Implementation of Gamification in Programming Learning: Literature Review

Dwi Maryono, Budiyono, Sajidan, and Muhammad Akhyar

Abstract—Student motivation is one of many issues within programming learning. For a variety of reasons, students consider programming to be a challenging topic. Gamification in programming learning has been found to increase students’ interest, engagement and motivation in learning. However, the use of gamification also has limitations in terms of technical aspects, implementation and results. This research investigates the use of gamification in programming learning and various conclusions derived from the Systematic Literature Review approach. This study has the following problem statements: 1) the obstacles faced by students in learning programming; 2) the technical implementation of gamification, such as the technology, features and game aspects employed; and 3) the influence of gamification implementation on programming learning. The findings of this study help in determining whether the use of gamification through game features can help students overcome obstacles.

Index Terms—Gamification, programming learning, systematic review, teaching-learning process, higher education.

I. INTRODUCTION

Some students consider programming to be a challenging subject to study [1], [2]. While several studies have identified various issues with programming learning, the learning environment in programming classes influences students’ motivation and performance in learning [3], [4]. Other issues that students face include conceptual understanding [5], code quality [6] and a tedious learning process [7], [8]. The problems that students encounter while learning programming have an impact on their motivation and performance [5]–[8].

Several studies have found that engaging learning can boost students’ motivation and attention. Gamification provides a solution to this problem [9]–[11]. Gamification is the application of game mechanics and activities to an environment where the primary goal is not entertainment [12]. It has been used extensively in education with positive results [4], [11]–[14].

The adoption of game elements in serious contexts, such as business and education, is closely related to gamification implementation [15], [16]. According to Werbach and Hunter, the gamification model has three components: dynamics, mechanics and components [17]. The dynamics comprise the context in which gamification is developed. Mechanics is a dynamic activity, and the components are the objects or elements used in the mechanics to reward participants.

The dynamics component includes: 1) emotion, which is present when students receive feedback from the teacher; 2) narrative, which is a challenge framed in a story; 3) progression, which allows students to see their progress; and 4) social, which allows for teamwork. Mechanics comprises challenges and opportunities, while points, badges, avatars and leaderboards are among the components [11], [16], [18]–[20]. Table I shows how the three elements are organised.

Therefore, this research aims to explore various types of gamification implementation, the technology and features used and how they impact the problems that students face when learning programming. Programming learning is used not only for college-level learning but also for high-school-level learning. This investigation is therefore organised as follows: the literature review procedure, evaluation of the findings and drawing of conclusions.

II. RESEARCH METHODOLOGY

This study was carried out by conducting a literature review using a systematic literature review framework comprising three major stages: planning, conducting and reporting the review. The following eight steps are frequently used within the three main stages: 1) formulate the problem, 2) develop and validate the review protocol, 3) search the literature, 4) screen for inclusion, 5) assess quality, 6) extract data, 7) analyse and synthesise data, and 8) report findings. It is essential to remember that the first and second stages can be iterative [21]. Fig. 1 illustrates the process of conducting a systematic literature review.

The first step was to formulate the problem, which
The investigation yielded 41 articles that could potentially answer the research questions. The synthesis of the results identified 29 different types of gamification implementations in programming learning. This demonstrates that gamification is an intriguing topic for educational researchers interested in investigating the use of games to motivate and attract student involvement in learning [15]. As a result, for researchers interested in this field, the study provides an informative summary of the various gamification implementations carried out. In the discussion below, the findings are discussed in greater detail concerning each implementation and for each research question.

III. FINDINGS AND DISCUSSION

The investigation yielded 41 articles that could potentially answer the research questions. The synthesis of the results identified 29 different types of gamification implementations in programming learning. This demonstrates that gamification is an intriguing topic for educational researchers interested in investigating the use of games to motivate and attract student involvement in learning [15]. As a result, for researchers interested in this field, the study provides an informative summary of the various gamification implementations carried out. In the discussion below, the findings are discussed in greater detail concerning each implementation and for each research question.

TABLE II: NUMBER OF WORKS OF LITERATURE REVIEWED BY TYPE

<table>
<thead>
<tr>
<th>Type of Publication</th>
<th>Title of Journal/Proceedings/Book</th>
<th>Number of Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceedings</td>
<td>IEEE Global Engineering Education Conference (EDUCON)</td>
<td>2</td>
</tr>
<tr>
<td>Book</td>
<td>Learning and Collaboration</td>
<td>1</td>
</tr>
<tr>
<td>Chapter</td>
<td>Technologies</td>
<td></td>
</tr>
<tr>
<td>Proceedings</td>
<td>ACM Conference on Innovation and Technology in Computer Science Education</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>International Conference on Multimedia Systems and Signal Processing</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>ACM Technical Symposium on Computer Science Education</td>
<td>2</td>
</tr>
<tr>
<td>Journal</td>
<td>MDPI Computers</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>IOP Conference Series: Materials</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>Journal</td>
<td>Journal of Physics: Conference Series</td>
<td>4</td>
</tr>
<tr>
<td>Journal</td>
<td>Procedia Computer Science</td>
<td>2</td>
</tr>
<tr>
<td>Journal</td>
<td>IJ. Modern Education and Computer Science</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>MDPI Information</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>OASICS: OpenAccess Series in Informatics</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>Indonesian Journal of Electrical Engineering and Computer Science</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>Computers and Education: Artificial Intelligence</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>Computers & Graphics</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>E-Learning and Games</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>Systems and Information Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>Universal Access in the Information Society</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>ACM Transactions on Computing Education</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>International Journal of Electrical, Energy and Power System Engineering (IJEEPE)</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>Hawaii International Conference on System Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>Journal of Game, Game Art and Gamification</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>International Journal of Modern Education</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>ASEE Virtual Annual Conference Content Access</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>Computer Applications in Engineering Education</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>The Challenges of the Digital Transformation in Education</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>PEOPLE: International Journal of Social Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>International Conference on Higher Education Advances</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>EdMedia + Innovate Learning</td>
<td>1</td>
</tr>
<tr>
<td>Journal</td>
<td>IJNMT (International Journal of New Media Technology)</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>International Conference on Information and Communication Technology (IColCT)</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>Kolokium Pembentangan Kertas Penyelidikan Dan Inovasi</td>
<td>1</td>
</tr>
<tr>
<td>Proceedings</td>
<td>Australasian Computing Education Conference</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>41</td>
</tr>
</tbody>
</table>
A. Problems Faced by Students in Learning Programming

A total of 21 out of the 41 articles were able to address the research question concerning the problems that students face when learning programming. For example, students struggle with the number of skills required to learn programming, such as problem-solving, writing code and complex and difficult-to-master algorithms [11]. Since many students struggle to learn these skills, programming learning is frequently characterised by frustration, high resignation rates and loss of interest and motivation [11], [14]. In contrast, the use of gamification elements in many studies increases student involvement in learning. Furthermore, proper gamification design in the learning system will improve student learning achievement [3].

Table III summarises the various problems that frequently occur in programming learning and the use of gamification as a solution to these problems.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Implementation</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of interest</td>
<td>Learning Model [14], Java Hero [22], Kahoot [23]</td>
<td>3</td>
</tr>
<tr>
<td>Low motivation</td>
<td>Learning Model [9], [14], Mobile Apps [7], [24], CLIS [5], UDPiler [25], LMS [26], SCoRe [27]</td>
<td>8</td>
</tr>
<tr>
<td>Difficulty in writing code</td>
<td>WOJ [6], Learning Model [28]</td>
<td>2</td>
</tr>
<tr>
<td>Difficulty in mastering concepts</td>
<td>Mobile Apps [7], CLIS [5], BattleWeb [29], LMS [26], Learning Model [30]</td>
<td>5</td>
</tr>
<tr>
<td>Tedious learning process</td>
<td>Mobile Apps [7], [8], CLIS [5], TED [31]</td>
<td>4</td>
</tr>
<tr>
<td>Difficulty in mastering support skills</td>
<td>Mobile Apps [7], Learn Your Way Out [11]</td>
<td>2</td>
</tr>
<tr>
<td>Limited learning resources</td>
<td>Mobile Apps [24]</td>
<td>1</td>
</tr>
<tr>
<td>Low engagement</td>
<td>Learning Model [9], Grasshopper [3], LMS [26], Mobile Apps [8], Moodle [18], SCoRe [27]</td>
<td>6</td>
</tr>
<tr>
<td>Missing an assignment</td>
<td>RunCode [32]</td>
<td>1</td>
</tr>
<tr>
<td>Considering the subject difficult</td>
<td>Learning Model [14], Learn Your Way Out [11], Daily Mission [33]</td>
<td>3</td>
</tr>
</tbody>
</table>

Table III reveals ten problems encountered by students while learning programming. These include a lack of interest in learning [14], [22], [23], low motivation [5], [7], [9], [14], [24]–[27], difficulty in writing code [6], [28], difficulty in mastering programming concepts [5], [7], [26], [29], [30], tedious learning process [5], [7], [8], [31], difficulty in mastering support skills [7], [11], limited learning resources [24], low engagement in learning [3], [8], [9], [18], [26], [27], missing a given assignment [32], and considering programming to be difficult [11], [14], [33].

Three main problems frequently arise among the ten identified: students have low motivation, have difficulty mastering programming concepts and are less involved in the learning process. To overcome the lack of student motivation, gamification is applied to the learning model [9], [14] and various applications are used such as mobile apps [7], [24], Children Learning in Science (CLIS) [5], UDPiler [25], LMS [26] and Student Code Review (SCoRe) [27]. Furthermore, difficulties in mastering programming concepts are overcome by implementing gamification using mobile apps [7], CLIS [5], BattleWeb [29], LMS [26] and a learning model [30]. Meanwhile, the problem of low student engagement in learning is solved by the learning model [9], Grasshopper [3], LMS [26], mobile apps [8], Moodle [18] and SCoRe [27].

The three most common problems are students’ interest in learning, a tedious learning process and students’ perception of programming as difficult. Problems concerning students’ interest in learning are solved through the implementation of gamification in the learning model [14], Java Hero [22] and Kahoot [23]. In terms of the tedious learning process, gamification is implemented through mobile apps [7], [8], CLIS [5] and The Education District (TED) [31]. Finally, to overcome the problem of students who find programming difficult, gamification is applied through a learning model [14], Learn Your Way Out [11] and Daily Mission [33].

Finally, the following problems and remedies are also associated with learning programming: students find it difficult to write code, which is solved by Wasda Online Judge (WOJ) [6] and the learning model [28]; difficulties in mastering supporting skills are solved by mobile apps [7] and Learn Your Way Out [11]; limited learning resources are overcome through the use of mobile app solutions [24], and the problem of students not doing their assignments is solved by implementing gamification in RunCode [32]. The following section contains a more detailed discussion of the implementation of gamification.

B. Technology, Features and Game Components Used in the Implementation of Gamification

As previously explained, the implementation of gamification in programming learning varies from innovations in the learning model to the use of applications on various platforms. The measures taken often aim to attract the attention of students so that they can focus on what is being learned. As such, this constitutes a positive indication for the future in terms of improving students’ engagement and motivation in learning programming [11].

The implementation of gamification is closely related to the use of game components in a serious activity [15]. However, not all game components in the three main elements of gamification (dynamics, mechanics and components) can be found in a single application. The exploration results indicate that several game components can be used to implement gamification. Table IV contains details of the implementation of gamification in

1450
programming learning, starting from the language, technology, features and game components used according to student level.

Table IV indicates that gamification can be implemented through the innovation of learning models in the classroom [9], [14], [20], [29], [34], LMS [12], [26], web-based platforms [6], [11], [15], [16], [18], [23], [25], [27], [30], [32], [35]–[43], mobile applications [3], [7], [8], [22], [24], [44]–[47], educational games [5], [13], [48] and 3D virtual environments [31], C and Java are the most commonly learned programming languages in the implementation of gamification. Meanwhile, the implementation of gamification is shown to be most useful for learning basic programming concepts at the high school and higher education levels.

In the innovation of learning models, gamification is implemented by adopting game concepts or applying the dynamics of games in class. In the preparation stage, students are divided into several groups and each group is given challenges to complete. Each challenge has a different level according to the difficulty of the learning material. After completing the challenges, the students receive rewards in the form of points or badges. Challenges can take the form of tournaments between teams to determine the winner. Components of games such as challenges, points, badges and leaderboards are probably also applied despite manual application.

Web-based platforms are the most frequently chosen means of gamification implementation by researchers. For this reason, the features vary and include 1) challenges in the form of written stories in Moodle, 2) an automatic assessment system in WOJ, Learn Your Way Out, 2TSW system, Daily Mission and Web-CAT, 3) options for elements of gamification that can be modified in PeerWise, 4) quizzes with many players in Kahoot, 5) the locking of subsequent materials before completing challenges in FGPE, 6) platforms to upload, perform and assess quest in Rimings, 7) a leaderboard displayed in the form of a graph in TST, 8) anonymous peer code review in SCoRe, and 9) a discussion forum in CyOURwAY. From the features, more types of game components are applied than learning model innovations. The components include challenges, points, badges, leaderboards, avatars, narrative, emotion, feedback and progression.

Gamification is also implemented using mobile applications. This type of implementation enables features such as 1) tutorials and simulations of code writing in C-Rocks, 2) quizzes to access next materials in Megie, 3) the use of attractive designs in Grasshopper, 4) markers that use augmented reality (AR) to control a character in CodAR, 5) the tracking and analysis of the student’s attitude in each level, 6) points gained through a leaderboard in Fication, and 7) help in Java hero. The components of games found in these implementations are similar to those in learning model innovations, such as challenges, points, badges and leaderboards.

Next, gamification implementation is also found in educational games. The most attractive implementation emerges in the context of environmental awareness with features of industrial estate-building based on algorithms and related topics. Moreover, other features used in educational games include cases to solve in each level and supporting characters that provide clues to aid in completing challenges, as in CLIS. Challenges and points are the components of games used in this type of application.

Finally, an aspect that was scarcely seen in the present study concerns the implementation of gamification in a 3D virtual environment. The exploration results show that the features in this implementation comprise 3D elements to complete a task, namely building a castle. After building the castle, students are given the challenge to attack their opponent’s castle by answering questions at its gate. Points are then awarded to the team that successfully seizes the opposing team’s flag. It follows that the components of gamification implemented include challenges and points.

Across the five forms of implementation, challenges and points are the most frequently used game components. Challenges are given as tasks to complete, while points are awarded after completion of the given tasks [16]. The inclusion of these two components of games will ensure that students’ attention is enhanced, thus hopefully improving their engagement and motivation in learning programming [11].

<table>
<thead>
<tr>
<th>Application</th>
<th>Language</th>
<th>Technology</th>
<th>Features</th>
<th>Components of Game</th>
<th>Student Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>C</td>
<td>Adopting concepts of video games, improving skills to change level</td>
<td>Surprise box to provide challenges and elimination tournaments to determine a winner</td>
<td>Leaderboard, points, badges</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Moodle</td>
<td>OOP</td>
<td>A web platform</td>
<td>Provides challenges conveyed through stories to be completed in a team</td>
<td>Emotion, narrative, progression, challenges, points, badges, avatars, leaderboard</td>
<td>Higher Education</td>
</tr>
<tr>
<td>WOJ</td>
<td>C</td>
<td>A web-based (online) learning system with an extension of WOJS (WOJ Standings) that</td>
<td>Gives online assessments on code quality, ranking them by the highest score, and awards badges to the three students with the highest scores</td>
<td>Leaderboard, points, badges</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Apps / Framework</td>
<td>Language</td>
<td>Description</td>
<td>Challenges, rewards, progress</td>
<td>Program</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Mobile Apps</td>
<td>Python & C</td>
<td>A gamification-based mobile app architecture adopting an unsupervised learning algorithm to analyse students' behaviour. Provides programming concepts at various levels and gives assignments and quizzes. Students' behaviour is tracked and analysed at each level.</td>
<td>Challenges, points, badges</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>PeerWise</td>
<td>Basic</td>
<td>An online learning device that collects questions and for which the elements of gamification can be modified. Provides questions with points rewards for correct answers. The results are authenticated through the Hexad survey to determine the types of users.</td>
<td>Challenges, leaderboard, points, badges</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>Mobile Game</td>
<td>JavaScript</td>
<td>An interactive mobile game developed by adopting contexts of gamification-based environmental awareness. Provides various algorithm topics as an industrial estate-building challenge. Points are added if players complete the challenge and are removed if they fail.</td>
<td>Challenges, points, badges</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>C-Rocks</td>
<td>C</td>
<td>A gamification-based Android application adopting the theories of constructivism, behaviourism and instructivism. Provides simulation, tutorial syntax, tasks and challenges, as well as assessment from C programming.</td>
<td>Challenges, points</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>CodeToProtect</td>
<td>C++</td>
<td>An educational video game emphasising the use of C++ language with interesting plots. Features visual illustrations of instruction for each line of code to give a complete understanding; provides a set of tests to assess players’ understanding and evaluate players, and provides interesting plots.</td>
<td>Challenges, points, badges</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>Learn Your Way Out</td>
<td>Java</td>
<td>A web game that develops the gamification approach using a player-centred, iterative, interdisciplinary and integrated framework. Provides online assessment on code quality and ranking by the highest score; awards badges to the three students with the highest scores.</td>
<td>Challenges, rewards, progress</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Kahoot</td>
<td>PHP</td>
<td>A web application used as a platform that enables many players to play a quiz game. Provides the tools to create a quiz, provides a page for invited players to answer a quiz and displays the points earned by players.</td>
<td>Challenges, points, badges, leaderboard</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>CLIS</td>
<td>Basic</td>
<td>An educational game equipped with NPC characters to assist players in solving problems. Gives cases that must be solved in each level, supporting characters to give clues about how problems should be solved, and scores/points for successful problem-solving.</td>
<td>Challenges, points</td>
<td>High School</td>
<td></td>
</tr>
<tr>
<td>FGPE (Framework for Gamified Programming Education)</td>
<td>Basic</td>
<td>Web-based programming learning with gamification. Provides both students and teachers with a complete ecosystem to learn programming; challenges to complete individually or collectively.</td>
<td>Points, badges, leaderboard</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rimings</td>
<td>Basic</td>
<td>A gamification-based web application analysed using the Octalysis framework. Presents three types of users; provides a platform to upload, complete and assess quests according to the subject.</td>
<td>Points, badges, avatars</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>Megie</td>
<td>Web</td>
<td>A gamification-based mobile application, the development of which adopts Alessi and Trollip’s learning model. Provides a course for registered users, materials and quizzes related to the topics of web programming. The next materials are unlocked after the completion of a quiz. Points are awarded.</td>
<td>Challenges, badges, points</td>
<td>Higher Education</td>
<td></td>
</tr>
<tr>
<td>Grasshopper</td>
<td>JavaScript</td>
<td>An open-access application based on an educational video game that develops the gamification approach using a player-centred, iterative, interdisciplinary and integrated framework. Provides various tasks and quizzes related to web programming with an attractive design.</td>
<td>Challenges, points, badges</td>
<td>High School & Higher</td>
<td></td>
</tr>
</tbody>
</table>
gamification features

<table>
<thead>
<tr>
<th>Platform</th>
<th>Language</th>
<th>Description</th>
<th>Feedback Mechanisms</th>
<th>Badges, Avatars</th>
<th>Levels and Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>2TSW</td>
<td>Basic</td>
<td>A web-based system with a gamified learning environment and automatic assessments</td>
<td>Provides tasks to complete, automatically displays an assessment of programs, and gives rewards after task completion</td>
<td>Badges, points, leaderboard, avatars</td>
<td>Challenges, points</td>
</tr>
<tr>
<td>CodAR</td>
<td>Basic</td>
<td>A mobile application that integrates the benefits of game-based learning, AR and GLA (Game Learning Analytics)</td>
<td>Presents characters that can move depending on the steps taken, provides a card that functions as a marker from AR to control the characters, and gives points as rewards</td>
<td>Challenges, points</td>
<td>Higher Education</td>
</tr>
<tr>
<td>LMS</td>
<td>Basic</td>
<td>Gamification-based LMS with OpenBadges to handle a mechanism for badges and SCORM in creating interactive contents</td>
<td>Provides interactive content, direction that explains tasks, feedback on the tasks, avatars, and characters to assist students</td>
<td>Challenges, points, badges, avatars</td>
<td>Higher Education</td>
</tr>
<tr>
<td>UDPiler</td>
<td>C</td>
<td>A gamification platform developed using the MDA (Mechanics-Dynamics-Aesthetics) framework</td>
<td>Provides programming challenges in the form of a compilation of C codes, course review and discussion forums, locks next materials and displays students’ rank</td>
<td>Points, badges, leaderboard, keys</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Daily Mission</td>
<td>Basic</td>
<td>An automatic assessment system with the additional design of daily missions</td>
<td>Provides different challenges in the form of daily missions by dividing them into small tasks; provides automatic assessment so that task results can be sent at any time for feedback</td>
<td>Challenges, points, feedback, rewards</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Battle Web</td>
<td>Basic</td>
<td>Implementation of gamification techniques in class</td>
<td>Divides students into three groups, provides three challenge levels based on level of difficulty and gives markers that differ for each task completed</td>
<td>Challenges, badges</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Web-CAT</td>
<td>Basic</td>
<td>An automatic assessment that integrates RPG, XP, levels and characters in feedback mechanisms</td>
<td>Provides tasks, gives XP and level up, and provides a character’s page displaying evaluation results for completed tasks</td>
<td>Challenges, points, badges</td>
<td>Higher Education</td>
</tr>
<tr>
<td>CYourWay</td>
<td>C</td>
<td>A web-based gamification platform developed with ASP.NET and using SQL Server</td>
<td>Tasks with mixed difficulty; displays level status and points and badges gained; presents a discussion forum</td>
<td>Challenges, points, badges, avatars</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Fication</td>
<td>Java</td>
<td>A mobile app with an e-learning model combined with gamification concepts</td>
<td>Provides materials and tutorials, allocates tasks in three different levels, badges are gained after task completion, displays points on a scoreboard and groups points in each level</td>
<td>Challenges, points, badges</td>
<td>Higher Education</td>
</tr>
<tr>
<td>TED</td>
<td>Basic</td>
<td>A 3D virtual environment for online learning</td>
<td>Provides elements to complete a task: building a castle, giving challenges to attack opponent’s castles, giving points to the winning team</td>
<td>Challenges, points</td>
<td>Higher Education</td>
</tr>
<tr>
<td>RunCode</td>
<td>Basic</td>
<td>A learning platform with gamification concepts</td>
<td>Contains learning modules, tasks given in each module, and rewards after task completion</td>
<td>Challenges, points, badges</td>
<td>Higher Education</td>
</tr>
<tr>
<td>Java Hero</td>
<td>Java</td>
<td>A mobile application developed with the Octalysis gamification framework</td>
<td>Contains quests. Points are awarded following quest completion. Support is provided in the form of clues to complete the quest. Points are displayed on a leaderboard.</td>
<td>Challenges, points, leaderboard, avatars</td>
<td>Higher Education</td>
</tr>
<tr>
<td>TST</td>
<td>Python</td>
<td>A web-based gamification learning platform</td>
<td>Provides profile information in the form of tables, gives challenges in the form of tasks in every unit, displays a leaderboard in the form of graphics, awards badges for task completion</td>
<td>Challenges, leaderboard, badges</td>
<td>Higher Education</td>
</tr>
<tr>
<td>SCoRe</td>
<td>Basic</td>
<td>A web-based gamification platform to review anonymous peer codes</td>
<td>Permits students to send their code, anonymously manages code distribution, writes all sent reviews</td>
<td>Challenges, leaderboard, points, badges</td>
<td>Higher Education</td>
</tr>
</tbody>
</table>
C. The Impacts of Gamification on Learning

While the use of gamification has been found to show various positive impacts on students, it also has weaknesses. The positive and negative impacts of gamification are summarised in Table V. Here, the strengths of gamification implementation are classified into the following seven main advantages: 1) more interesting learning, 2) a better understanding of concepts, 3) enhancement of students’ motivation, 4) better learning outcomes, 5) enhancement of students’ participation in learning, 6) enhancement of students’ programming skill and 7) fulfilment of students’ need for learning resources. The most interesting insight is that game components such as points and leaderboards can enhance students’ engagement in learning [27].

<table>
<thead>
<tr>
<th>Application</th>
<th>Positive Impacts</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Apps</td>
<td>The need for students’ learning resources is met. The application is proved to be feasible as a learning medium.</td>
<td>It is accessible only by phone.</td>
</tr>
<tr>
<td>CLIS</td>
<td>Students respond positively to the implementation of learning; the use of CLIS positively impacts the development of students’ abilities.</td>
<td>-</td>
</tr>
<tr>
<td>Rimings</td>
<td>Rimings helps motivate students to learn programming and achieve excellent scores.</td>
<td>-</td>
</tr>
<tr>
<td>Magie</td>
<td>Magie deserves to be used in Web Programming learning since it is proven to be effective in improving students’ learning outcomes. The combination of gamification and attractive mobile learning enables students to become more independent in learning.</td>
<td>-</td>
</tr>
<tr>
<td>Grasshopper</td>
<td>Grasshopper is accepted by users and grabs students’ attention in learning. Incomplete programming language materials for learning web programming.</td>
<td>-</td>
</tr>
<tr>
<td>2STW</td>
<td>Useful for enhancing students’ programming skills. Many students are seen to engage in programming problem-solving.</td>
<td>-</td>
</tr>
<tr>
<td>CodAR</td>
<td>Most students enjoy the new experience of using AR and therefore CodAR can help improve their basic programming skills.</td>
<td>The AR markers are difficult to move when a low-quality camera is used.</td>
</tr>
<tr>
<td>UDPiler</td>
<td>Gamification is considered to be effective in improving the C programming learning process so students achieve better scores.</td>
<td>-</td>
</tr>
<tr>
<td>Daily Mission</td>
<td>Daily Mission is suitable for project-based tasks. Its feedback feature improves students’ insights so they can gain more understanding in learning.</td>
<td>It has not yet been proved to be capable of assessing change in students’ programming habits and achievement.</td>
</tr>
<tr>
<td>BattleWeb</td>
<td>BattleWeb helps captivate students’ interest and improve their motivation and performance in learning web design.</td>
<td>It can only be played on a personal computer.</td>
</tr>
</tbody>
</table>

TABLE V: THE IMPACTS OF GAMIFICATION IMPLEMENTATION ON PROGRAMMING LEARNING

<table>
<thead>
<tr>
<th>Application</th>
<th>Positive Impacts</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>Learning becomes more engaging and motivating.</td>
<td>The use of a leaderboard contributes to increased levels of stress among low-ranking students.</td>
</tr>
<tr>
<td>Moodle</td>
<td>Teacher feedback and challenges help students build a deeper understanding of topics; leaderboards motivate students to compete with the opposing team.</td>
<td>Some students are less comfortable knowing that their score is displayed on a leaderboard. The application is less suitable for individual activities.</td>
</tr>
<tr>
<td>WOJ</td>
<td>A leaderboard using CC in a Software Engineering class motivates students so scores are not interrupted.</td>
<td>-</td>
</tr>
<tr>
<td>PeerWise</td>
<td>Students are motivated to learn through challenges to answer correctly and points rewards to win.</td>
<td>The gamification elements chosen by students are not proved to be connected to the classification of types of users.</td>
</tr>
<tr>
<td>C-Rocks</td>
<td>C-Rocks improves students’ knowledge of C programming. This is proved by their log reports indicating an increase in knowledge scores.</td>
<td>Topic complexity affects students’ understanding; the results of the study show that most students do not excel in topics with complicated syntax.</td>
</tr>
<tr>
<td>CodeToProtect</td>
<td>Most students are interested in learning C++ programming using CodeToProtect.</td>
<td>-</td>
</tr>
<tr>
<td>Learn Your Way Out</td>
<td>The game elements used provide positive motivation for users to learn basic Java topics.</td>
<td>Users have no urgency to commit to game activities. Moreover, it remains a simple game and has spaces that require further improvement.</td>
</tr>
<tr>
<td>Kahoot</td>
<td>Most students recommend Kahoot to other teachers because it has a positive impact on their motivation and engagement in learning.</td>
<td>Insufficient time is given to answer questions.</td>
</tr>
</tbody>
</table>
The implementation of gamification therefore has weaknesses in terms of technical aspects, execution and results. Technical weaknesses include the short time available in which to complete challenges, application access limited to one device (mobile phone or PC), difficulty in scanning the AR marker due to low camera quality, lesser-known applications and the language barrier (applications are in English only). Meanwhile, in execution, weaknesses include the use of leaderboards, which low-ranking students are less comfortable with and find stressful. Additionally, the complexity of the learned topics affects students’ understanding. Greater topic complexity leads to more students being unable to understand the topics [44]. As such, the implementation of gamification has a lower impact on highly complex programming learning.

In terms of results, the implementation of gamification in Learn Your Way Out indicates that: 1) users have no urgency to commit to game activities, and 2) it remains a simple game with spaces requiring further improvement. In addition, further studies need to be conducted to evaluate the time taken and anticipate problems and solutions in the implementation of gamification in TED. Finally, the use of Daily Mission has not been proved suitable for assessing the change in students’ programming habits and achievements. For that reason, in the implementation of gamification, it is important to prepare solutions for the worst-case scenario that may arise during programming learning.

IV. Conclusion

The present study details the results of an exploration of the implementation of gamification in programming learning by reviewing 41 articles and related topics. It has shown that the problems being addressed in the implementation of gamification relate to students’ lack of interest, motivation and engagement in learning. The problems arise due to various factors, such as uninteresting learning, limited learning resources, difficulty in mastering concepts and supporting skills, and difficulty producing good-quality codes.

The exploration results indicate that gamification in programming learning has been commonly implemented in learning model innovations, the use of mobile apps, web-based problems, educational games and even 3D virtual environments. Gamification is mostly implemented in basic programming topics using programming languages such as C and Java.

Various features are used in the process of gamification implementation. Challenges and rewards are clear features in each implementation. The challenges can be tasks, quests, quizzes and missions. Meanwhile, rewards can be points or badges. In addition, the locking of subsequent content prior to task completion is found in the implementation of gamification. For that reason, challenges and points are the most frequently used components of games. Other common game components include badges, leaderboards, avatars and feedback. Points and leaderboards are considered capable of improving students’ engagement in learning. However, their use leads to stress and a decline in the motivation of low-ranking students.

Most of the results for the implementation of gamification show a positive impact in terms of improving students’ interest, engagement and motivation in programming learning based on the main problems they encounter. However, it is important to highlight that the implementation of gamification also has weaknesses in technical aspects, execution and results. Additionally, the implementation of gamification has less impact on highly complex programming learning.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This research was supported by Sebeslas Maret University. Their support and consideration are highly appreciated.

References

Engagement in the gamification of students’ motivation and performance in programming class,

Revolutionize Your Business

and programming co

gamification to motivate students to write high-quality code in an introductory programming course,
The impact of gamification on students’ motivation and performance in class

An open-source gamified programming learning environment,

The impact of gamification on students’ motivation and performance in class,

Engagement in programming to improve student performance for programming lesson the effectiveness of gamification in improving student performance for programming class,

Copyright © 2022 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Dwi Maryono was born in Boyolali, Indonesia, on 8 August 1980. He attained a bachelor’s degree in mathematics from Sebelas Maret University and a master’s degree in informatics engineering from the Sepuluh Nopember Institute. He is currently a student in the educational sciences doctoral programme at Sebelas Maret University. He also works as an assistant professor in the computer education study programme at Sebelas Maret University, Indonesia. His research topics are educational data mining, educational technology and computer education.

Budiyono was born in Ngawi, Indonesia, on 15 September 1953. He attained a bachelor’s degree in mathematics education from Sebelas Maret University, a master’s degree in computer science from the University of Western Ontario, Canada, and doctoral degree in educational research and evaluation from Universitas Negeri Yogyakarta. He is a professor in the mathematics education study programme at Sebelas Maret University. He also works as a lecturer in mathematics education master's programme and educational science doctoral programme, Sebelas Maret University. His research topics are educational assessment and statistics.

Sajidan was born in Boyolali, Indonesia, on 15 April 1966. He attained a bachelor’s degree in biology education from Sebelas Maret University, a master’s degree in biology/genetics from Gajah Mada University, and doctoral degree in biotechnology from Humboldt University of Berlin. He is a professor in the biology education study programme at Sebelas Maret University. He also works as lecturer in educational science doctoral programme and science education doctoral programme, Sebelas Maret University. His research topics are biology and biology education.

Muhammad Akhyar was born in Pangkalpinang, Indonesia, on 29 June 1961. He attained a bachelor’s degree in mechanical engineering education from Universitas Negeri Yogyakarta, a master’s degree in educational research and evaluation from Universitas Negeri Yogyakarta, and doctoral degree in educational research and evaluation from Universitas Negeri Yogyakarta. He is a professor in the mechanical engineering education study programme at Sebelas Maret University. He also works as lecturer in educational science doctoral programme, Sebelas Maret University. His research topics are education and evaluation of education.