



Abstract—At present, web-client programming using HTML,

CSS, and JavaScript is essential in web application systems to

offer dynamic behaviors in web pages. With rich libraries and

short coding features, it becomes common in developing user

interfaces. However, the teaching course is not common in

universities due to limited time. Therefore, self-study tools are

strongly desired to promote it in societies. Previously, we have

studied the programming learning assistant system (PLAS) as a

programming self-study platform. In PLAS, among several

types of programming problems, the element fill-in-blank

problem (EFP) has been implemented for code understanding

study of C and Java programming. In an EFP instance, the

blank elements in a source code should be filled in with the

proper words, where the correctness is checked by string

matching. In this paper, we implement EFP for web-client

programming in PLAS. In a web page, HTML and CSS define

the components with tags in the document object model (DOM),

and JavaScript offers their dynamic changes with libraries,

which are blanked in EFP. Besides, a set of web page

screenshots are given to help the solution. For evaluations, the

generated 21 EFP instances were assigned to 20 master students

in Okayama University. By analyzing their solution results, the

effectiveness was confirmed for JavaScript programming

learning.

Index Terms—Web-client programming, JavaScript, HTML,

CSS, element fill-in-blank, code understanding.

I. INTRODUCTION

Nowadays, computer systems are offering numerous vital

functions to support daily activities of human beings all over

the world. They can improve the capabilities in information

services, safeties, computations and communications with

proper programs that have been made using some

programming languages. Then, various programming

languages have been invented and adopted to handle

different requirements in a variety of target areas and

application fields. As a result, it becomes essential to study

commonly adopted programming languages to develop and

manage efficient computer systems for students or novice

engineers in computer science (CS) or information

technology (IT) departments/sections in companies or

Manuscript received February 28, 2022; revised July 6, 2022.

Huiyu Qi, Nobuo Funabiki, Khaing Hsu Wai, and Xiqin Lu are with

Okayama University, Japan (e-mail: p06v8z20@s.okayama-u.ac.jp,

funabiki@okayama-u.ac.jp, puag507p@s.okayama-u.ac.jp,

pch55zhl@s.okayama-u.ac.jp).

Htoo Htoo Sandi Kyaw is with Tokyo University of Agriculture and

Technology, Tokyo, Japan (e-mail: htoohtoosk@go.tuat.ac.jp).

Wen-Chung Kao is with National Taiwan Normal University, Taipei,

Taiwan (e-mail: jungkao@ntnu.edu.tw).

universities.

Among a variety of utilized computer systems in our

societies, web application systems will be most important by

providing significant applications and diverse services using

the Internet. Then, the web-client programming using

hypertext markup language (HTML), cascading style sheets

(CSS), and JavaScript is essential to offer dynamic behaviors

in web pages that are made on a web browser in a web

application system [1]. With rich hands-on libraries and short

coding features, the web-client programming has become

common in developing sophisticated user interfaces both at

personal computers and smartphones.

However, even now, web-client programming courses are

not opened in many universities over the world, due to

curriculum limitations. Before teaching it, more traditional

and basic programming languages such as C or Java should

be educated first. Therefore, self-study tools are strongly

desired to promote the web-client programming in societies.

Previously, we have studied a programming learning

assistant system (PLAS) based on web technologies for

self-learning of well-known programming languages, C,

C++, Java, JavaScript, and Python. PLAS provides several

types of programming problems that have diverse solving

difficulties and learning goals, so that a student can gradually

advance the learning stage of PLAS. They include the

grammar-concept understanding problem (GUP) [2], the

value trace problem (VTP) [3]-[5], the code modification

problem (CMP) [6], the element fill-in- blank problem (EFP)

[7], [8], the code completion problem (CCP) [9], and the code

writing problem (CWP) [10]. For any problem type, the

correctness of an answer from a student is checked

automatically by unit testing in CWP or string matching with

the stored correct answer in the others.

The outline and learning goal of each problem type are

described as follows:

 GUP reminds the knowledge and concepts of reserved

words and common libraries in the source code, for

grammar study.

 VTP questions the values of important variables and

output messages in the source code, for code reading

study.

 CMP demands to modify the source code to output the re-

quested one, for library use study.

 EFP requires that the blank elements in the source code

should be filled with their original words by

understanding syntax and semantics for code

understanding study.

 CCP is different from EFP in that it does not show the

missing locations.

An Implementation of Element Fill-in-Blank Problems for

Code Understanding Study of JavaScript-Based

Web-Client Programming

Huiyu Qi, Nobuo Funabiki, Khaing Hsu Wai, Xiqin Lu, Htoo Htoo Sandi Kyaw, and Wen-Chung Kao

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1179doi: 10.18178/ijiet.2022.12.11.1736

mailto:p06v8z20@s.okayama-u.ac.jp
mailto:funabiki@okayama-u.ac.jp
mailto:puag507p@s.okayama-u.ac.jp

 CWP needs to write the source code that can pass the

given test code from scratch for coding study.

By solving the offered problems in this order, the students

are expected to continue programming studies without

dropouts and reach sufficient levels. For the web-client

programming, we have implemented GUP and VTP so far.

In this paper, we implement EFP for code understanding

study of JavaScript-based web-client programming in PLAS.

In an EFP instance, a source code with several blanks and the

screenshots of the corresponding web page are given. Since

in a web page, HTML and CSS define the static components

using tags in the document object model (DOM) and

JavaScript offers their dynamic changes or actions using

libraries, they are mainly blanked in the code. It is important

to comprehend how to connect the three languages in the

source code.

The screenshots of the web pages will help solving the

EFP instance. In web-client programming, a web page is

generated as the user interface to achieve human-computer

interactions, running various functions together in the source

code. If students read the source code while seeing the web

page screenshots, they will understand it more efficiently and

know how to use tags and libraries.

For the evaluation of the proposal, we generated 21 EFP

instances and assigned them to 20 master students in

Okayama University. Although these students have taken C

and Java programming courses in undergraduates, they have

not taken web-client programming courses. We confirm the

validity of the proposal from their high solution results.

Here, we note the advantages of learning JavaScript

programming as follows:

1) A source code is relatively short and easy to understand.

2) A student can see the page after the program is executed.

3) It is ready to use camera, video, and other functions with

simple codes, which is conducive to learning.

The remaining sections of this paper are organized as

follows: Section II discusses related works in literature.

Section III presents the element fill-in-blank problem (EFP)

for web-client programming. Section IV describes the

evaluation of EFP. Section V summarizes this paper with

future works.

II. RELATED WORKS

In this section, we discuss related works in literature on

JavaScript programming educations.

In [11], Arawjo et al. proposed an educational game

approach called “Reduct” to teach core JavaScript

programming concepts to students, such as functions,

Booleans, equality, conditionals, and mapping functions over

sets. Progression design and skill acquisition theory are used

in the design to support the concept while motivating players

to build the correct mental model of the code. The current end

goal is to teach basic and complex functional programming

levels.

In [12], Appleton et al. proposed a prototype system to

support students in learning the web-based language

JavaScript. They described the implementation of a portable

smart exercise and experiment with it in a web programming

course. According to their survey evaluation results, the

system could help students learning JavaScript

programming.

In [13], Uehara et al. proposed the JavaScript

Development Environment (JDE) to support programming

education. JDE provides an environment where

programming can be displayed anytime and anywhere. In

addition, JDE can also provide rich code snippet capabilities

and allow students writing code with few operations. Since it

is a browser-based environment, it is suitable for use on the

smartphones. JDE can edit web pages that contain HTML,

CSS and JavaScript.

In [14], Vostinar et al. introduced the contribution of an

interactive e-learning course as a part of the Moodle system

for teaching web technologies containing HTML and

JavaScript. This course was proper to teach by using the

classic teaching methods or by using the teaching method

EduScrum with the agile software development method

Scrum as an alternative.

In [15], Maskelunas et al. presented an interactive serious

programming game for teaching JavaScript programming in

their university's introductory course. The game was

developed by adopting a gamification pattern-based

approach by using the Technology Acceptance Model (TAM)

and a Technology Augmented Training Effectiveness Model

(TETEM). The game was based on visualizations of

algorithms with different types, which are explained in the

context of city life, and encouraged interactions and pursuit

of deeper learning of programming concepts. They presented

evaluation results for the game using pretest and post-test

knowledge assessments, TAM and TETEM.

In [16], Suzuki et al. proposed a web-based educational

support system for JavaScript programming in classroom

teaching, called ClassCode. It provides an environment in

which students can follow tutorials of interactive coding

exercises that are intertwined with their learning pace, while

teachers can outline how they are learning.

In [17] Zinovieva et al. compared different online teaching

platforms under certain standards, and selected interesting

tasks from the online learning platform named

hackerrank.com. They explored experiences of using the

online coding platform (OCP), and compared the

characteristics of different online platforms. They

recommended that these platforms should be used for the

distance programming learning for future computer scientists

and programmers. They also recommended the use of online

programming simulators as additional tools for teaching

computer science, taking into account functionality.

In [18], La źaro-Carrascosa et al. evaluated the subject of

master's degree teacher training in Universidad Rey Juan

Carlos. Students must learn how to prepare simple web pages

by using HTML, CSS, and JavaScript. Flipped classroom

technology was used to present the necessary contents,

combined with Aronson’s cooperative learning puzzle

technique, which is used for the group practice. The results

showed that the students were satisfied with their academic

achievements.

III. IMPLEMENTATION OF ELEMENT FILL-IN-BLANK

PROBLEM

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1180

In this section, we submit the implementation of the element

fill-in-blank problem (EFP) for JavaScript-based web-client

programming in PLAS.

A. EFP for Web-Client Programming

In an EFP instance for web-client programming, a source

code with several blanks and a set of screenshots in the

corresponding web page are given to a student. The first

screenshot illustrates the web page that is created by the

source code composed of HTML, CSS, and JavaScript. The

second or other screenshot does the web page that will be

created when some input action is taken by a user. The

student needs to comprehend the source code while referring

to the screenshots of the web pages, and to fill in the blanks

with the appropriate words. The correctness of each answer is

checked by string matching with the original word in the

source code.

The design goals of EFP for web-client programming are

as follows:

1) A beginner who has never studied JavaScript-based

web-client programming can solve the questions in EFP

without meeting problems.

2) Various effective source codes are provided to students in

a complete form at learning web-client programming.

3) A student can learn how to understand the source code

including tags and libraries to create a web page by

properly filling in the blanks.

4) The correctness of each answer will be immediately

verified and returned to the student.

B. Blank Element Selections for EFP Instance

A source code in web-client programming usually

composed of three languages of HTML, CSS, and JavaScript.

Thus, the following elements in a source code can be blanked

in an EFP instance:

 HTML: tag, property, id, output message.

 CSS: selector, id, property, value.

 JavaScript: reserved word, identifier, id, value, library

class/method, output message.

It is noted that a reserved word is given by the fixed

sequence of characters that has been defined in JavaScript

programming grammar to represent a specific function, and

that an identifier is given by a sequence of characters that was

defined by the code author to represent a variable or a

function.

Then, if all the elements for one id or identifier are blanked,

it becomes impossible to fill in them with the original word.

For example, tags appear in pairs, and if all are blanked, it

will be difficult for students to answer. So the tag information

cannot be deleted all, and one must be left as a prompt

information for students to answer. Additionally, any output

message to be blanked must appear in a given screenshot, so

the message can be completely eliminated, and students can

answer according to the screenshot provided on the right

side.

C. EFP Instance Generation Procedure

An EFP instance for web-client programming is generated

by the following procedure:

1) Select a source code that contains the elements to be

studied from a website or a textbook.

2) Collect the necessary screenshots of the web pages by

running the source code on the web browser.

3) Select the elements in the source code to be blanked,

replace them by the question numbers, and keep the

blanked elements as the correct answers. Currently, this

step is handled manually. Automatic processing will be

carried out in the future work.

4) Combine the instance statement, the source code with

blanks, and the correct answers to the blanks into one text

file.

5) Use the text files to run the programs and generate HTML,

CSS, and JavaScript files for the answer interfaces on the

web browser.

6) Add the collected screenshots in the HTML file to

complete the new EFP instance.

D. Example EFP Instance

In this section, we will use the simple source code of the

web page to discuss the details of the EFP instance

generation process.

1) Source Code: A proper source code with the appropriate

difficulty should be selected as the original code to cover the

topics of web-client programming using JavaScript to be

studied. In Fig. 1, the source code implements the counter

function. Every time the ”Count” button is clicked, the

number in the interface will increase by 1. It is noted that this

short source code does not contain CSS.

1 <html>
2 <head>
3 <meta charset= " utf-8 ">
4 <title> easy_counter </title>
5 </head>
6 <body>
7 <p> Global variable count </p>
8 <button onclick=" myFunction()"> Count</ button >
9 <p id= " demo">0 </p>
10 <script>
11 var counter = 0;
12 function add() {
13 return counter += 1;
14 }
15 function myFunction() {
16 document.getElementById("demo").innerHTML

= add();
17 }
18 </script>
19 </body>
20 </html>

Fig. 1. Source code.

2) Answer Interface: Fig. 2 demonstrates the answer

interface of this EFP instance. It runs on a web browser and

allows and facilitates online and offline use by the students.

After running the JavaScript program, the answer marking

will be processed on the browser. The correct answer is

encrypted with SHA256 to avoid cheating. It helps to

improve the fairness of the answer and the effectiveness of

the final analysis results.

The left side of the interface shows the source code that

contains 11 blanks to be filled in with proper words by the

students. On the other hand, the right side shows the

screenshots of the original page and the updated page after

clicking the button three times, respectively. They are given

for references to comprehend the source code in the EFP

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1181

instance.

After the student types answers into the input forms,

he/she will click the “Answer” button to record the

correctness of the answers. If the blank answer is incorrect,

the background color of the form will turn red. If correct, it

will turn white. Students can submit the answers repeatedly

until all of the answers are correct or he/she gives up

searching them.

E. Blank Correctness in EFP Instance

In this subsection, we discuss the correctness of the blanks

in the EFP instance in terms of the unique correct answers to

them.

1) Blank for Text Message: A text message should be filled

in blanks 1 and 4, because of ”p”, ”/p”, and ”/button” tags.

From the screenshot on the right side of the interface, the

message must be Global variable count for blank 1 and be

Count for blank 4.

2) Blank for Tag: A tag should be filled in blanks 2, 5, and

11. At the end of the second line is the ”/button” tag.

The ”script” tag and ”button” tag come in pairs. Therefore, it

must be ”button”, ”script”, and ”/script”.

3) Blank for Function: A function name should be filled in

blank 3, because it exists after onclick=. Then it must be

myFunction(), because the screenshot suggests that the

number of button clicking times should be shown there.

4) Blank for Identifier: An identifier name counter should

be filled in blanks 7 and 10, because the number of button

clicking times is counted in add() function and is shown in the

function myFunction().

5) Blank for id: An id name should be filled in blank 9,

because the argument of the library method getElementById

must be an id name. Then, it must be demo, because it is the

only one id name defined at line 9 in this source code.

6) Blank for JavaScript Grammar: A JavaScript grammar

should be filled in blank 6, because the function add() is

defined here. Then, it must be function.

7) Blank for Library Class/Method: A JavaScript library

class should be filled in blank 8, because the library method

getElementById appears after it with”.”. Here, it must be

document.

IV. EVALUATION

In this section, we will assess the EFP for web-client

programming.

TABLE I: GENERATED 21 EFP INSTANCES

ID# topic
of
lines

of
JS lines

of
blanks

1 object1 17 9 5

2 object2 21 13 13

3 changing content1 16 5 6

4 changing content2 22 7 14

5 alert() function 14 5 4

6 changing color 17 5 16

7 Date() function 16 5 10

8 prompt() function(subtraction) 15 8 6

9 prompt() function(add) 15 6 8

10 easy counter 20 9 11

11 click button 15 5 11

12 onmouse over and out 17 8 10

13 setTimeout() function 15 5 7

14 array 18 10 10

15 multiplication calculation 16 6 10

16 change background 30 20 16

17 try catch 24 14 10

18 try catch final (number) 31 19 14

19 try catch final (NaN) 30 18 18

20 custom timer 37 20 11

21 fixed timer 23 10 19

A. Evaluation of EFP Instances

For this evaluation, we generated 21 EFP instances by

using the source codes covering basic topics that can help

students to understand fundamentals of web-client

programming. Table I demonstrates the instance topics, the

number of all lines and the JavaScript (JS) lines in the source

code, and the number of the blanks of each instance. We

assigned them to 20 master students in Okayama University

who have not received any formal JavaScript programming

courses. Although we did not give any lecture before this

assignment, we gave hints on the grammar concepts and

usages that may be hard or unfamiliar to them.

B. Solution Results of Individual Instances

First, we analyzed the correct answer rate and solution

results of the 21 EFP instances respectively. Figure 3 shows

the average correct answer rate for each instance and the total

number of the answers that submitted by 20 students. For

each instance, the average correct answer rate is 96.25% and

the number of average submissions is 63.19. The four

instances at ID=2, 12, 14, and 15 gave the full rate of 100%.

However, the four instances at ID=8, 11, 20, and 21 gave the

rate lower than 92%. We will analyze the reasons of the low

rates.

Fig. 2. Interface of ID = 10.

Fig. 3. Solution results for individual instances.

For the instance at ID=8, the correct answer rate is 91.16%

and the number of answer submissions is 106. It is the highest

among the 21 instances. The difference between two similar

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1182

library methods, prompt and alert, may not well be

understood. The prompt method provides a message box that

allows entering a text message by clicking the ”OK” button.

By clicking the ”Cancel” button, the user can skip it. The

alert method provides a message box that only shows the

message. By clicking the ”OK” button, the user can close it to

continue the operations.

Fig. 4. Solution results for individual student.

For the instance at ID=11, they are 90.04% and 60

respectively. The five blanks in one line ask different roles in

the programming on the tags and the text messages in the

screenshot for alert, which can confuse the students. It is

necessary to understand the grammars in HTML and

JavaScript together.

For the instances at ID=20 and 21, they are 89.09%, 61,

and 89.47%, 98 respectively. In both instances, the

setTimeout() method is used to call a function when the

specified time is up. It can be difficult for students to

understand it.

C. Solution Results of Individual Students

Subsequently, we analyzed the solution results of 20

students. Figure 4 demonstrates the average correct answer

rate and the total number of answer submission numbers for

21 instances by each student. This graph is sorted as

descending order of the student performances. For each

student, the average correct rate is 96.52% and the average

submission time is 63.61. 13 students (65%) achieved the full

rate of 100%. Only four students (20%) did the rate lower

than 91%. The first rank student answered all of the 21

instances and submitted only 23 submissions, which means

there are only two mistakes. These results propose that the

generated EFP instances are not difficult for the students,

although most of them have not learned JavaScript

programming before.

V. CONCLUSION

 This paper implemented the element fill-in-blank problem

(EFP) in programming learning assistant system (PLAS) for

novice students to learn JavaScript-based web-client

programming by themselves. An EFP instance requires the

students to fill in the answers at the blanks in the given source

code while referring to the screenshot of the corresponding

web page. The correctness of any answer in the blank will be

checked through string matching with the correct answer.

For evaluations, 21 EFP instances were generated and

assigned to 20 master students of Okayama University who

have not received any formal JavaScript programming

courses before. Their solution results affirmed the

effectiveness of our approach.

In future works, we will implement the automatic blank

element selection method, and continue to generate EFP

instances for studying web-client programming in depth, and

assign them to students to evaluate the effectiveness.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

H. Qi mainly conducted the research and wrote the paper.

N. Funabiki and W.-C. Kao reviewed and finalized the paper.

K. H. Wai and X. Lu analyzed the data. H. H. S. Kyaw

collected the source codes. All the authors had approved the

final version.

ACKNOWLEDGMENT

We would like to thank the students of Okayama

University in Japan, who answered the EFP instances and

gave us valuable opinions and suggestions. They are

inevitable to complete this paper.

REFERENCES

[1] What is JavaScript. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First

steps/What is JavaScript.

[2] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung,

N. K. Dim, and W.-C. Kao, “A proposal of grammar-concept

understanding problem in Java programming learning assistant

system,” J. Adv. Inform. Tech. (JAIT), vol. 12, no. 4, Oct. 2021.

[3] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace

problem for algorithm code reading in Java programming learning

assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, Sep. 2015.

[4] S. H. M. Shwe, N. Funabiki, Y. W. Syaifudin, E. E. Htet, H. H. S. Kyaw,

P. P. Tar, N. W. Min, T. Myint, H. A. Thant, and W.-C. Kao, “Value

trace problems with assisting references for Python programming

self-study,” Int. J. Web Inform. Syst., June 2021.

[5] X. Lu, N. Funabiki, H. H. S. Kyaw, E. E. Htet, S. L. Aung, and N. K.

Dim, “Value trace problems for code reading study in C programming,”

Adv. Sci. Tech. Eng. Syst. J. (ASTESJ), vol. 7, no. 1, pp. 14-26, Jan.

2022.

[6] K. H. Wai, N. Funabiki, K. T. Mon, S. H. M. Shwe, H. H. S. Kyaw, and

K. S. Lin, ”A proposal of code modification problem for web client

programming using JavaScript,” in Proc. CANDAR, pp. 196-202, Nov.

2021.

[7] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A graph-

based blank element selection algorithm for fill-in-blank problems in

Java programming learning assistant system,” IAENG Int. J. Comput.

Sci., vol. 44, no. 2, pp. 247-260, May 2017.

[8] H. H. S. Kyaw, N. Funabiki, S. L. Aung, N. K. Dim, and W.-C. Kao, “A

study of element fill-in-blank problems for C programming learning

assistant system,” Int. J. Inform. Edu. Tech. (IJIET), vol. 11, no. 6, pp.

255-261, June 2021.

[9] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, “A code

completion problem in Java programming learning assistant system,”

IAENG Int. J. Comput. Sci., vol. 47, no. 3, pp. 350-359, Aug. 2020.

[10] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, “A Java

programming learning assistant system using test-driven development

method,” IAENG Int. J. Comput. Sci., vol. 40, no.1, pp. 38-46, Feb.

2013.

[11] I. Arawjo, C.-Y. Wang, A. C. Myers, E. Andersen, and F.

Guimbretie`re, ”Teaching programming with gamified semantics,” in

Proc. CHI Conf. Human Fact. Comput. Syst., pp. 4911–4923, May

2017.

[12] J. Appleton, “Introducing intelligent exercises to support web

application programming students,” in Proc. ICICTE, pp. 216-225,

2017.

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1183

[13] M. Uehara, “JavaScript development environment for programming

education using smartphones,” in Proc. CANDARW, pp. 272-276,

2019.

[14] P. Vostinar, “Interactive course for JavaScript in LMS Moodle,” in

Proc. ICETA, pp. 810–815, 2019.

[15] J. Swacha, “An interactive serious mobile game for supporting the

learning of programming in JavaScript in the context of eco-friendly

city management,” Computers, vol. 9, no. 4, 2020.

[16] R. Suzuki, J. Kato, and K. Yatani, ”ClassCode: an interactive teaching

and learning environment for programming education in classrooms,”

arXiv:2001.08194 [cs.CY], Jan. 2020.

[17] I. S. Zinovieva, V. O. Artemchuk, A. V. Iatsyshyn, O. O. Popov, V. O.

Kovach, A. V. Iatsyshyn, Y. O. Romanenko, and O. V.

Radchenko, ”The use of online coding platforms as additional distance

tools in programming education,” J. Phys.: Conf. Ser., vol. 1840, 2021.

[18] C. La źaro-Carrascosaa, I. Herna ń-Losadab, D. Palacios-Alonsoc, and

A .́ Vela źquez-Iturbide, “Flipped classroom and Aronson ś puzzle: A

combined evaluation in the master ś degree in pre universitary

teaching,” Edu. Know. Soc., vol. 22, 2021.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Nobuo Funabiki received the B.S. and Ph.D. degrees

in mathematical engineering and information physics

from the University of Tokyo, Japan, in 1984 and

1993, respectively. He received the M.S. degree in

electrical engineering from Case Western Reserve

University, USA, in 1991. From 1984 to 1994, he was

with Sumitomo Metal Industries, Ltd., Japan. In

1994, he joined the Department of Information and

Computer Sciences at Osaka University, Japan, as an assistant professor, and

became an associate professor in 1995. In 2001, he moved to the Department

of Communication Network Engineering at Okayama University as a

professor. His research interests include computer networks, optimization

algorithms, educational technology, and Web technology. He is a member of

IEEE, IEICE, and IPSJ.

X. Lu received the B.S. degree in electronic

information engineering from Hubei University of

Economics, China, in 2017, and received the M.S

degree in electronic information systems from

Okayama University, Japan, in 2021, respectively.

She is currently a Ph.D. student in Graduate School of

Natural Science and Technology, Okayama

University, Japan. She received the OU Fellowship in

2021. Her research interests include educational technology.

H. H. S. Kyaw received the B.E. and M.E. degrees in

information science and technology from University

of Technology (Yatanarpon Cyber City), Myamar, in

2015 and 2018, and Ph. D. in information

communication engineering from Okayama

University, Japan, in 2021, respectively. She is

currently an assistant professor in Division of

Advanced Information Technology and Computer

Science, Tokyo University of Agriculture and Technology, Koganei, Japan.

Her research interests include educational technology and web application

systems. She is a member of IEICE.

W.-C. Kao received the M.S. and Ph.D. degrees in

electrical engineering from National Taiwan

University, Taiwan, in 1992 and 1996, respectively.

He was at SoC Technology Center, ITRI, Taiwan,

from 1996 to 2000, and at NuCam Corporation,

Taiwan, from 2000 to 2004. Since 2004, he has been

with National Taiwan Normal University (NTNU),

Taipei, Taiwan, where he is currently the research

chair professor at Department of Electrical Engineering and the Dean of

College of Technology and Engineering. His current research interests

include system-on-a-chip (SoC) as well as embedded software design,

flexible electrophoretic display, machine vision system, digital camera

system, and color imaging science.

International Journal of Information and Education Technology, Vol. 12, No. 11, November 2022

1184

H. Qi received the B.A. degree in information

management and information system from Dalian

University of Foreign Languages, China, in 2021.

She is currently a master student in Graduate

School of Natural Science and Technology, Okayama

University, Japan. Her research interests include

educational technology.

https://creativecommons.org/licenses/by/4.0/

