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Abstract—This study investigated the effects of affective 

factors on computational thinking and problem-solving. 

Computer science subjects are becoming part of the regular 

curricula in K-12 and higher education to enhance 

computational problem-solving skills. However, affective factors 

influencing computational thinking skills and computational 

thinking components predicting problem-solving skills have yet 

to be fully explored. This paper proposed a conceptual model to 

predict (a) four affective factors that influence computational 

thinking self-efficacy and (b) six computational thinking 

components that affect problem-solving self-efficacy. Structural 

equation modeling was used to analyze self-report data from 

college students to examine the direct relationships among study 

variables. The findings showed that two affective factors (i.e., 

programming self-efficacy and computer science usefulness) 

significantly predicted computational thinking self-efficacy and 

influenced problem-solving self-efficacy. Also, two 

computational thinking components (i.e., algorithm and 

debugging) were the significant determinants of 

problem-solving self-efficacy. The results validate the 

importance of affective factors in computer science education 

and suggest specific computational thinking activities that 

should be emphasized in computer science curricula to facilitate 

problem-solving skills. 

 
Index Terms—Affective factors, computational thinking, 

computer science education, block-based programming  

 

I. INTRODUCTION 

Today’s pervasiveness and rapid evolvement of computer 

technology are demanding new competencies indispensable 

to success in our digital society. The ability to enhance 

Problem-Solving (PS) with computing has become an integral 

part of our daily lives and tasks. Beyond the ―4Cs‖ for 

21st-century skills (i.e., critical thinking, creativity, 

collaboration, and communication [15]), Computational 

Thinking (CT) has been argued to be another core skill or the 

―fifth C.‖ Also, Computer Science (CS) education has been 

emphasized to provide students with more CT learning 

opportunities that will enable them to be active in the digital 

world [69]. CT can be fostered by introducing CT 

competencies (i.e., knowledge, skill, and attitude) in CS 

subjects and incorporating them into cross-curricular 

disciplines so that CT can be leveraged across disciplines and 

everyday life [1014]. As a result of the recent transition in 

CS education, the Next Generation Science Standards (NGSS) 
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and Common Core State Standards (CCSS) were restructured 

to embrace CT as an interdisciplinary approach that can 

promote synergy with other existing core standards [1517]. 

These shifts in CS education have led researchers and 

educators to focus more on defining and assessing CT 

competency, which can evaluate evidence of the learning 

process and enhance the effectiveness of instruction [1822]. 

Although much effort has been devoted to developing CT 

through programming, robotics, gaming, and unplugged 

activities in various educational environments [23, 24], very 

little research has been conducted on CT’s affective factors as 

a critical predictor of CT competency, and the relationship of 

CT’s underlying competencies with problem-solving skills. 

There remains a need for studies to investigate the affective 

aspects towards CS, CT, and PS for promoting an active 

learning experience in computer science education. One way 

to move this area of research forward was to examine what 

affective factors influence computational thinking and what 

CT components contribute to PS. The present study, therefore, 

intended not only to identify affective factors influencing CT 

competency but also to examine the structural relationship 

between CT components and PS in a higher education course. 

To this end, the following two questions guided this study:  

1) What affective factors influence computational thinking 

self-efficacy? 

2) What computational thinking components affect 

problem-solving self-efficacy? 

 

II. RELATED LITERATURE 

A. Computer Science Education 

In recent years, attention and efforts in CS education 

around the world have rapidly increased to prepare them to 

develop the knowledge and skills effectively used to not only 

benefit future career and educational opportunities but also 

deal with the new challenges of the 21st century [2, 6, 8, 15]. 

According to the Association for Computing Machinery, 

Computer Science (CS) is defined as ―the study of computers 

and algorithmic processes, including their principles, their 

hardware and software designs, their applications, and their 

impact on society‖ [4] and is distinct from computer literacy, 

which merely focuses on using computer technologies. 

Educators, researchers, and policymakers all have 

increasingly recognized that CS is a new drive necessary for 

today’s technology innovation, economic opportunity, and 

social mobility [13, 12, 13, 25, 26]. High-quality CS 

education enables all students to acquire skills for the future, 

including analytic thinking, creativity, and teamwork [1, 25, 

26]. In this context, it has been agreed that K-12 and higher 

education should prepare learners in CS education to develop 
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CT by incorporating the underpinnings of CS competency and 

new approaches to solving a problem [11, 13, 14, 27]. 

Therefore, it is crucial to ensure that students of various 

demographics (e.g., age, gender, race, ethnicity, and 

socioeconomic status) have the opportunity to acquire these 

skills. 

B. Computational Thinking  

Since CT encompasses broad topics across disciplines, it 

has been defined in a variety of contexts [1114]. Wing [28] 

began to publicize the discourse regarding the role of CT 

across all disciplines and how it contributes to PS in the 

digital age. She underlined the CT processes of ―formulating 

problems and their solutions so that the solutions are 

represented in a form that can be effectively carried out by an 

information-processing agent‖ [29]. The National Research 

Council [10] underlined the role of programming in 

constructing a sequence of steps for solving a problem. Barr 

and Stephenson [27] specified an operational definition of CT 

for K-12 education, which they described as a PS process and 

a series of dispositions and attitudes: (a) formulating 

problems in a way that enables us to use a computer and other 

tools to help solve them; (b) logically organizing and 

analyzing data; (c) representing data through abstractions 

such as models and simulations; (d) automating solutions 

through algorithmic thinking; (e) identifying, analyzing, and 

implementing possible solutions with the goal of achieving 

the most efficient and effective combination of steps and 

resources; (f) generalizing and transferring this PS process to 

a wide variety of problems [30]. Many other researchers have 

elaborated various definitions to suit their research situation 

[24, 31–33]. As the definition of CT evolves, the 

three-dimensional framework of CT suggested by Brennan 

and Resnick [34] has been widely accepted in the context of 

learning CT through programming [20, 21]. Its three 

fundamental dimensions are as follows: (a) seven 

computational concepts (i.e., sequences, loops, events, 

parallelism, conditionals, operators, and data), (b) four 

computational practices (i.e., experimenting and iterating, 

testing and debugging, reusing and remixing, and abstracting 

and modularizing), and (c) three computational perspectives 

(expressing, connecting, and questioning) [34]. 

C. Programming  

Advances in computing technology allow people to come 

up with new PS approaches and examine virtual solutions in 

the real world. Resnick [35] argued that CT competency 

requires not just the ability to use computing tools but also the 

ability to design, deliver, and communicate with new 

solutions. While CT can be applied to various challenges that 

are not directly related to programming tasks, programming is 

a fundamental way to develop CT effectively [3, 5, 9, 18, 36]. 

The ability to program plays an essential role in enhancing the 

power of the CT process [18]. For example, programming 

provides a new perspective for PS strategies—such as 

decomposition, pattern recognition, abstract, and 

algorithm—that can be applied to non-programming domains. 

Also, since programming involves developing thought 

processes for solving problems, it can provide people with 

opportunities to reflect on their learning [18, 37]. Due to the 

close relationship of programming with CT, several studies 

found that programming is frequently adopted to teach CT 

skills [3, 5, 9, 18, 36]. However, at the same time, 

programming was perceived to be highly challenging, such 

that many people misunderstood computer programming as a 

limited realm used only by a particular population [35, 19]. 

This may be because early programming learning did not 

make it easy for many beginners to learn text-based 

programming languages. In addition, programming was often 

introduced without sufficient guidance when learners needed 

help with their codes or in activities that were not relevant to 

learners’ interests and prior knowledge [38]. In recent years, 

to overcome these obstacles, there have been different 

attempts to introduce beginners to online block-based 

programming platforms, such as Scratch, MIT App Inventor, 

MakeCode, and Lego WeDo [5, 39]. 

D. Problem-Solving 

What are the traits of an effective PS process? There have 

been several approaches to defining the PS process. Lester 

and Charles [40] defined PS as the process of coordinating 

cognitive ability, affective ability, and experience to 

determine a solution. Schoenfeld [41] outlined four factors 

that affected students’ PS process in mathematics: (a) 

resources (domain knowledge), (b) heuristics (PS strategy), (c) 

monitoring and control (self-regulation), and (d) beliefs and 

affects (perspectives of individuals towards themselves and 

their environment). According to the problem-solving 

behavioral theory proposed by Tallman et al. [42], PS 

involves a set of sequences, including (a) defining the 

problem, (b) gathering information, (c) developing solutions, 

and (d) evaluating results. Mayer [43] proposed that the 

success of PS depended on three factors: (a) skill 

(domain-specific knowledge), (b) meta-skill (metacognition), 

and (c) will (motivational aspects of cognition). In other 

words, to solve a problem, students should acquire the 

relevant skill, meta-skill, and will. The meta-skill is central in 

PS because it coordinates the cognitive process and other 

components. The three parts are aligned with the knowledge, 

skill, and attitude model [44] to measure PS competencies. 

Similarly, Bloom [45] categorized the three domains of 

learning as cognitive (knowledge acquisition), psychomotor 

(physical skills), and affective (feelings, emotions, and 

attitudes). Jonassen [46] emphasized the cognitive and 

affective requirements needed to solve different problems. As 

noted previously, affective factors have a significant role in 

developing PS ability.  

E. Affective Factors  

In addition to being a critical factor in PS, many studies 

revealed that affective factors significantly impact the PS 

process. For instance, Mason [47] noted that as students’ 

beliefs about PS increased, their PS achievements were 

enhanced accordingly. In contrast, anxiety and fear towards 

subjects were a factor that negatively affected students’ PS 

achievements. Likewise, Hoffman and Schraw [48] 

confirmed a positive relationship between students’ PS 

self-efficacy and PS efficiency. In the present study, these 

affective factors included attitudes towards CS, perceived 

usefulness of CS, and self-efficacy regarding Programming, 
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CT, and PS. These emotional factors have been widely 

investigated in various fields and defined by distinctive 

elements. Self-efficacy is a person’s belief about their 

capability to perform a behavior that deals with a particular 

problem and to produce designated levels of  

performance [49]. Attitude is a person’s evaluative judgment, 

which depends on their prior knowledge and experience [50]. 

Usefulness refers to the degree to which a person believes that 

using a tool will help them to attain gains in job  

performance [51]. To summarize, affective factors are a set of 

emotions and attitudes people have about themselves or their 

surroundings. These factors influence student performance in 

either positive or negative ways. 

F. Research Model and Hypothesis Development  

The aim of this study was to investigate the relationships 

among learners’ affective factors—computer science attitude, 

computer science usefulness, programming self-efficacy, 

programming attitude, computational thinking self-efficacy, 

and PS self-efficacy—in the context of an online block-based 

programming environment. Many studies confirmed that 

domain-specific knowledge and metacognition skills could 

promote computational thinking [52–56]. Also, other studies 

discovered a strong link between CT and PS [36, 57–59]. 

However, there is a lack of knowledge regarding how 

affective factors interact to influence CT, as well as how CT 

sub-competencies affect PS, particularly in higher education 

and online learning environments. In addition, the effects of 

CT components such as decomposition, pattern recognition, 

planning, algorithm, reusing, and debugging on PS 

self-efficacy were explored. Thus, the direction and degrees 

of structural relationships were examined among affective 

factors, CT, and PS. The research model is illustrated with the 

related hypotheses in Fig. 1, and the hypotheses are presented 

in Table I. 
 

 
Fig. 1. Research model with hypotheses. 

 

TABLE I: RESEARCH HYPOTHESES 

# Hypotheses 

H1 Computer Science (CS) Attitude directly and positively influences 

learner’s Computational Thinking (CT) Self-Efficacy. 

H2 Computer Science (CS) Usefulness directly and positively 

influences learner’s Computational Thinking (CT) Self-Efficacy. 

H3 Programming Self-Efficacy directly and positively influences 

learner’s Computational Thinking (CT) Self-Efficacy. 

H4 Programming Attitude directly and positively influences learner’s 

Computational Thinking (CT) Self-Efficacy. 

H5 Computational Thinking (CT) Self-Efficacy directly and positively 

influences learner’s Problem-Solving (PS) Self-Efficacy. 

H6 Decomposition directly and positively influences learner’s 

Problem-Solving (PS) Self-Efficacy. 

H7 Pattern recognition directly and positively influences learner’s 

Problem-Solving (PS) Self-Efficacy. 

H8 Planning directly and positively influences learner’s 

Problem-Solving (PS) Self-Efficacy. 

H9 Algorithm directly and positively influences learner’s 

Problem-Solving (PS) Self-Efficacy. 

H10 Reusing directly and positively influences learner’s 

Problem-Solving (PS) Self-Efficacy. 

H11 Debugging directly and positively influences learner’s 

Problem-Solving (PS) Self-Efficacy. 

 

III. METHOD 

A. Participants  

Two types of sampling techniques were used for this 

population. These included convenience sampling to quickly 

reach a targeted sample, and identical sampling to 

simultaneously produce quantitative and qualitative  

phases [60]. Participants were a total of 69 college students 

who were enrolled in an online course, Computing and 

Information Technology, at a large public university. The 

participants were enrolled in varied majors, were of various 

ages, and were both male and female (age: M = 25.26 years, 

range = 19–47 years, female: 54%). They had little-to-no 

previous programming experience prior to taking the online 

course. The sample size was considered adequate, providing 

≥ 80% power to reject a non-closely fitting model (i.e., root 

mean squared error of approximation [RMSEA] = 0.10) in 

favor of a closely fitting model (i.e., RMSEA = 0.05) at 0.05 

alpha level. 

B. Research Setting  

The course was intended to provide students with basic CS 

knowledge and programming experiences using Scratch 

block-based programming language and environment to 

create and share their programming projects easily. A 

web-based learning management system was used to 

administer and provide online learning during a semester. 

Scratch programming was adopted because it is suitable as an 

introductory programming language for people of all ages. 

The participants were asked to perform a programming task 

using Scratch Version 3.0. There was a total of 13 modules, 

including six modules related to programming. The main 

tasks were to complete semi-finished Scratch projects, and the 

final project was designing and developing a platform game in 

which a player could make a character jump or climb to avoid 

obstacles and reach a destination or perform a mission.  

C. Instrument  

This study used an online survey questionnaire to measure 

the perceived level of affective factors. The survey consisted 

of demographic questions and 18 closed-ended questions 

(three questions per construct) asking about the six constructs: 

(a) computer science attitude, (b) computer science usefulness, 

(c) programming self-efficacy, (d) programming attitude, (e) 
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computational thinking self-efficacy, and (f) problem-solving 

self-efficacy. Responses to the closed-ended questions were 

scored on a 5-point Likert scale ranging from ―strongly 

disagree‖ to ―strongly agree.‖ Survey items were adapted 

from the CS Attitude [61], Programming Self-Efficacy [62], 

and CT/Problem-Solving Self-Efficacy [63]. Two 

professionals independently reviewed the survey items. Based 

on their feedback, we revised the items to enhance clarity and 

accessibility. The internal consistency of the survey items was 

confirmed (Cronbach’s α = 0.92).  

D. Data Collection and Analysis  

An online form of the survey was linked in the last module, 

and participants received an extra point for voluntarily taking 

the survey (71% response rate). The answers to the survey 

items were stored in the database and statistically analyzed 

using RStudio [64]. In a preliminary analysis, assumptions of 

normality, linearity, and homoscedasticity were met. 

Descriptive statistics were also calculated to summarize the 

demographic characteristics of the participants, as shown in 

Table II.  
 

TABLE II: DESCRIPTIVE STATISTICS 

Demographics  Item Frequency % 

  Gender 
Female 

Male 

32 

37 

46.4 

53.6 

  Age 

Below 30 years 

31–40 years 

41 years and above 

52 

13 

4 

75.4 

18.8 

5.8 

  Grade 
Freshman 

Sophomore 

7 

15 

10.1 

21.7 

 
Junior 

Senior 

20 

27 

29.0 

39.1 

 

Confirmatory Factor Analysis (CFA) was employed to 

examine the hypothesized factors of the research model, 

which illustrates the directions and links between the latent 

variables (i.e., factors) and their observed variable (i.e., 

closed-ended questions) as well as the associations among the 

factors. The CFA model included the following parameters: 

(a) item loadings on six affective factors—computer science 

attitude, computer science usefulness, programming 

self-efficacy, programming attitude, computational thinking 

self-efficacy, problem-solving self-efficacy, (b) covariances 

among the six factors, and (c) residual variances/covariances 

and intercepts of the items. 

Next, Structural Equation Modeling (SEM) was conducted 

to examine predictive relationships among the latent variables. 

The SEM model involved the same measurement part as the 

CFA model, but the structural relationships were modified 

with the regression paths: (a) from computer science attitude, 

computer science usefulness, programming self-efficacy, 

programming attitude (predictors) to computational thinking 

self-efficacy (outcome); (b) from computational thinking 

self-efficacy (predictor) to problem-solving self-efficacy 

(outcome); and (c) from decomposition, pattern recognition, 

planning, algorithm, reusing, and debugging (predictors) to 

problem-solving self-efficacy (outcome). The model 

parameters were estimated via robust maximum  

likelihood [65]. The overall model fit was evaluated with 

multiple indicators: chi-square statistic (χ
2
), RMSEA, 

Standardized Root Mean Square Residual (SRMR), and two 

comparative fit indices [66–69].  

 

IV. RESULTS  

Descriptive statistics and bivariate correlations were 

calculated and are presented in Table III and Table IV, 

respectively. The overall model fit was evaluated using 

chi-square statistic (χ
2
), RMSEA, SRMR, Comparative Fit 

Index (CFI), and Tucker-Lewis index (TLI) because various 

indicators may show different features of model fit [70]. The 

chi-square statistic and its p-value should not be significant at 

the 0.05 level if there is a good model fit. The chi-square (χ
2
 = 

181.65, df = 124) was statistically significant (p < 0.001); 

however, the chi-square
 
statistic is very sensitive to sample 

size and is weak to use as a single criterion of acceptance or 

rejection [71, 72]. To overcome this issue, other indices are 

recommended to determine the fit [65, 68]. The model fit 

indices indicated a good fit between the observed data and the 

structural causal model, as shown in Table V. The RMSEA 

indicates the absolute fit of the hypothesized model in the 

population covariance matrix. The RMSEA estimate was 0.07, 

and its associated 90% Confidence Interval (CI) was (0.03, 

0.09), which also indicates a good model fit [73]. The 

difference between the residuals of the sample covariance and 

the hypothesized covariance model is represented by the 

SRMR. Since the lower SRMR values (≤ 0.08) are generally 

considered a good fit [66], the SRMR estimate in the model 

obtained 0.05, indicating a good model fit. Lastly, the CFI 

calculates how well the hypothesized model fits the data 

compared to a null model of uncorrelated variables. The 

comparative indices of CFI and TLI were 0.95 and 0.94, 

respectively, showing a good and acceptable model fit [65, 

68]. Although the results of the chi-square test and RMSEA’s 

CI are not sufficient, the rest of the indices indicated that the 

fit of the model deems adequate and validated the hypotheses 

of the research model. 
 

TABLE III: BIVARIATE CORRELATIONS OF VARIABLES 

                  Affective Factors                 CT         PS 

1 2 3 4 5 6 

1. CS Attitude 1      

2. CS Usefulness  0.831
**

 1     

3. Programming Self-Efficacy 0.637
**

 0.602
**

 1    

4. Programming Attitude  0.563
**

 0.545
**

 0.555
**

 1   

5. CT Self-Efficacy  0.642
**

 0.641
**

 0.754
**

 0.586
**

 1  

6. PS Self-Efficacy  0.465
**

 0.550
**

 0.429
**

 0.441
**

 0.639
**

 1 

 

 

                           Computational Thinking                    CT     PS 

1 2 3 4 5 6 7 8 

1. Decomposition 1        

2. Pattern Recognition 0.802
**

 1       

3. Planning 0.670
**

 0.761
**

 1      

4. Algorithm 0.624
**

 0.682
**

 0.745
**

 1     

5. Reusing 0.896
**

 0.786
**

 0.730
**

 0.689
**

 1    

6. Debugging 0.724
**

 0.723
**

 0.810
**

 0.702
**

 0.823
**

 1   

7. CT Self-Efficacy 0.887
**

 0.895
**

 0.885
**

 0.831
**

 0.926
**

 0.899
**

 1  

8. PS Self-Efficacy 0.536
**

 0.521
**

 0.521
**

 0.634
**

 0.597
**

 0.597
**

 0.639
**

 1 

** Correlation is significant at the 0.01 level (2-tailed). 
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TABLE IV: UNSTANDARDIZED AND STANDARDIZED ESTIMATES OF THE 

PREDICTIVE EFFECTS ON COMPUTATIONAL THINKING 

Parameter b SE β p 

Regression Path to CT     

  Computer Science Attitude 0.09 0.23 0.11 0.280 

  Computer Science Usefulness 0.20 0.06 0.29 0.000 

  Programming Self-Efficacy 0.48 0.08 0.58 0.000 

  Programming Attitude 0.11 0.29 0.17 0.622 

      

Regression Path to PS Self-Efficacy     

  Decomposition 0.11 0.20 0.12 0.378 

  Pattern Recognition 0.03 0.02 0.04 0.789 

  Planning –0.04 0.17 –0.04 0.830 

  Algorithm 0.41 0.14 0.42 0.023 

  Reusing 0.10 0.21 0.12 0.489 

  Debugging 0.27 0.11 0.30 0.002 

 SE = Standard Error 

 

TABLE V: SUMMARY OF MODEL FIT INDICES AND CUT-OFF THRESHOLDS 

Measure Cut-off Result 

χ
2  

p-value > 0.05 0.001 

RMSEA 0.06–0.08 (acceptable), < 0.06 (good) 0.07 [0.03, 0.09]  

SRMR 0.05–0.08 (acceptable), < 0.05 (good) 0.05 

CFI 0.90–0.95(acceptable), > 0.95 (good) 0.95 

TLI 0.90–0.95 (acceptable), > 0.95 (good)  0.94 

 

For the first research question concerning affective factors 

influencing CT, the results suggested that computer science 

usefulness and programming self-efficacy were positively and 

significantly linked to computational thinking self-efficacy. 

The rest of the latent variables—i.e., computer science 

attitude and programming attitude—were not significant. As 

hypothesized in Table I, programming self-efficacy and 

computer science usefulness significantly predicted 

computational thinking self-efficacy (Hypotheses 2 and 3). 

71% of computational thinking self-efficacy variance was 

explained by the two latent variables, among which 

programming self-efficacy was the stronger predictor with 

path loading (β = 0.58, p < 0.001). The direct effects of 

computer science usefulness had slightly lower influences 

with path loading (β = 0.29, p < 0.01). However, two 

attitudinal factors (i.e., computer science attitude and 

programming attitude) had no significant influence on 

computational thinking self-efficacy (Hypotheses 1 and 4) (p 

= 0.41–0.59). 

Computational thinking self-efficacy was also positively 

related to problem-solving self-efficacy. For the second 

research question, it was found that the effects of two CT 

components, algorithm and debugging, were positively 

significant on problem-solving self-efficacy. In contrast, the 

rest of the components— decomposition, pattern recognition, 

planning, and reuse—were not significant. The analysis 

results of the final structural model are illustrated in Fig. 2 and 

detailed in Table IV. Computational thinking self-efficacy 

was a strong predictor of problem-solving self-efficacy 

(Hypothesis 5) (β = 0.64, p < 0.01). Algorithm and debugging 

were moderate predictors of problem-solving self-efficacy 

(Hypotheses 9 and 11) (p = 0.02), but decomposition, pattern 

recognition, planning, and reuse did not predict 

problem-solving self-efficacy (Hypotheses 6, 7, 8, and 10) (p 

= 0.04–0.30). 

 

 

 

V. DISCUSSION AND IMPLICATIONS  

This study aimed to explore the structural relationships 

among learner affective factors, CT self-efficacy, and PS 

self-efficacy in the context of CT learning via block-based 

programming. These relationships could have meaningful 

implications for evaluating the affective factors, thereby 

deriving insights on instructional designs to facilitate 

computational thinking.  

According to the model analysis findings, the overall 

theoretical framework was statistically established, and two 

affective determinants (i.e., programming self-efficacy and 

computer science usefulness) explain students’ CT 

development. Additionally, for the significant effect of CT 

self-efficacy on problem-solving self-efficacy, the theoretical 

assumption from previous studies was statistically confirmed. 

Some previous studies have revealed a strong link between 

CT and PS by examining CT knowledge and skills [36, 

57–59]. For this reason, the current research has implications 

for contributing to the validation of affective factors 

predicting CT and the predictive relationship between CT and 

PS.  

Interestingly, program self-efficacy was the most vital 

affective factor promoting computational thinking. Program 

self-efficacy represents how well students can plan and write 

blocks of code and explain a Scratch program they created. In 

other words, the ability to create a Scratch program has been 

confirmed to be closely related to computational thinking, 

which is consistent with the findings of previous studies [14, 

36–38]. The National Research Council [10] also highlighted 

the role of programming in constructing a sequence of steps 

for solving a problem. Hence, it can be concluded that 

programming experience is critical to promoting 

computational thinking skills. Also, the perceived usefulness 

of CS exerted positive effects on computational thinking. 

However, the present study found that attitude toward CS was 

not a significant factor. Since the attitude toward computer 

science asked to what extent the participants were interested 

in CS, computer science usefulness was about the perceived 

benefits of computing skills in their lives, meaning that 

fostering the value of CS usefulness in curricula may facilitate 

computational thinking skills. 

Another finding was the significant relationship between 

computational thinking components and problem-solving 

self-efficacy. Although every CT component has a positive 

relationship with problem-solving self-efficacy, the current 
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study found that out of six CT components, algorithmic 

thinking and debugging are significant determinants of 

problem-solving self-efficacy. In other words, the levels of 

the two CT components positively predict problem-solving 

levels. Thus, these two activities should be emphasized in 

K-12 and higher education curricula to improve 

problem-solving skills. For instance, algorithmic thinking can 

be developed by building ways of thinking of a step-by-step 

solution. Debugging can also be taught by providing students 

with various testing and debugging experiences.  

 

VI. CONCLUSION 

The present study provides insights allowing us to better 

understand learners’ affective factors (i.e., attitude, 

self-efficacy, and usefulness) and CT sub-components for 

problem-solving skills with a limited sample size. The results 

thus need to be interpreted with caution and may not be 

generalizable to all settings or other age groups. Further 

research on different cultures, institutions, and populations is 

needed for them to be verified. Moreover, since only three 

emotional factors were considered in this study, the effects of 

other affective factors not included in the study were not 

investigated. Future research may need to incorporate 

different affective factors to obtain a holistic picture. Lastly, 

complementary data (e.g., CS knowledge test, Scratch 

programming artifacts assessment, problem-solving 

performance test, open-ended questions about CS and CT) 

should be considered to establish the relationships in the 

research model to evaluate CT knowledge and skill domains 

comprehensively. With these limitations in mind, most of the 

model fit indices supported that the fit of the model was 

adequate, and the research model was validated. The findings 

of future studies will contribute to a better understanding of 

the affective factors of learners as well as new ways to 

redesign course curricula for teaching CT skills effectively. 
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