

generated MCP instances have medium difficulty for C

programming beginners.

C. Hard MCP Instances

Next, we analyze hard MCP instances for novice students.

Fig. 4 indicates that the instance at ID=12 exhibits the lowest

correct rate and the second highest number of submissions.

Firstly, as shown in Code 3, it contains a mistake on the long

long data type, which is not common to novice students. It is

used to deal with large integer values by storing 64 bits of

data, which takes twice as much memory as the long data type.

To print or scan the long long data type, the prefix become ll.

Thus, %lld is used here. Secondly, at line 11, a mistaken

element } is included. Some students do not notice the

distinction between } and). Finally, some students are

confused at the conditional statements of == and != in this

instance.

Fig. 4. Solution results for individual MCP instances.

Fig. 5. Solution results for individual students.

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1161

Fig. 4 also indicates that the instance at ID=20 exhibits the

highest number of submissions. As in Code 4, it contains

mistakes on strlen and strcpy regarding the file access,

which may not be well understood by novice students.

Therefore, we will add brief explanations on long long, ==,

and strcpy in the corresponding MCP instances, to easily

remind students of them, which will be in future works.

D. Solution Results for Individual Students

Third, we analyze the solution results for the individual

students in all the MCP instances. Fig. 5 shows the average

correct answer rate and the average number of answer

submission times for each student. Their SD among all the

students are 15.14% and 3.04, respectively. Six students

among 18 achieved the 100% correct rate, and 13 students did

higher than 94%. Only one student did not reach 50%. The

results suggest that most of the students seriously solved the

MCP instances.

VI. CONCLUSION

This paper proposed the mistake correction problem (MCP)

for code debugging study in C programming learning

assistance system (CPLAS). It requests to answer every

mistaken element and its correction in the given corrupt

source code. To help generating MCP instances from source

codes, 67 candidate mistaken elements with 11 groups were

selected from reserved words and common library functions

in C programming, and the MCP instance generation

algorithm was implemented. The answer interface for solving

MCP instances was also presented, which shows the corrupt

code and the input forms in parallel and offers the hints when

requested. For evaluation, 20 instances with 91 mistakes

were generated using source codes for C programming basic

grammars, and were assigned to 18 university students in

Japan, China, and Indonesia. Their answer results confirmed

the effectiveness of the proposal. In future works, we will add

brief explanations of hard programming concepts in the

corresponding MCP instances, generate new MCP instances

on other topics that students may not understand well, and

assign them in C programming courses.

Code 3: Mistaken code at ID=12.

1:#include math.h

2:#include stdio.h

3:int convert(long double bin);

4:int main() {

5: long long bin;

6: printf("Enter a binary number: ");

7: scanf("%lld", &bin);

8: printf("%lld in binary = %d in octal", bin, convert(bin));

9: return 0;

10: }

11:int convert(long long bin} {

12: float oct = 0, dec = 0, i = 0;

13: while (bin != 0) {

14: dec += (bin % 10) * pow(2, i);

15: ++i;

16: bin /= 10;

17: }

18: i = 1;

19: if (dec != 0) {

20: oct += (dec % 8) * i;

21: dec /= 8;

22: i *= 10;

23: }

24: return oct;

25: }

Code 4: Mistaken code at ID=20.

1:#include stdio.h

2:#include string.h

3:int main() {

4: char str[5][50], temp[50];

5: scanf ("Enter 5 words: ");

6: for (int i = 0; i < 5; --i) {

7: fgets(str[i], sizeof(str[i]), stdin);

8: }

9: for (int i = 0; i != 5; ++i) {

10: for (int j = i + 1; j < 5; ++j) {

11: if (strcmp(str[i], str[j]) > 0) {

12: strlen(temp, str[i]);

13: strcpy(str[i], str[j]);

14: strcpy(str[j], temp);

15: }

16: }

17: }

18: printf("\nIn the lexicographical order: \n");

19: for (int i = 0; i < 5; ++i) {

20: fputs(str[i], stdout);

21: }

22: return 0;

23: }

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Y. Jing conducted the research and wrote the paper. N.

Funabiki and W.-C. Kao reviewed and finalized the paper. S.

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1162

T. Aung, X. Lu, and A. A. Puspitasari collected and analyzed

the data. H. H. S. Kyaw collected the source codes. All the

authors had approved the final version.

ACKNOWLEDGMENT

We would like to thank the students to answer the MCP

instances and give us valuable comments. They are inevitable

to complete this paper.

REFERENCES

[1] K. Gondow and Y. Arahori, ―Why do we need the C language in

programming courses?‖ in Proc. ICSOFT, pp. 549-556, 2018.

[2] (Sep. 2021). Why learning C Programming is a must? Geeks-forGeeks.

[Online]. Available:

https://www.geeksforgeeks.org/why-learning-c-programming-is-a-mu

st/

[3] X. Lu, S. T. Aung, H. H. S. Kyaw, N. Funabiki, S. L. Aung, and T.

T. Soe, ―A study of grammar-concept understanding problem for C

programming learning,‖ in Proc. LifeTech, pp. 162-165, March 2021.

[4] X. Lu, N. Funabiki, H. H. S. Kyaw, E. E. Htet, S. L. Aung, and N. K.

Dim, ―Value trace problems for code reading study in C programming,‖

Adv. Sci. Tech. Eng. Syst. J. (ASTESJ), vol. 7, no. 1, pp. 14-26, Jan.

2022.

[5] H. H. S. Kyaw, N. Funabiki, S. L. Aung, N. K. Dim, and W.-C. Kao, ―A

study of element fill-in-blank problems for C programming learning

assistant system,‖ Int. J. Inform. Edu. Tech. (IJIET), vol. 11, no. 6, pp.

255-261, June 2021.

[6] H. H. S. Kyaw, E. E. Htet, N. Funabiki, M. Kuribayashi, T. Myint, P.

P. Tar, N. W. Min, H. A. Thant, and P. H. Wai, ―A code completion

problem in C programming learning assistant system,‖ in Proc. ICIET,

pp. 34-40, March 2021.

[7] X. Lu, N. Funabiki, H. H. S. Kyaw, E. E. Htet, S. L. Aung, and N. K.

Dim, ―Value trace problems for code reading study in C programming,‖

Adv. Sci. Tech. Eng. Syst. J. (ASTESJ), vol. 7, no. 1, pp. 14-26, Jan.

2022.

[8] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W.-C. Kao,

―Offline answering function for fill-in-blank problems in Java

programming learning assistant system,‖ in Proc. ICCE-TW, pp.

324-325, May 2016.

[9] T. Michaeli and R. Romeike, ―Improving debugging skills in the

classroom: the Effects of teaching a systematic debugging process,‖ in

Proc. WiPSCE, pp. 1–7, Oct. 2019.

[10] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, N.

K. Dim, and W.-C. Kao, ―A proposal of grammar-concept

understanding problem in Java programming learning assistant system,‖

J. Adv. Inform. Tech. (JAIT), vol. 12, no. 4, Oct. 2021.

[11] Y. T. Lin, C. C. Wu, T. Y. Hou, Y. C. Lin, F. Y. Yang, and C. H.

Chang, ‖Tracking students’ cognitive processes during program

debugging — An eye-movement approach,‖, vol. 59, no. 3, pp.

175-186, Aug. 2016.

[12] R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L.

Thomas, and C. Zander, ‖Debugging: A review of the literature from an

educational perspective,‖ Comput. Sci. Educ., vol. 18, no. 2, pp. 67–92,

June 2008.

[13] A. Luxton-Reilly, E. McMillan, E. Stevenson, E. Tempero, and P.

Denny, ―Ladebug: An online tool to help novice programmers improve

their debugging skills,‖ in Proc. ITiCSE, pp. 159–164, 2018.

[14] V. C. S. Lee, Y. T. Yu, C. M. Tang, T. L. Wong, and C. K. Poon, ―ViDA:

A virtual debugging advisor for supporting learning in computer

programming courses,‖ J. Comput. Assist. Learn. (JCAL), vol. 34, no. 3,

pp. 243-258, June 2018.

[15] P. Ardimento, M. L. Bernardi, M. Cimitile, and G. D. Ruvo, ‖Reusing

bugged source code to support novice programmers in debugging

tasks,‖ ACM Trans. Comput. Edu., vol. 20, no. 1, pp. 1–24, March

2020.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Y. Jing received the B.S. degree in information

management and information system

(Japanese-English bilingual strengthening) from

Dalian University of Foreign Languages, China, in

2020. She is currently a master student in electronic

information systems at Okayama University, Japan.

Her research interests include educational

technology.

Nobuo Funabiki received the B.S. and Ph.D.

degrees in mathematical engineering and information

physics from the University of Tokyo, Japan, in 1984

and 1993, respectively. He received the M.S. degree

in electrical engineering from Case Western Reserve

University, USA, in 1991. From 1984 to 1994, he

was with Sumitomo Metal Industries, Ltd., Japan. In

1994, he joined the Department of Information and

Computer Sciences at Osaka University, Japan, as an assistant professor, and

became an associate professor in 1995. In 2001, he moved to the Department

of Communication Network Engineering at Okayama University as a

professor. His research interests include computer networks, optimization

algorithms, educational technology, and Web technology. He is a member of

IEEE, IEICE, and IPSJ.

S. T. Aung received the B.E. degree in information

technology from Thanlyin Technological University,

Myanmar, in 2017. She is currently a master student

at Okayama University, Japan. Her research interests

include educational technology.

X. Lu received the B.S. degree in electronic

information engineering from Hubei University of

Economics, China, in 2017, and received the M.S

degree in electronic information systems from

Okayama University, Japan, in 2021, respectively.

She is currently a Ph.D. student at Okayama

University, Japan. She received the OU fellowship in

2021. Her research interests include educational

technology.

A. A. Puspitasari received the B.E. degree in

telecommunication engineering from Politeknik

Elektronika Negeri Surabaya (PENS), Indonesia, in

2021. She is currently an adjunct researcher at

Okayama University, Japan. Her research interests

include educational technology and wireless

communication systems.

H. H. S. Kyaw received the B. E. and M. E. degrees

in information science and technology from

University of Technology (Yatanarpon Cyber City),

Myamar, in 2015 and 2018, respectively. She

received Ph.D. from Graduate School of Natural

Science and Technology at Okayama University,

Japan in 2021. She is currently an assistant professor

from Tokyo University of Agriculture and

Technology, Japan. Her research interests include

educational technology and web application systems.

W.-C. Kao received the M.S. and Ph.D. degrees in

electrical engineering from National Taiwan

University, Taiwan, in 1992 and 1996, respectively.

Since 2004, he has been with National Taiwan

Normal University (NTNU), Taipei, Taiwan, where

he is currently the Research Chair Professor at

Department of Electrical Engineering and the Dean

of College of Technology and Engineering. His

current research interests include system-on-a-chip (

SoC) as well as embedded software design, flexible electrophoretic display,

and machine vision system.

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1163

http://www.geeksforgeeks.org/
https://creativecommons.org/licenses/by/4.0/

