

An Investigation of Affective Factors Influencing

Computational Thinking and Problem-Solving

Hyunchang Moon and Jongpil Cheon*

Abstract—This study investigated the effects of affective

factors on computational thinking and problem-solving.

Computer science subjects are becoming part of the regular

curricula in K-12 and higher education to enhance

computational problem-solving skills. However, affective factors

influencing computational thinking skills and computational

thinking components predicting problem-solving skills have yet

to be fully explored. This paper proposed a conceptual model to

predict (a) four affective factors that influence computational

thinking self-efficacy and (b) six computational thinking

components that affect problem-solving self-efficacy. Structural

equation modeling was used to analyze self-report data from

college students to examine the direct relationships among study

variables. The findings showed that two affective factors (i.e.,

programming self-efficacy and computer science usefulness)

significantly predicted computational thinking self-efficacy and

influenced problem-solving self-efficacy. Also, two

computational thinking components (i.e., algorithm and

debugging) were the significant determinants of

problem-solving self-efficacy. The results validate the

importance of affective factors in computer science education

and suggest specific computational thinking activities that

should be emphasized in computer science curricula to facilitate

problem-solving skills.

Index Terms—Affective factors, computational thinking,

computer science education, block-based programming

I. INTRODUCTION

Today’s pervasiveness and rapid evolvement of computer

technology are demanding new competencies indispensable

to success in our digital society. The ability to enhance

Problem-Solving (PS) with computing has become an integral

part of our daily lives and tasks. Beyond the ―4Cs‖ for

21st-century skills (i.e., critical thinking, creativity,

collaboration, and communication [15]), Computational

Thinking (CT) has been argued to be another core skill or the

―fifth C.‖ Also, Computer Science (CS) education has been

emphasized to provide students with more CT learning

opportunities that will enable them to be active in the digital

world [69]. CT can be fostered by introducing CT

competencies (i.e., knowledge, skill, and attitude) in CS

subjects and incorporating them into cross-curricular

disciplines so that CT can be leveraged across disciplines and

everyday life [1014]. As a result of the recent transition in

CS education, the Next Generation Science Standards (NGSS)

Manuscript received April 15, 2022; revised July 7, 2022; accepted

November 1, 2022.

Hyunchang Moon is with the Department of Pediatrics, Medical College

of Georgia, Augusta University, Augusta, USA. E-mail:

hymoon@augusta.edu (H.M.)

Jongpil Cheon is with the Department of Curriculum and Instruction,

Texas Tech University, Lubbock, USA.

*Correspondence: jongpil.cheon@ttu.edu (J.C.)

and Common Core State Standards (CCSS) were restructured

to embrace CT as an interdisciplinary approach that can

promote synergy with other existing core standards [1517].

These shifts in CS education have led researchers and

educators to focus more on defining and assessing CT

competency, which can evaluate evidence of the learning

process and enhance the effectiveness of instruction [1822].

Although much effort has been devoted to developing CT

through programming, robotics, gaming, and unplugged

activities in various educational environments [23, 24], very

little research has been conducted on CT’s affective factors as

a critical predictor of CT competency, and the relationship of

CT’s underlying competencies with problem-solving skills.

There remains a need for studies to investigate the affective

aspects towards CS, CT, and PS for promoting an active

learning experience in computer science education. One way

to move this area of research forward was to examine what

affective factors influence computational thinking and what

CT components contribute to PS. The present study, therefore,

intended not only to identify affective factors influencing CT

competency but also to examine the structural relationship

between CT components and PS in a higher education course.

To this end, the following two questions guided this study:

1) What affective factors influence computational thinking

self-efficacy?

2) What computational thinking components affect

problem-solving self-efficacy?

II. RELATED LITERATURE

A. Computer Science Education

In recent years, attention and efforts in CS education

around the world have rapidly increased to prepare them to

develop the knowledge and skills effectively used to not only

benefit future career and educational opportunities but also

deal with the new challenges of the 21st century [2, 6, 8, 15].

According to the Association for Computing Machinery,

Computer Science (CS) is defined as ―the study of computers

and algorithmic processes, including their principles, their

hardware and software designs, their applications, and their

impact on society‖ [4] and is distinct from computer literacy,

which merely focuses on using computer technologies.

Educators, researchers, and policymakers all have

increasingly recognized that CS is a new drive necessary for

today’s technology innovation, economic opportunity, and

social mobility [13, 12, 13, 25, 26]. High-quality CS

education enables all students to acquire skills for the future,

including analytic thinking, creativity, and teamwork [1, 25,

26]. In this context, it has been agreed that K-12 and higher

education should prepare learners in CS education to develop

International Journal of Information and Education Technology, Vol. 13, No. 10, October 2023

1513doi: 10.18178/ijiet.2023.13.10.1956

mailto:jongpil.cheon@ttu.edu

CT by incorporating the underpinnings of CS competency and

new approaches to solving a problem [11, 13, 14, 27].

Therefore, it is crucial to ensure that students of various

demographics (e.g., age, gender, race, ethnicity, and

socioeconomic status) have the opportunity to acquire these

skills.

B. Computational Thinking

Since CT encompasses broad topics across disciplines, it

has been defined in a variety of contexts [1114]. Wing [28]

began to publicize the discourse regarding the role of CT

across all disciplines and how it contributes to PS in the

digital age. She underlined the CT processes of ―formulating

problems and their solutions so that the solutions are

represented in a form that can be effectively carried out by an

information-processing agent‖ [29]. The National Research

Council [10] underlined the role of programming in

constructing a sequence of steps for solving a problem. Barr

and Stephenson [27] specified an operational definition of CT

for K-12 education, which they described as a PS process and

a series of dispositions and attitudes: (a) formulating

problems in a way that enables us to use a computer and other

tools to help solve them; (b) logically organizing and

analyzing data; (c) representing data through abstractions

such as models and simulations; (d) automating solutions

through algorithmic thinking; (e) identifying, analyzing, and

implementing possible solutions with the goal of achieving

the most efficient and effective combination of steps and

resources; (f) generalizing and transferring this PS process to

a wide variety of problems [30]. Many other researchers have

elaborated various definitions to suit their research situation

[24, 31–33]. As the definition of CT evolves, the

three-dimensional framework of CT suggested by Brennan

and Resnick [34] has been widely accepted in the context of

learning CT through programming [20, 21]. Its three

fundamental dimensions are as follows: (a) seven

computational concepts (i.e., sequences, loops, events,

parallelism, conditionals, operators, and data), (b) four

computational practices (i.e., experimenting and iterating,

testing and debugging, reusing and remixing, and abstracting

and modularizing), and (c) three computational perspectives

(expressing, connecting, and questioning) [34].

C. Programming

Advances in computing technology allow people to come

up with new PS approaches and examine virtual solutions in

the real world. Resnick [35] argued that CT competency

requires not just the ability to use computing tools but also the

ability to design, deliver, and communicate with new

solutions. While CT can be applied to various challenges that

are not directly related to programming tasks, programming is

a fundamental way to develop CT effectively [3, 5, 9, 18, 36].

The ability to program plays an essential role in enhancing the

power of the CT process [18]. For example, programming

provides a new perspective for PS strategies—such as

decomposition, pattern recognition, abstract, and

algorithm—that can be applied to non-programming domains.

Also, since programming involves developing thought

processes for solving problems, it can provide people with

opportunities to reflect on their learning [18, 37]. Due to the

close relationship of programming with CT, several studies

found that programming is frequently adopted to teach CT

skills [3, 5, 9, 18, 36]. However, at the same time,

programming was perceived to be highly challenging, such

that many people misunderstood computer programming as a

limited realm used only by a particular population [35, 19].

This may be because early programming learning did not

make it easy for many beginners to learn text-based

programming languages. In addition, programming was often

introduced without sufficient guidance when learners needed

help with their codes or in activities that were not relevant to

learners’ interests and prior knowledge [38]. In recent years,

to overcome these obstacles, there have been different

attempts to introduce beginners to online block-based

programming platforms, such as Scratch, MIT App Inventor,

MakeCode, and Lego WeDo [5, 39].

D. Problem-Solving

What are the traits of an effective PS process? There have

been several approaches to defining the PS process. Lester

and Charles [40] defined PS as the process of coordinating

cognitive ability, affective ability, and experience to

determine a solution. Schoenfeld [41] outlined four factors

that affected students’ PS process in mathematics: (a)

resources (domain knowledge), (b) heuristics (PS strategy), (c)

monitoring and control (self-regulation), and (d) beliefs and

affects (perspectives of individuals towards themselves and

their environment). According to the problem-solving

behavioral theory proposed by Tallman et al. [42], PS

involves a set of sequences, including (a) defining the

problem, (b) gathering information, (c) developing solutions,

and (d) evaluating results. Mayer [43] proposed that the

success of PS depended on three factors: (a) skill

(domain-specific knowledge), (b) meta-skill (metacognition),

and (c) will (motivational aspects of cognition). In other

words, to solve a problem, students should acquire the

relevant skill, meta-skill, and will. The meta-skill is central in

PS because it coordinates the cognitive process and other

components. The three parts are aligned with the knowledge,

skill, and attitude model [44] to measure PS competencies.

Similarly, Bloom [45] categorized the three domains of

learning as cognitive (knowledge acquisition), psychomotor

(physical skills), and affective (feelings, emotions, and

attitudes). Jonassen [46] emphasized the cognitive and

affective requirements needed to solve different problems. As

noted previously, affective factors have a significant role in

developing PS ability.

E. Affective Factors

In addition to being a critical factor in PS, many studies

revealed that affective factors significantly impact the PS

process. For instance, Mason [47] noted that as students’

beliefs about PS increased, their PS achievements were

enhanced accordingly. In contrast, anxiety and fear towards

subjects were a factor that negatively affected students’ PS

achievements. Likewise, Hoffman and Schraw [48]

confirmed a positive relationship between students’ PS

self-efficacy and PS efficiency. In the present study, these

affective factors included attitudes towards CS, perceived

usefulness of CS, and self-efficacy regarding Programming,

International Journal of Information and Education Technology, Vol. 13, No. 10, October 2023

1514

CT, and PS. These emotional factors have been widely

investigated in various fields and defined by distinctive

elements. Self-efficacy is a person’s belief about their

capability to perform a behavior that deals with a particular

problem and to produce designated levels of

performance [49]. Attitude is a person’s evaluative judgment,

which depends on their prior knowledge and experience [50].

Usefulness refers to the degree to which a person believes that

using a tool will help them to attain gains in job

performance [51]. To summarize, affective factors are a set of

emotions and attitudes people have about themselves or their

surroundings. These factors influence student performance in

either positive or negative ways.

F. Research Model and Hypothesis Development

The aim of this study was to investigate the relationships

among learners’ affective factors—computer science attitude,

computer science usefulness, programming self-efficacy,

programming attitude, computational thinking self-efficacy,

and PS self-efficacy—in the context of an online block-based

programming environment. Many studies confirmed that

domain-specific knowledge and metacognition skills could

promote computational thinking [52–56]. Also, other studies

discovered a strong link between CT and PS [36, 57–59].

However, there is a lack of knowledge regarding how

affective factors interact to influence CT, as well as how CT

sub-competencies affect PS, particularly in higher education

and online learning environments. In addition, the effects of

CT components such as decomposition, pattern recognition,

planning, algorithm, reusing, and debugging on PS

self-efficacy were explored. Thus, the direction and degrees

of structural relationships were examined among affective

factors, CT, and PS. The research model is illustrated with the

related hypotheses in Fig. 1, and the hypotheses are presented

in Table I.

Fig. 1. Research model with hypotheses.

TABLE I: RESEARCH HYPOTHESES

Hypotheses

H1 Computer Science (CS) Attitude directly and positively influences

learner’s Computational Thinking (CT) Self-Efficacy.

H2 Computer Science (CS) Usefulness directly and positively

influences learner’s Computational Thinking (CT) Self-Efficacy.

H3 Programming Self-Efficacy directly and positively influences

learner’s Computational Thinking (CT) Self-Efficacy.

H4 Programming Attitude directly and positively influences learner’s

Computational Thinking (CT) Self-Efficacy.

H5 Computational Thinking (CT) Self-Efficacy directly and positively

influences learner’s Problem-Solving (PS) Self-Efficacy.

H6 Decomposition directly and positively influences learner’s

Problem-Solving (PS) Self-Efficacy.

H7 Pattern recognition directly and positively influences learner’s

Problem-Solving (PS) Self-Efficacy.

H8 Planning directly and positively influences learner’s

Problem-Solving (PS) Self-Efficacy.

H9 Algorithm directly and positively influences learner’s

Problem-Solving (PS) Self-Efficacy.

H10 Reusing directly and positively influences learner’s

Problem-Solving (PS) Self-Efficacy.

H11 Debugging directly and positively influences learner’s

Problem-Solving (PS) Self-Efficacy.

III. METHOD

A. Participants

Two types of sampling techniques were used for this

population. These included convenience sampling to quickly

reach a targeted sample, and identical sampling to

simultaneously produce quantitative and qualitative

phases [60]. Participants were a total of 69 college students

who were enrolled in an online course, Computing and

Information Technology, at a large public university. The

participants were enrolled in varied majors, were of various

ages, and were both male and female (age: M = 25.26 years,

range = 19–47 years, female: 54%). They had little-to-no

previous programming experience prior to taking the online

course. The sample size was considered adequate, providing

≥ 80% power to reject a non-closely fitting model (i.e., root

mean squared error of approximation [RMSEA] = 0.10) in

favor of a closely fitting model (i.e., RMSEA = 0.05) at 0.05

alpha level.

B. Research Setting

The course was intended to provide students with basic CS

knowledge and programming experiences using Scratch

block-based programming language and environment to

create and share their programming projects easily. A

web-based learning management system was used to

administer and provide online learning during a semester.

Scratch programming was adopted because it is suitable as an

introductory programming language for people of all ages.

The participants were asked to perform a programming task

using Scratch Version 3.0. There was a total of 13 modules,

including six modules related to programming. The main

tasks were to complete semi-finished Scratch projects, and the

final project was designing and developing a platform game in

which a player could make a character jump or climb to avoid

obstacles and reach a destination or perform a mission.

C. Instrument

This study used an online survey questionnaire to measure

the perceived level of affective factors. The survey consisted

of demographic questions and 18 closed-ended questions

(three questions per construct) asking about the six constructs:

(a) computer science attitude, (b) computer science usefulness,

(c) programming self-efficacy, (d) programming attitude, (e)

International Journal of Information and Education Technology, Vol. 13, No. 10, October 2023

1515

computational thinking self-efficacy, and (f) problem-solving

self-efficacy. Responses to the closed-ended questions were

scored on a 5-point Likert scale ranging from ―strongly

disagree‖ to ―strongly agree.‖ Survey items were adapted

from the CS Attitude [61], Programming Self-Efficacy [62],

and CT/Problem-Solving Self-Efficacy [63]. Two

professionals independently reviewed the survey items. Based

on their feedback, we revised the items to enhance clarity and

accessibility. The internal consistency of the survey items was

confirmed (Cronbach’s α = 0.92).

D. Data Collection and Analysis

An online form of the survey was linked in the last module,

and participants received an extra point for voluntarily taking

the survey (71% response rate). The answers to the survey

items were stored in the database and statistically analyzed

using RStudio [64]. In a preliminary analysis, assumptions of

normality, linearity, and homoscedasticity were met.

Descriptive statistics were also calculated to summarize the

demographic characteristics of the participants, as shown in

Table II.

TABLE II: DESCRIPTIVE STATISTICS

Demographics Item Frequency %

 Gender
Female

Male

32

37

46.4

53.6

 Age

Below 30 years

31–40 years

41 years and above

52

13

4

75.4

18.8

5.8

 Grade
Freshman

Sophomore

7

15

10.1

21.7

Junior

Senior

20

27

29.0

39.1

Confirmatory Factor Analysis (CFA) was employed to

examine the hypothesized factors of the research model,

which illustrates the directions and links between the latent

variables (i.e., factors) and their observed variable (i.e.,

closed-ended questions) as well as the associations among the

factors. The CFA model included the following parameters:

(a) item loadings on six affective factors—computer science

attitude, computer science usefulness, programming

self-efficacy, programming attitude, computational thinking

self-efficacy, problem-solving self-efficacy, (b) covariances

among the six factors, and (c) residual variances/covariances

and intercepts of the items.

Next, Structural Equation Modeling (SEM) was conducted

to examine predictive relationships among the latent variables.

The SEM model involved the same measurement part as the

CFA model, but the structural relationships were modified

with the regression paths: (a) from computer science attitude,

computer science usefulness, programming self-efficacy,

programming attitude (predictors) to computational thinking

self-efficacy (outcome); (b) from computational thinking

self-efficacy (predictor) to problem-solving self-efficacy

(outcome); and (c) from decomposition, pattern recognition,

planning, algorithm, reusing, and debugging (predictors) to

problem-solving self-efficacy (outcome). The model

parameters were estimated via robust maximum

likelihood [65]. The overall model fit was evaluated with

multiple indicators: chi-square statistic (χ
2
), RMSEA,

Standardized Root Mean Square Residual (SRMR), and two

comparative fit indices [66–69].

IV. RESULTS

Descriptive statistics and bivariate correlations were

calculated and are presented in Table III and Table IV,

respectively. The overall model fit was evaluated using

chi-square statistic (χ
2
), RMSEA, SRMR, Comparative Fit

Index (CFI), and Tucker-Lewis index (TLI) because various

indicators may show different features of model fit [70]. The

chi-square statistic and its p-value should not be significant at

the 0.05 level if there is a good model fit. The chi-square (χ
2
 =

181.65, df = 124) was statistically significant (p < 0.001);

however, the chi-square

statistic is very sensitive to sample

size and is weak to use as a single criterion of acceptance or

rejection [71, 72]. To overcome this issue, other indices are

recommended to determine the fit [65, 68]. The model fit

indices indicated a good fit between the observed data and the

structural causal model, as shown in Table V. The RMSEA

indicates the absolute fit of the hypothesized model in the

population covariance matrix. The RMSEA estimate was 0.07,

and its associated 90% Confidence Interval (CI) was (0.03,

0.09), which also indicates a good model fit [73]. The

difference between the residuals of the sample covariance and

the hypothesized covariance model is represented by the

SRMR. Since the lower SRMR values (≤ 0.08) are generally

considered a good fit [66], the SRMR estimate in the model

obtained 0.05, indicating a good model fit. Lastly, the CFI

calculates how well the hypothesized model fits the data

compared to a null model of uncorrelated variables. The

comparative indices of CFI and TLI were 0.95 and 0.94,

respectively, showing a good and acceptable model fit [65,

68]. Although the results of the chi-square test and RMSEA’s

CI are not sufficient, the rest of the indices indicated that the

fit of the model deems adequate and validated the hypotheses

of the research model.

TABLE III: BIVARIATE CORRELATIONS OF VARIABLES

 Affective Factors CT PS

1 2 3 4 5 6

1. CS Attitude 1

2. CS Usefulness 0.831
**

 1

3. Programming Self-Efficacy 0.637
**

 0.602
**

 1

4. Programming Attitude 0.563
**

 0.545
**

 0.555
**

 1

5. CT Self-Efficacy 0.642
**

 0.641
**

 0.754
**

 0.586
**

 1

6. PS Self-Efficacy 0.465
**

 0.550
**

 0.429
**

 0.441
**

 0.639
**

 1

 Computational Thinking CT PS

1 2 3 4 5 6 7 8

1. Decomposition 1

2. Pattern Recognition 0.802
**

 1

3. Planning 0.670
**

 0.761
**

 1

4. Algorithm 0.624
**

 0.682
**

 0.745
**

 1

5. Reusing 0.896
**

 0.786
**

 0.730
**

 0.689
**

 1

6. Debugging 0.724
**

 0.723
**

 0.810
**

 0.702
**

 0.823
**

 1

7. CT Self-Efficacy 0.887
**

 0.895
**

 0.885
**

 0.831
**

 0.926
**

 0.899
**

 1

8. PS Self-Efficacy 0.536
**

 0.521
**

 0.521
**

 0.634
**

 0.597
**

 0.597
**

 0.639
**

 1

** Correlation is significant at the 0.01 level (2-tailed).

International Journal of Information and Education Technology, Vol. 13, No. 10, October 2023

1516

TABLE IV: UNSTANDARDIZED AND STANDARDIZED ESTIMATES OF THE

PREDICTIVE EFFECTS ON COMPUTATIONAL THINKING

Parameter b SE β p

Regression Path to CT

 Computer Science Attitude 0.09 0.23 0.11 0.280

 Computer Science Usefulness 0.20 0.06 0.29 0.000

 Programming Self-Efficacy 0.48 0.08 0.58 0.000

 Programming Attitude 0.11 0.29 0.17 0.622

Regression Path to PS Self-Efficacy

 Decomposition 0.11 0.20 0.12 0.378

 Pattern Recognition 0.03 0.02 0.04 0.789

 Planning –0.04 0.17 –0.04 0.830

 Algorithm 0.41 0.14 0.42 0.023

 Reusing 0.10 0.21 0.12 0.489

 Debugging 0.27 0.11 0.30 0.002

 SE = Standard Error

TABLE V: SUMMARY OF MODEL FIT INDICES AND CUT-OFF THRESHOLDS

Measure Cut-off Result

χ
2

p-value > 0.05 0.001

RMSEA 0.06–0.08 (acceptable), < 0.06 (good) 0.07 [0.03, 0.09]

SRMR 0.05–0.08 (acceptable), < 0.05 (good) 0.05

CFI 0.90–0.95(acceptable), > 0.95 (good) 0.95

TLI 0.90–0.95 (acceptable), > 0.95 (good) 0.94

For the first research question concerning affective factors

influencing CT, the results suggested that computer science

usefulness and programming self-efficacy were positively and

significantly linked to computational thinking self-efficacy.

The rest of the latent variables—i.e., computer science

attitude and programming attitude—were not significant. As

hypothesized in Table I, programming self-efficacy and

computer science usefulness significantly predicted

computational thinking self-efficacy (Hypotheses 2 and 3).

71% of computational thinking self-efficacy variance was

explained by the two latent variables, among which

programming self-efficacy was the stronger predictor with

path loading (β = 0.58, p < 0.001). The direct effects of

computer science usefulness had slightly lower influences

with path loading (β = 0.29, p < 0.01). However, two

attitudinal factors (i.e., computer science attitude and

programming attitude) had no significant influence on

computational thinking self-efficacy (Hypotheses 1 and 4) (p

= 0.41–0.59).

Computational thinking self-efficacy was also positively

related to problem-solving self-efficacy. For the second

research question, it was found that the effects of two CT

components, algorithm and debugging, were positively

significant on problem-solving self-efficacy. In contrast, the

rest of the components— decomposition, pattern recognition,

planning, and reuse—were not significant. The analysis

results of the final structural model are illustrated in Fig. 2 and

detailed in Table IV. Computational thinking self-efficacy

was a strong predictor of problem-solving self-efficacy

(Hypothesis 5) (β = 0.64, p < 0.01). Algorithm and debugging

were moderate predictors of problem-solving self-efficacy

(Hypotheses 9 and 11) (p = 0.02), but decomposition, pattern

recognition, planning, and reuse did not predict

problem-solving self-efficacy (Hypotheses 6, 7, 8, and 10) (p

= 0.04–0.30).

V. DISCUSSION AND IMPLICATIONS

This study aimed to explore the structural relationships

among learner affective factors, CT self-efficacy, and PS

self-efficacy in the context of CT learning via block-based

programming. These relationships could have meaningful

implications for evaluating the affective factors, thereby

deriving insights on instructional designs to facilitate

computational thinking.

According to the model analysis findings, the overall

theoretical framework was statistically established, and two

affective determinants (i.e., programming self-efficacy and

computer science usefulness) explain students’ CT

development. Additionally, for the significant effect of CT

self-efficacy on problem-solving self-efficacy, the theoretical

assumption from previous studies was statistically confirmed.

Some previous studies have revealed a strong link between

CT and PS by examining CT knowledge and skills [36,

57–59]. For this reason, the current research has implications

for contributing to the validation of affective factors

predicting CT and the predictive relationship between CT and

PS.

Interestingly, program self-efficacy was the most vital

affective factor promoting computational thinking. Program

self-efficacy represents how well students can plan and write

blocks of code and explain a Scratch program they created. In

other words, the ability to create a Scratch program has been

confirmed to be closely related to computational thinking,

which is consistent with the findings of previous studies [14,

36–38]. The National Research Council [10] also highlighted

the role of programming in constructing a sequence of steps

for solving a problem. Hence, it can be concluded that

programming experience is critical to promoting

computational thinking skills. Also, the perceived usefulness

of CS exerted positive effects on computational thinking.

However, the present study found that attitude toward CS was

not a significant factor. Since the attitude toward computer

science asked to what extent the participants were interested

in CS, computer science usefulness was about the perceived

benefits of computing skills in their lives, meaning that

fostering the value of CS usefulness in curricula may facilitate

computational thinking skills.

Another finding was the significant relationship between

computational thinking components and problem-solving

self-efficacy. Although every CT component has a positive

relationship with problem-solving self-efficacy, the current

International Journal of Information and Education Technology, Vol. 13, No. 10, October 2023

1517

Fig. 2. Standardized coefficients of structural equation model (* p < 0.05, **

p < 0.01, *** p < 0.001).

study found that out of six CT components, algorithmic

thinking and debugging are significant determinants of

problem-solving self-efficacy. In other words, the levels of

the two CT components positively predict problem-solving

levels. Thus, these two activities should be emphasized in

K-12 and higher education curricula to improve

problem-solving skills. For instance, algorithmic thinking can

be developed by building ways of thinking of a step-by-step

solution. Debugging can also be taught by providing students

with various testing and debugging experiences.

VI. CONCLUSION

The present study provides insights allowing us to better

understand learners’ affective factors (i.e., attitude,

self-efficacy, and usefulness) and CT sub-components for

problem-solving skills with a limited sample size. The results

thus need to be interpreted with caution and may not be

generalizable to all settings or other age groups. Further

research on different cultures, institutions, and populations is

needed for them to be verified. Moreover, since only three

emotional factors were considered in this study, the effects of

other affective factors not included in the study were not

investigated. Future research may need to incorporate

different affective factors to obtain a holistic picture. Lastly,

complementary data (e.g., CS knowledge test, Scratch

programming artifacts assessment, problem-solving

performance test, open-ended questions about CS and CT)

should be considered to establish the relationships in the

research model to evaluate CT knowledge and skill domains

comprehensively. With these limitations in mind, most of the

model fit indices supported that the fit of the model was

adequate, and the research model was validated. The findings

of future studies will contribute to a better understanding of

the affective factors of learners as well as new ways to

redesign course curricula for teaching CT skills effectively.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Jongpil and Hyunchang designed the study. Hyunchang

collected and analyzed the data. Both wrote the initial

manuscript, and Hyunchang revised the manuscript. All

authors approved the final manuscript.

REFERENCES

[1] F. Buitrago-Flórez, G. Danies, S. Restrepo, and C. Hernández,

―Fostering 21st century competences through computational thinking

and active learning: A mixed method study,‖ International Journal of

Instruction, vol. 14, no. 3, pp. 737–754, 2021.

[2] S. Grover and R. Pea, ―Computational thinking: A competency whose

time has come,‖ Computer Science Education: Perspectives on

Teaching and Learning in School, vol. 19, pp. 1257–1258, 2018.

[3] J. Nouri, L. Zhang, L. Mannila, and E. Norén, ―Development of

computational thinking, digital competence and 21st century skills

when learning programming in K-9,‖ Education Inquiry, vol. 11, no. 1,

pp. 1–17, 2020.

[4] C. Angeli and M. Giannakos, ―Computational thinking education:

Issues and challenges,‖ Computers in Human Behavior, vol. 105, pp.

106–185, 2020.

[5] H. Montiel and M. G. Gomez-Zermeño, ―Educational challenges for

computational thinking in K–12 education: A systematic literature

review of ―Scratch‖ as an innovative programming tool,‖ Computers,

vol. 10, no. 6, p. 69, 2021.

[6] A. Lamprou and A. Repenning, ―Teaching how to teach computational

thinking,‖ in Proc. the 23rd Annual ACM Conference on Innovation

and Technology in Computer Science Education, pp. 69–74, 2018.

[7] D. J. Ketelhut, K. Mills, E. Hestness, L. Cabrera, J. Plane, and J. R.

McGinnis, ―Teacher change following a professional development

experience in integrating computational thinking into elementary

science,‖ Journal of Science Education and Technology, vol. 29, no. 1,

pp. 174–188, 2020.

[8] T. Šiaulys, ―Developing interactive visualizations focusing on

computational thinking in K-12 computer science education,‖ in Proc.

the 26th ACM Conference on Innovation and Technology in Computer

Science Education, vol. 2, pp. 680–681, 2021.

[9] Y. T. Lin, M. T. Wang, and C. C. Wu, ―Design and implementation of

interdisciplinary STEM instruction: Teaching programming by

computational physics,‖ The Asia-Pacific Education Researcher, vol.

28, no. 1, pp. 77–91, 2019.

[10] National Research Council, Report of a Workshop on the Scope and

Nature of Computational Thinking, National Academies Press, 2010.

[11] I. Lee, S. Grover, F. Martin, S. Pillai, and J. Malyn-Smith,

―Computational thinking from a disciplinary perspective: Integrating

computational thinking in K-12 science, technology, engineering, and

mathematics education,‖ Journal of Science Education and

Technology, vol. 29, no. 1, pp. 1–8, 2020.

[12] S. Psycharis, ―STEAM in education: A literature review on the role of

computational thinking, engineering epistemology and computational

science. Computational steam pedagogy (CSP),‖ Scientific Culture,

vol. 4, no. 2, pp. 51–72, 2018.

[13] P. J. Denning and M. Tedre, ―Computational thinking: A disciplinary

perspective,‖ Informatics in Education, vol. 20, no. 3, pp. 361–390,

2022.

[14] J. Olmo-Muñoz, R. Cózar-Gutiérrez, and J. A. González-Calero,

―Computational thinking through unplugged activities in early years of

primary education,‖ Computers & Education, vol. 150, pp. 103–832,

2020.

[15] S. Grover and R. Pea, ―Computational thinking in K–12: A review of

the state of the field,‖ Educational researcher, vol. 42, no. 1, pp.

38–43, 2013.

[16] S. Grover, K. Fisler, I. Lee, and A, Yadav, ―Integrating computing and

computational thinking into K-12 STEM learning,‖ in Proc. the 51st

ACM Technical Symposium on Computer Science Education, pp.

481–482, 2020.

[17] K. M. Rich, A. Yadav, and C. V. Schwarz, ―Computational thinking,

mathematics, and science: Elementary teachers’ perspectives on

integration,‖ Journal of Technology and Teacher Education, vol. 27,

no. 2, pp. 165–205, 2019.

[18] F. J. Agbo, S. S. Oyelere, J. Suhonen, and S. Adewumi, ―A systematic

review of computational thinking approach for programming

education in higher education institutions,‖ in Proc. the 19th Koli

Calling International Conference on Computing Education Research,

pp. 1–10, 2019.

[19] S. Grover, G. Biswas, A. Dickes et al., ―Integrating STEM and

computing in PK-12: Operationalizing computational thinking for

STEM learning and assessment,‖ in the Interdisciplinarity of the

Learning Sciences, 14th International Conference of the Learning

Sciences (ICLS), vol. 3, 2020.

[20] H. İ. Haseski, U. Ilic, and Tugtekin, U, ―Defining a new 21st century

skill-computational thinking: Concepts and trends,‖ International

Education Studies, vol. 11, no. 4, pp. 29–42, 2018.

[21] N. Zhang and G., Biswas, ―Defining and assessing students’

computational thinking in a learning by modeling environment,‖

Computational Thinking Education. Springer, Singapore, pp. 203–221,

2019.

[22] Y. Allsop, ―Assessing computational thinking process using a multiple

evaluation approach,‖ International Journal of Child-Computer

Interaction, vol. 19, pp. 30–55, 2019.

[23] V. J. Shute, C. Sun, and J. Asbell-Clarke, ―Demystifying

computational thinking,‖ Educational Research Review, vol. 22, pp.

142–158, 2017.

[24] A. Tucker, D. McCowan, F. Deek, C. Stephenson, J. Jones, and A.

Verno, A Model Curriculum for K–12 Computer Science: Report of

the ACM K–12 Task Force Curriculum Committee, 2nd ed. New York,

Association for Computing Machinery, p. 2, 2006.

[25] National Science Foundation, Computer Science for All (CSforAll:

RPP), 2016.

International Journal of Information and Education Technology, Vol. 13, No. 10, October 2023

1518

[26] A. Yadav, S. Gretter, S. Hambrusch, and P. Sands, ―Expanding

computer science education in schools: understanding teacher

experiences and challenges,‖ Computer Science Education, vol. 26, no.

4, pp. 235–254. 2016.

[27] V. Barr and C. Stephenson, ―Bringing computational thinking to K-12:

What is involved and what is the role of the computer science

education community?‖ Inroads, vol. 2, no. 1, pp. 48–54, 2011.

[28] J. M. Wing, ―Computational thinking,‖ Communications of the ACM,

vol. 49, no. 3, pp. 33–35, 2006.

[29] J. M., Wing, ―Research notebook: Computational thinking—What and

why?‖ The Link Magazine, Spring, 2011.

[30] CSTA & ISTE, Operational Definition of Computational Thinking for

K-12 Education, 2011.

[31] S. Atmatzidou and S. Demetriadis, ―Advancing students’

computational thinking skills through educational robotics: A study on

age and gender relevant differences,‖ Robotics and Autonomous

Systems, vol. 75, pp. 661–670, 2016.

[32] M. Berland and U. Wilensky, ―Comparing virtual and physical

robotics environments for supporting complex systems and

computational thinking,‖ Journal of Science Education and

Technology, vol. 24, no. 5, pp. 628–647, 2015.

[33] M. Israel, J. N. Pearson, T. Tapia, Q. M. Wherfel, and G. Reese,

―Supporting all learners in school-wide computational thinking: A

cross-case qualitative analysis,‖ Computers and Education, vol. 82, pp.

263–279, 2015.

[34] K. Brennan and M. Resnick, ―New frameworks for studying and

assessing the development of computational thinking,‖ in Proceedings

of the 2012 Annual Meeting of the American Educational Research

Association, Vancouver, Canada, vol. 1, p. 25, 2012.

[35] M. Resnick, ―All I really need to know (about creative thinking) I

learned (by studying how children learn) in kindergarten,‖ in Proc. the

6th ACM SIGCHI Conference on Creativity & Cognition, pp. 1–6,

ACM, 2007.

[36] S. Y. Lye and J. H. L. Koh, ―Review on teaching and learning of

computational thinking through programming: What is next for

K-12?‖ Computers in Human Behavior, vol. 41, pp. 51–61, 2014.

[37] A. A. DiSessa, Changing Minds, MIT Press, 2000.

[38] I. Cetin, ―Preservice teachers’ introduction to computing: Exploring

utilization of scratch,‖ Journal of Educational Computing Research,

vol. 54, no. 7, pp. 997–1021, 2016.

[39] S. Sentance and A. Csizmadia, ―Teachers’ perspectives on successful

strategies for teaching computing in school,‖ IFIP TCS, 2015.

[40] F. Lester and R. Charles, ―Teaching problem solving: What, why &

how,‖ Dale Seymour Publications, 1982.

[41] A. H. Schoenfeld, ―Learning to think mathematically: Problem solving,

metacognition, and sense making in mathematics,‖ Handbook of

Research on Mathematics Teaching and Learning, pp. 334–370,

1992.

[42] I. Tallman, R. K. Leik, L. N. Gray, and M. C. Stafford, ―A theory of

problem-solving behavior,‖ Social Psychology Quarterly, pp.

157–177, 1993.

[43] R. E. Mayer, ―Cognitive, metacognitive, and motivational aspects of

problem solving,‖ Instructional Science, vol. 26, no.1–2, pp. 49–63,

1998.

[44] K. N. Palmer, D. E. Ziegenfuss, and R. E. Pinsker, ―International

knowledge, skills, and abilities of auditors/accountants: Evidence from

recent competency studies,‖ Managerial Auditing Journal, vol. 19, no.

7, pp. 889–896, 2004.

[45] B. S. Bloom, Taxonomy of Educational Objectives. Vol. 1: Cognitive

Domain, New York: McKay, pp. 20–24, 1956.

[46] D. H. Jonassen, Learning to Solve Problems: A Handbook for

Designing Problem-solving Learning Environments, Routledge, 2010.

[47] L. Mason, ―Personal epistemologies and intentional conceptual

change,‖ Intentional Conceptual Change, Routledge, pp. 204–241,

2003.

[48] B. Hoffman and G. Schraw, ―The influence of self-efficacy and

working memory capacity on problem-solving efficiency,‖ Learning

and Individual Differences, vol. 19, no. 1, pp. 91–100, 2009.

[49] A. Bandura, Self-efficacy: The Exercise of Control. Macmillan, 1997.

[50] I. Ajzen, Attitudes, Personality, and Behavior, McGraw-Hill

Education, 2005.

[51] V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, ―User

acceptance of information technology: Toward a unified view,‖ MIS

Quarterly, pp. 425–478, 2003.

[52] S. Basu, G. Biswas, and J. S. Kinnebrew, ―Learner modeling for

adaptive scaffolding in a computational thinking-based science

learning environment,‖ User Modeling and User-Adapted Interaction,

vol. 27, no. 1, pp. 5–53, 2017.

[53] I. Fronza, N. E. Ioini, and L. Corral, ―Teaching computational thinking

using agile software engineering methods: A framework for middle

schools,‖ ACM Transactions on Computing Education (TOCE), vol.

17, no. 4, p. 19, 2017.

[54] J. Moreno-León, G. Robles, and M. Román-González, ―Dr. Scratch:

Automatic analysis of scratch projects to assess and foster

computational thinking,‖ Revista de Educación a Distancia (RED),

vol. 46, pp. 1–23, 2015.

[55] D. Weintrop and U. Wilensky, ―To block or not to block, that is the

question: Students' perceptions of blocks-based programming,‖ in

Proc. the 14th International Conference on Interaction Design and

Children, ACM, pp. 199–208, 2015.

[56] B. Zhong, Q. Wang, J. Chen, and Y. Li, ―An exploration of

three-dimensional integrated assessment for computational thinking,‖

Journal of Educational Computing Research, vol. 53, no. 4, pp.

562–590, 2016.

[57] D. Barr, J. Harrison, and L. Conery, ―Computational thinking: A

digital age skill for everyone,‖ Learning & Leading with Technology,

vol. 38, no. 6, pp. 20–23, 2011.

[58] M. Román-González, J. C. Pérez-González, and C. Jiménez-Fernández,

―Which cognitive abilities underlie computational thinking? Criterion

validity of the computational thinking test,‖ Computers in Human

Behavior, vol. 72, pp. 678–691, 2017.

[59] M. G. Voskoglou and S. Buckley, ―Problem solving and computational

thinking in a learning environment,‖ arXiv preprint arXiv:1212.0750,

2012.

[60] K. M. Collins, A. J. Onwuegbuzie, and Q. G. Jiao, ―A mixed methods

investigation of mixed methods sampling designs in social and health

science research,‖ Journal of Mixed Methods Research, vol. 1, no. 3,

pp. 267–294, 2007.

[61] E. Wiebe, L. A. Williams, K. Yang, and C. S. Miller, ―Computer

science attitude survey,‖ North Carolina State University, Dept. of

Computer Science, 2003.

[62] M. Baser, ―Attitude, gender and achievement in computer

programming,‖ Middle-East Journal of Scientific Research, vol. 14,

no. 2, pp. 248–255, 2013.

[63] V. Kukul and S. Karatas, ―Computational thinking self-efficacy scale:

Development, validity and reliability,‖ Informatics in Education, vol.

18, no. 1, pp. 151–164, 2019.

[64] R. C. Team, A Language and Environment for Statistical Computing,

2013.

[65] H. W. Marsh, Z. Wen, K. T. Hau, and B. Nagengast, ―Structural

equation models of latent interaction and quadratic effects,‖ Structural

Equation Modeling: A Second Course, pp. 225–265, 2006.

[66] L. T. Hu and P. M. Bentler, ―Cutoff criteria for fit indexes in

covariance structure analysis: Conventional criteria versus new

alternatives,‖ Structural Equation Modeling: A Multidisciplinary

Journal, vol. 6, no. 1, pp. 1–55, 1999.

[67] J. H. Steiger and J. C. Lind, ―Statistically based tests for the number of

common factors,‖ Psychometric Society, Iowa City, IA, 1980.

[68] P. M. Bentler, ―Comparative fit indexes in structural models,‖

Psychological Bulletin,‖ vol. 107, no. 2, p. 238, 1990.

[69] R. B. Kline, Methodology in the Social Sciences, 2005.

[70] D. Hooper, J. Coughlan, and M. Mullen, ―Structural equation

modelling: Guidelines for determining model fit,‖ Articles, vol. 2,

2008.

[71] P. M. Bentler and D. G. Bonett, ―Significance tests and goodness of fit

in the analysis of covariance structures,‖ Psychological Bulletin, vol.

88, no. 3, p. 588, 1980.

[72] K. Schermelleh-Engel, H. Moosbrugger, and H. Müller, ―Evaluating

the fit of structural equation models: Tests of significance and

descriptive goodness-of-fit measures,‖ Methods of Psychological

Research Online, vol. 8, no. 2, pp. 23–74, 2003.

[73] R. C. MacCallum, M. W. Browne, and H. M. Sugawara, ―Power

analysis and determination of sample size for covariance structure

modeling,‖ Psychological Methods, vol. 1, no. 2, p. 130, 1996.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

International Journal of Information and Education Technology, Vol. 13, No. 10, October 2023

1519

https://creativecommons.org/licenses/by/4.0/

