
A Systematic Literature Review of Teaching and Learning on

Object-Oriented Programming Course

Efan*, Krismadinata, Jalius Jama, and Rudi Mulya

Abstract—Object-oriented programming is a paradigm that

allows us to write programs by modeling real-world things in

the form of classes and objects. The main goal of

Object-oriented programming is to develop software that

integrates various attributes, such as reusability,

maintainability, and reliability. Many researchers have

identified various problems and proposed concrete solutions

regarding the teaching and learning process of Object-oriented

programming courses. However, a map of problems and

solutions is needed that summarizes what has been discussed by

previous researchers so that it can be seen what the core

problems related to learning in Object-oriented programming

courses. In this study, we conducted a systematic literature

review on course problems and solutions in OOP learning. For

that purpose, we considered research works published from

2017 to 2021 in IEEE Xplore, ACM Digital Library, and Google

Scholar as many as 9664 articles based on search keywords. The

method used in the SLR performs three stages, namely planning,

implementation, and reporting. From the SLR process, there

are 60 articles for our research and review them from related

issues from three aspects, namely students, content and

technology, and lecturers. Based on the analysis, four major

problems were identified, namely the complexity and

abstraction of the material, the learning model, the lecture time,

and the background and experience of students. The majority of

researchers propose the development of learning media or the

development of learning models.

Index Terms—Object-oriented programming, teaching,

learning, systematic literature review.

I. INTRODUCTION

The object-oriented paradigm in design and programming

has been the main approach in software development for

more than two decades. In the field of computer science, one

of the courses that apply this paradigm is the Object-Oriented

Programming (OOP) course [1, 2]. The main goal of OOP is

to develop a software system that combines various quality

attributes, such as reusability, maintainability, and reliability

[3]. Then students can construct software by representing it

as close as possible to the real world, where all entities are

treated as objects and each object has characteristics such as

the ability to perform relationships with other objects [4].

OOP is a programming paradigm designed to represent

objects into procedure blocks by taking into account the

objects, classes, properties, methods, etc. contained in each

Manuscript received May 26, 2022, revised August 30, 2022, accepted

September 29, 2022.

Efan is with Universitas Negeri Padang, Padang, West Sumatra,

Indonesia and with the Institut Teknologi Pagar Alam, Pagar Alam, South

Sumatra, Indonesia.

Krismadinata, Jalius Jama and Rudi Mulya are with the Universitas

Negeri Padang, Padang, West Sumatra, Indonesia (e-mail:

krisma@ft.unp.ac.id, jamajalius@yahoo.com, rudimuly4@gmail.com).

*Correspondence: efan@itpa.ac.id

of these objects [5]. Objects are the basic entities of OOP and

are instances of classes, so objects are needed for any

development of any program [6]. Objects act as

intermediaries between programs and the methods and

properties added to them. While the class is a blueprint of a

particular object that contains properties and methods and

forms the basic unit of software development. Classes are a

key element in the development and maintenance of OOP

software [7] by using properties and methods to operate the

given data. Furthermore, the class format can be improved by

using the concept of inheritance, polymorphism, and so on.

Various problems in the OOP learning process have been

identified by previous researchers. For example, Wong and

Hayati et al. [8] identified that first-year students who do not

have basic programming experience will find it increasingly

difficult to learn OOP, then propose the development of

mobile games combined with game-based learning; Seng and

Mohamad Yatim et al. [9] consider traditional

classroom-based learning methods to be ineffective and the

available time is insufficient to complete the full OOP

curriculum, then they also propose the development of

game-based learning; Silva and Dora [4] found that learning

programming for students is a very expensive task that slows

down the learning process and results in increased difficulty

in learning more advanced concepts. Next, they proposed the

development of an expert system model. Boudia and

Bengueddach et al. [10] stated programming is a difficult

task for students because it requires metacognitive skills such

as abstraction, deep understanding, tenacity, and the ability to

perform problem-solving stages in programming. Then they

tried to demonstrate the effectiveness of the collaborative

learning strategy and the impact on the learning process they

had developed. Ardiana and Loekito [11] discussed the

problem of low student motivation during class sessions due

to passive learning styles, lack of understanding of previous

programming classes, and trying to design games

(game-based learning) to increase student motivation and

involvement in OOP courses.

Many researchers have identified various problems and

proposed solutions regarding the learning process of OOP

courses. However, a map of the problems and solutions is

needed that summarizes what has been discussed by previous

researchers so that it can be known what the core problems

related to learning in OOP courses are. This study aims to

map the aspects of the problems in OOP courses that have

been discussed by previous researchers and the various

concrete solutions they have offered. This research was

conducted by reviewing previous studies published from

2017 to 2021 and related to the teaching and learning process

in OOP courses. The results of this study can be used as a

reference for practitioners and future researchers to present

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

302doi: 10.18178/ijiet.2023.13.2.1808

mailto:krisma@ft.unp.ac.id
mailto:jamajalius@yahoo.com
mailto:rudimuly4@gmail.com
mailto:efan@itpa.ac.id

more innovative solutions in the future by prioritizing the

core problems related to OOP learning.

II. METHOD

Systematic Literature Review (SLR) is a process of

identifying, assessing, and interpreting all available research

phenomena to provide answers to research questions [12].

SLR is carried out in 3 main stages, namely planning,

conducting, and reporting. Overall, the three main stages are

constructed into 9 steps. Step 1 is done to get the reasons why

SLR is done which are defined in the introduction section of

this article. Step 2 (Protocol review) is designed to facilitate

the execution of subsequent review processes. The review

protocol defined the research question (RQ), search strategy,

article selection process based on inclusion and exclusion

criteria, article quality assessment, data extraction, and

synthetic analysis process. The review protocol was

represented in the A, B, C, and D sections of this chapter.

Furthermore, step 3 was carried out and developed repeatedly

during the conducting and reporting stages. Fig. 1 shows the

complete process.

Fig. 1. SLR steps (adapted from [12]).

A. Research Question

Identifying research questions is one of the important steps

in the SLR which is stated specifically so that the focus of the

review is maintained, namely as follows.

RQ1: What is the core problem in the learning process of

OOP courses from 2017 to 2021?

RQ2: What solutions have been offered for the core

problems in the learning process of OOP courses from 2017

to 2021?

B. Search Process

The first activity was to determine the search string as

shown in Table I.

TABLE I: SEARCH STRING

Search String

(“teaching” OR “learning” OR “education” OR “pedagogy”) AND

(“object-oriented programming” OR “object-oriented paradigm” OR

“object-oriented model” OR “object-oriented” OR “OOP”)

The next activity was to determine the digital library that

will be accessed as a search source. The following are the

digital libraries accessed in this study:

1) IEEE Xplore (IEEE)

2) ACM Digital Library (ACM-DL)

3) Google Scholar (GS)

The following criteria are used as a reference in

determining the articles to be reviewed:

1) Published between 2017 to 2021

2) Documents must be articles in reputable international

journals or international seminar proceedings

3) The title must contain the phrase ―object-oriented

programming‖ or its acronyms

4) The article is written in English

5) Articles can be downloaded

6) The article is a primary research

7) Focus on models, methods, strategies, or learning

approaches (teaching and learning)

8) Preference will be given to those who have a focus on a

learning model

9) Meet the article quality assessment

C. Article Quality Assessment

Quality assessment criteria are defined based on the

objectives of the SLR by answering the following questions:

Q1: Does the article state the research problem?

Q2: Does the article clearly state the proposed solution?

Each question was given a score as shown in Table II.

TABLE II: ARTICLE QUALITY ASSESSMENT SCORE GUIDE

Question Y (1) P (0.5) N (0)

Q1 If the article states

the problem very

unequivocally

If the article states

the problem less

emphatically

If the article does

not state the

problem

unequivocally

Q2 If the article states

the proposed

solution very

clearly?

If the article states

the proposed

solution is less

clear?

If the article does

not clearly state

the proposed

solution?

D. Study Selection

Based on search keywords, document type, and

publication period, IEEE displays 802 titles (152 journal

article titles and 650 proceedings article titles), ACM-DL

displays 1682 titles (321 journal article titles and 1361

proceedings article titles), GS displays 7180 article titles

journals and proceedings. A list of titles that have been

displayed in each digital library containing the phrase

―object-oriented programming‖ was selected. The selection

process left 32 titles on the IEEE, 16 titles on the ACM-DL,

and 463 titles on the GS (see Fig. 2).

Full titles and abstracts and other identities are filtered for

relevance, language used, and DOI. The screening results

released 296 titles on the GS that were not relevant, 4 titles on

the IEEE and 38 titles on the GS that were not written in

English, and 15 titles on the GS that did not have a DOI. The

screening process left 28 titles on the IEEE, 16 titles on the

ACM-DL, and 114 titles on the GS.

Furthermore, the selection is again carried out in the

introduction and conclusion sections to see the relevance of

the topics discussed. The results of the screening resulted in 2

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

303

IEEE articles and 40 articles for which the pdf document was

not available or could not be downloaded. In addition, the

selection process issued 3 IEEE articles and 12 GS articles

which were not primary studies. So, the selection process left

22 IEEE articles, 14 ACM-DL articles, and 44 GS articles.

Fig. 2. Selection process.

The selection process was continued to remove duplicated

articles. The selection process issued 1 article in the

ACM-DL that had the same title and documents in the IEEE.

In addition, the screening process issued 12 articles on the GS

that had the same title and documents in the IEEE and

ACM-DL. The final selection process left 22 IEEE articles,

13 ACM-DL articles, and 33 GS articles. So that the final

total of articles that will be assessed for quality is 68 articles.

Article quality assessment excluded 8 articles that are low

quality (see Table III). The final quality assessment process

leaves articles that meet a minimum score of 20 IEEE articles,

12 ACM-DL articles, and 28 GS articles. So that the final

total of articles reviewed amounted to 60 articles.

TABLE III: ARTICLE QUALITY ASSESSMENT SCORE

No. Source Q1 Q2 Quality

1 [1] Y Y High

2 [2] Y Y High

3 [3] P Y Medium

4 [4] Y Y High

5 [8] Y Y High

6 [9] Y Y High

7 [10] Y Y High

8 [13] P P Low

9 [11] Y P Medium

10 [14] Y P Medium

11 [15] Y Y High

12 [16] P P Low

13 [17] P Y Medium

14 [18] Y Y High

15 [19] P P Low

16 [20] Y Y High

17 [21] Y Y High

18 [22] Y Y High

19 [23] P Y Medium

20 [24] Y Y High

21 [25] Y Y High

22 [26] Y Y High

23 [27] Y Y High

24 [28] Y Y High

25 [29] Y P Medium

26 [30] Y Y High

27 [31] P P Low

28 [32] Y P Medium

29 [33] Y Y High

30 [34] Y Y High

31 [35] Y Y High

32 [36] P Y Medium

33 [37] Y Y High

34 [38] Y Y High

35 [39] Y Y High

36 [40] P Y Medium

37 [41] P P Low

38 [42] Y Y High

39 [43] Y P Medium

40 [44] P Y Medium

41 [45] Y P Medium

42 [46] Y Y High

43 [47] P Y Medium

44 [48] Y P Medium

45 [49] Y P Medium

46 [50] P Y Medium

47 [51] P P Low

48 [52] Y Y High

49 [53] Y Y High

50 [54] Y Y High

51 [55] P P Low

52 [56] Y Y High

53 [57] Y Y High

54 [58] P Y Medium

55 [59] Y Y High

56 [60] P Y Medium

57 [61] Y Y High

58 [62] Y Y High

59 [63] P Y Medium

60 [64] Y P Medium

61 [65] Y Y High

62 [66] Y Y High

63 [67] P Y Medium

64 [68] Y Y High

65 [69] P P Low

66 [70] Y Y High

67 [71] Y Y High

68 [72] P Y Medium

9153 titles don‘t

contain PBO words

353 titles are

irrelevant / not written

in English

78 articles are

Unavailable / not PS /

irrelevant

12 articles are

duplicated

8 articles are low

quality

1st phase:

Title (9664)

2nd phase:

abstract (511)

3rd phase:

introduction &

conclusion

(158)

4th phase:

remove duplicate

(80)

quality

assessment: full

paper (68)

reviewed studies

(60)

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

304

III. RESULTS

A. Problem Finding

The problems found were divided into 3 main aspects, as

done by Kebritchi and Lipschuetz [73]. The three categories

are problems related to students, problems related to content

and technology, and problems related to lecturers (see Fig.

3).

1) Problems related to students

Regarding students, the literature review reveals that these

aspects are categorized into problems of Cost, Background

and Student Learning Experiences, Learning Motivation,

Level of Comprehension, and Problem-Solving Skills (see

Table IV).

TABLE IV: PROBLEMS RELATED TO STUDENTS

Problem Source

Cost (S1) [4]

Background and Student Learning

Experiences (S2)
[1, 14, 15, 17, 18, 20–22]

Learning Motivation (S3) [11, 23–26]

Level of Comprehension (S4) [27–30, 32–34]

Problem Solving Skills (S5) [35–37]

Cost. For most students, learning to program is a very

expensive task and can slow down the learning process. The

consequences of this delay increase the difficulty of

understanding advanced programming concepts [4, 38].

Background and Student Learning Experiences. Most

students from different backgrounds find it difficult to learn

and master the OOP concept [1]. A programming paradigm

that is difficult to break [14, 20]. For first-year students, it is

difficult to conceptualize the way of thinking and related

information needed to be successful in their studies [17]. For

novice programmers, learning the concept of OOP is often

daunting due to its abstract nature [18]. Of course, they find it

difficult to understand and apply large-scale program

structures [15], when they have to struggle with aspects of the

computer science curriculum [21]. For novice programmers,

both basic logic and simple OOP programs are challenging

tasks [22].

Learning Motivation. Student enthusiasm often drops

dramatically in the second year due to difficulties in learning

programming [24, 25, 39]. The motivation of some students

does not arise because of their passive learning style and lack

of understanding of previous programming classes [11]. This

has an impact on the non-fulfillment of industry requirements

in the programming field. Even though there is a need and

hope for a prospective workforce from the programming

field of education [23].

Level of Comprehension. Students who are learning OOP

for the first time at the end of the lecture only master the basic

material and lack understanding of software engineering

ideas [27–30], [34]. They are required to build their mental

models to overcome misperceptions [32]. Students‘ active

learning abilities, self-management, and self-discipline are

not yet strong [33].

Problem-Solving Skills. There are many symptoms at the

K-12 education level in applying the concept of

problem-solving [35]. Several competencies, especially

digital skills, are seen as crucial for the development of

personal abilities [36]. Students cannot solve complex

problems, so they are replaced with basic concepts to build

higher cognitive understanding [37].

Fig. 3. Problem diagram in OOP learning.

2) Problems related to content and technology

Related to content and technology, this aspect was

categorized into Learning Models or Methods, Complexity

and Abstraction of Material, and the Portion of Material. See

Table V.

TABLE V: PROBLEMS RELATED TO CONTENT AND TECHNOLOGY

Problem Source

Learning Model/Method (C1) [3, 8, 9, 28, 35, 36, 40, 42–49]

Material Complexity and

Abstraction (C2)

[10, 18, 20, 22, 24, 34, 37, 46, 50,

52–54, 56–62]

Material Portion (C3) [28, 25, 33, 61, 63]

Learning Models or Methods. Traditional learning

methods do not adequately assist students in understanding

the OOP paradigm [8, 9, 49] and fail to relate computational

concepts to various student interests [35]. For weak students,

the single instructor method is very difficult to arouse the

creativity of each student [42]. Learning models based on

dependence in closed classrooms trigger cognitive conflicts

when students have to undergo a transition from a procedural

paradigm to an object-oriented paradigm [48]. Since learning

to program is a substantial cognitive challenge, today's

MOOC (Massive Open Online Course) runs the risk of

over-tensioning students, leaving them frustrated before

starting their studies [40]. There is no uniform method for

teaching OOP, so lecturers usually have to experiment a lot to

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

305

find more effective ways to introduce object-oriented

concepts and techniques [46]. The latest learning methods do

not determine the correlation between performance and

programming skills, which is the essence of learning

quality-oriented programming languages [28]. Upper-level

students sometimes need to correct inaccurate models from

their previous work [47] with knowledge of rules that do not

meet the quality attributes [3]. There is often a difference

between the methodology and focus of programming

instruction on the one hand, and the development of

programming languages, development tools, and

development methodologies on the other [44]. Several

innovative ideas should be introduced from time to time [43],

one of which is exploring game-based learning in the

classroom [45].

Material Complexity and Abstraction. For most students,

programming is a very difficult task [59, 61], because it

requires high metacognitive skills such as abstraction, deep

comprehension, tenacity, and skills to complete the stages of

problem-solving and programming [10]. One of the

challenges faced by students is not understanding the concept

of OOP [24]. OOP requires a high understanding of abstract

concepts, as well as the use of these concepts with advanced

programming methods [54]. OOP is difficult for students to

learn, especially novice students, because both basic

concepts (objects and classes) and fundamental concepts

(encapsulation, inheritance, and polymorphism) are abstract

[18, 50, 56, 62], is difficult to describe [15, 20, 52], and goes

beyond just understanding definitions [58]. Some of these

difficulties include the fact that OOP translates real-world

objects into object-oriented code [57], sometimes lecturers

do not have enough experience with the OOP concept on how

to teach the abstraction of the concept to students [53], and

many applications are designed to make objects interact with

each other, which is different from the procedural

programming style [22]. Of course, the transition from a

procedural programming paradigm to an object-oriented

paradigm is a challenge in itself [37]. Due to its complexity

and abstraction, the OOP concept needs innovative solutions,

which can serve as a means to study the concepts [60]. There

is no uniform method for teaching OOP, so lecturers have to

experiment a lot to find better and more effective ways to

introduce OOP [46]. In other words, teaching OOP concepts

and other advanced topics always has a high level of

complexity so there is a potential for many students to fail

this course [34].

Material Portion. Programming courses have a very large

portion, so if students experience problems in this series of

courses, students will likely fail [25, 28]. The OOP course

contains a lot of material with high difficulty, but only a few

hours are available for the course [33]. Students often have

difficulty learning how to program in an object-oriented style

because object-oriented languages require programmers to be

familiar with a large number of non-trivial concepts, to write

even the simplest programs [61, 63].

3) Problems related to lecturer

The literature review also reveals that problems related to

lecturers are categorized into Level of Comprehension,

Lecturer Capabilities, Teaching Styles, and Availability of

Time & the Lecturer-Student Ratio, see Table VI.

TABLE VI: PROBLEMS RELATED TO A LECTURER

Problem Source

Level of Comprehension (L1) [2, 64]

Lecturer Capability (L2) [49, 53, 65]

Teaching Style (L3) [32, 36, 62]

Availability of Time & Lecturer-Student Ratio (L4) [10, 48, 65-67]

Level of Comprehension. Although OOP is considered

suitable for large and complex software constructions,

lecturers find teaching OOP to be difficult and therefore

students also find it difficult to understand it [2]. In massive

courses, lecturers cannot follow the practice part well,

therefore automation of the knowledge transfer process to

students must be used to direct students in the right direction

[64].

Lecturer Capability. Non-computer science lecturers find

it difficult to find effective ways to teach programming and

are not at all trained to become computer science lecturers

[65]. Sometimes instructors may not have enough experience

in the field to teach often abstract problems convincingly [53].

There is no information available about which features

lecturers deem necessary to improve the learning process

[49].

Teaching Style. Lecturers usually only use laptops and

write code practically so that students are more bored and less

enthusiastic about studying OOP courses [62]. Lecturers

need to be aware of student perceptions to teach more

effectively and provide appropriate interventions in the

future [32]. Digital skills are becoming increasingly

important in modern society and lecturers are required to

adapt to these skills in teaching [36].

Availability of Time & Lecturer-Student Ratio. The

transition between paradigms (procedural - Object Oriented)

leads to cognitive conflicts, which take more time to resolve

[48]. Limited time, limited resources, unbalanced

faculty-student ratio, and student diversity, all of which make

it difficult for a lecturer to design lessons that meet specific

learning needs [10, 65]. Scoring takes a lot of time and effort

to manually print hundreds of student source codes so the

burden on lecturers becomes even greater [66], even though

lecturers have to examine many programs in one period and

provide assessments with different criteria [67].

B. Finding Proposed Solutions

The literature review also reveals the solutions offered by

researchers. The solutions are categorized into 7 categories:

Learning Models, Learning Strategies, Learning Methods,

Tools or Technology, Learning Environments and Platforms,

Assessment Techniques, and Instructional Designs, see Table

VII and Fig. 4.

Learning Model. Wong and Yatim [24] proposed the

development of game-based learning referring to a

game-based framework that can be used as a learning

medium in OOP courses. Zaw and Funabiki et al. [56]

developed a web-based JAVA Programming Learning

Assistance System (JPLAS) that facilitates students writing

coding assignments. Ribeiro and Bittencourt [48] tried to use

project-based learning (PBL). Krugel and Hubwieser [40]

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

306

developed a MOOC with the name ―LPBO‖ which presents

an introduction to the concepts of computational thinking and

friendly object-oriented concepts before entering the

programming section. Bouali and Nygren et al. [2] developed

a Virtual Reality (VR) based learning game to support OOP

concept learning. Xie and Wu et al. [33] designed a blended

learning model by combining paired classes, assignment

assignments, SPOC, and online evaluation. Boudia and

Bengueddach et al. [10] demonstrated the impact and

effectiveness of collaborative strategies on the learning

process. Jusuf and Ibrahim et al. [25] implemented a hybrid

learning model and compared student interactions in the

classroom with the traditional model. Seng and Mohamad

Yatim et al. [9] adopted a game-based learning model to

increase student understanding.

Strategy and Approach. Niculescu and Şerban et al. [3]

proposed a cyclic learning approach to introduce OOP and

analyze its impact. You et al. [14] and Batur [29] tried to find

an applicable design approach to identify students‘

conceptions and mental models concerning the used eIDE.

Batur and Brinda [39] developed a design approach to

identify students' mental conceptions and models about

certain digital games. Tanielu and Akau‘ola et al. [18]

developed a systematic approach to creating interactive

learning activities by combining analogies and visualizations

without students feeling distracted or overwhelmed by the

technicalities inherent in textual codes. Dlamini and Leung

[65] Developed an Adaptive Pedagogical Model (APM)

which can improve teaching strategies through machine

learning to assess learning preferences for different types of

students. Ardiana and Loekito [11], Çubukçu and Wang et al.

[68] used the concept of gamification to increase student

motivation during class sessions. Wong and Hayati et al. [8]

developed a mobile game that is by the game-based learning

design approach model for students to learn object-oriented

programming paradigms. Muyan-Özçelik [23] developed a

cross-platform mobile programming approach to introduce

two important software engineering topics, namely OOP

concepts and design patterns. Gabaruk and Logofatu et al.

[46] applied a java and OOP teaching approach using the

Children Board Games (CBG). Passerini and Lombardi [61]

developed a procrastination approach that introduces the

concepts of class and instantiation after a few weeks. Lokare

and Jadhav et al. [42] applied for a logic development

program in the OOP (C++) course. Tylman [43] discussed

the striking similarities between influential philosophical

concepts of the past and approaches currently used in certain

fields of computer science and tried to gained into Plato's

foresee about OOP. Kanaki and Kalogiannakis [57]

suggested determining the right starting point for teaching

basic object-oriented concepts and marking the appropriate

educational tools.

TABLE VII: SOLUTION FINDING

Category Source

Learning Model (SL1) [2, 9, 10, 24, 25, 33, 40, 48, 56]

Strategy and Approach (SL2)
[3, 8, 11, 14, 18, 23, 29, 39, 42,

43, 46, 57, 61, 65, 68]

Learning Method (SL3) [26–28, 32, 44, 54]

Tools or Technology (SL4)
[1, 4, 15, 20–22, 30, 34, 36–38,

52, 53, 59, 60, 62, 64, 70]

Environment and Platform (SL5) [45, 49, 50, 58, 71]

Assessment Technique (SL6) [17, 63, 66, 67]

Instructional Design (SL7) [35, 47, 72]

Fig. 4. Various solutions to OOP course learning problems.

Learning Methods. Oliveira and Bonacin [54] Developed

innovative methods for planning and implementing OOP

learning activities with the support of digital modeling and

fabrication based on instructional design concepts and

organizational semiotics. Julie et al. [32] developed a

dedicated Inventory Concept (CI) method for OOP. Xie et al.

[27] Developed teaching methods by combining SPOC,

Flipped Classroom, and project-based approaches. Sun et al.

[28] proposed a quantitative assessment model of student

success in programming skills. Fojtik [44] using the

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

307

Object-First Methodology. Huri and Orcid et al. [26]

implemented Collaborative Learning by using Face-To-Face

Groups.

Tools or Technology. Silva and Dora [4] developed an

expert system module to enhance existing tools and assist

students and lecturers in their assignments. Keung and Xiao

et al. [1] developed BlueJ-UML which extends and enhances

the previous BlueJ platform. Su and Hsu [52] designed and

developed a Web-based Visualized OOP Learning Tool

(VLT-OOP) to facilitate the learning of OOP concepts.

Asano and Kagawa [15] developed a web-based support

system for OOP exercises aimed at helping students

understand OOP design concepts and techniques. Kucera et

al. [60] Develop interactive educational applications

(Interactive OOP). Mosquera and Steinmaurer et al. [36]

Designing Cool as a mobile game to learn and practice code

in a fun way. Torchiano and Bruno [64] Designing an

automated programming assignment infrastructure. Ahmed

and Amarif [59] Developed an interactive tool called Learn

OOP which includes an animated visual model that

demonstrates the role of objects in a Java program. Sedlacek

et al. [22] created the FRIMAN project to simplify the

process of learning the OOP paradigm in the Java language.

Abbasi and Kazi et al. [37] developed a Serious Game (SG)

prototype called OOsg to study OOP. Abidin and Zawawi

[62] Combining OOP with Augmented Reality (AR).

Holmstedt and Mengiste [53] Develop and maintain a system

(codebase) for instructors as a tool to support teaching.

Shmallo and Ragonis [70] developed a diagnostic tool that is

presented in Java and can be translated into other OOP

languages. Lotfi et al. [20] developed a mobile serious game

(MSG) to teach object programming concepts in a fun and

easy way. Stovold and Powell [21] used swarm robotics and

firefly synchronization algorithm. Lopez et al. [34]

developed a video game project to teach OOP concepts and

other advanced topics.

Environments and Platforms. Thurner [58] develops a

virtual learning environment that allows students new to

object orientation to represent the qualities of their model,

and quickly detect incorrect modeling decisions. Olier et al.

[50] designed and validated a learning environment to learn

object-oriented programming concepts. Passerini and

Lombardi et al. [71] developed Wollok, which includes an

educational language and a dedicated integrated development

environment (IDE) designed to study OOP by integrating a

pedagogical approach and an industrial environment. Kelter

et al. [49] Investigating lecturers' perspectives on popular

learning and programming environments that are used in

secondary computer science education. Thongmak [45]

designs a gamification platform that students use to play

simple card games and contest their program involving card

games with other people.

Assessment Techniques. Grobbelaar [17] develops and

tests a special software instrument to influence changes in

students' abstract thinking abilities. Barkmin and Kramer et

al. [63] invented a computer-based instrument and conducted

the first study with 42 students. Tateishi and Inoue [66]

Developed a system that automatically grades GUI

programming exercises submitted by students. Inoue [67]

Developed a method for testing and assessing student

programs with a graphical user interface written in JavaFX.

Instructional Design. Santos et al. [47] apply the concept

of bridging for the paradigm shift from functional to

object-oriented programming. Zhu and Zha [72] integrates

educational concepts and core elements of OBE into the

teaching design of OOP courses. Rahman [35] designed a

2-week block course curriculum that teaches the basics of

OOP, via App Inventor 2 (AI2) and Java, to students.

IV. DISCUSSION

We have presented the findings of the problem from the

literature and grouped the findings into 3 aspects, namely

those related to students, related content and technology, and

related lecturers. We have also grouped the findings of

solutions to problems into 7 categories. The tables below

show the frequency of studies that raised issued the problems

and solutions.

TABLE VIII: FREQUENCY OF PROBLEM RELATED TO STUDENT, CONTENT &

TECHNOLOGY, AND LECTURER

 Problem Frequency

Frequency of

Problem Related to

Student

S1 1 - 4.00%

S2 8 – 32.00%

S3 6 – 24.00%

S4 7 – 28.00%

S5 3 – 12.00%

Frequency of

Problem Related to

Content &

Technology

C1 15 – 38.46%

C2 19 – 48.72%

C3 5 – 12.82%

Frequency of

Problem Related to

Lecturer

L1 2 – 15.38%

L2 3 – 23.08%

L3 3 – 23.08%

L4 5 – 38.46%

TABLE IX: FREQUENCY OF SOLUTIONS

Solution Frequency

SL1 9 – 16.98%

SL2 15 – 25.00%

SL3 6 – 10.00%

SL4 18 – 30.00%

SL5 5 – 8.33%

SL6 4 – 6.67%

SL7 3 – 5.00%

Judging from the frequency of the problems between

2017-2021, it can be said that the trend of discussion by

researchers is the problem of Material Complexity and

Abstraction (C2) in the OOP course (see Table VIII). As it is

Fig. 5. Relation of the core problems and proposed solutions for

teaching and learning on PBO course.

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

308

known, the way OOP works is by translating real-world

objects into code by referring to the properties and

characteristics of the object. In other words, anyone who will

use OOP as a programming paradigm must first understand

the nature and characteristics of the object that will be

translated into code. For novice programmers, the difficulty

is higher because of the abstract nature of OOP which is

difficult to describe and more than just a definition.

Meanwhile, for those who are already familiar with the

procedural paradigm, the process of transitioning to an

object-oriented paradigm is a challenge in itself where they

have to change their programming habits and adapt to new

habits. The key is that lecturers are required to improve their

experience with OOP so that the learning objectives of the

course can be achieved properly.

In addition to Material Complexity and Abstraction,

another issue that has become a trend for researchers to

discuss is the applied Learning Models or Methods (C1). One

of the models highlighted is the traditional learning model

which does not adequately help students understand the

object-oriented paradigm and fails to relate computational

concepts to various student interests. This model also

difficult to arouse students' creativity and often triggers

cognitive conflicts when the process of transitioning from a

procedural paradigm to an object-oriented paradigm. In

addition, some literature issues the ineffectiveness of models

using technology assistance and proposes some

improvements. Some models can overcome time constraints

but fail to overcome technological problems and vice versa.

The models that have been applied also do not fully adopt the

needs of the world of work and industry in the field of

information technology.

In the student aspect, the trend of discussion is the problem

of Background and Student Learning Experiences (S2). The

researchers made the low experience of students in the field

of programming skills the cause of the low learning

achievement. Some of the impacts they found included

students finding it difficult to learn and master the concept of

OOP at both fundamental levels; students finding it difficult

to conceptualize a way of thinking using an object-oriented

paradigm; students having difficulty understanding and

applying large-scale program structures, and some students

feel afraid because of the abstract nature of OOP. Therefore,

any solution taken in the future must pay attention to this

aspect, see Table VIII.

In the aspect of lecturers, the discussion trend is the issue

of Availability of Time & Lecturer-Student Ratio (L4). As it

is known that OOP is an abstract program and is very

complex, it takes sufficient time for the materials to be fully

conveyed. The ratio between lecturers and students that is not

ideal automatically takes more time because the lecturer has

to control more students both during the learning process and

the process of recording grades, see Table VIII.

In general, the above problems have been given a solution

by the researchers (see Table VIIII). Most of the literature

proposes the development or application of technology (SL4)

and learning models (SL2). Some of the proposed

technologies are designed and developed in the form of

videos, offline or online applications, robotics, websites, and

even involving the field of artificial intelligence. Some of the

technologies applied can support solving some specific

problems. Many learning model developments adopt

technology, for example, game-based learning models,

web-based learning models, and hybrid learning models.

These learning models were also developed, of course, to

overcome certain problems. Fig. 5 shows the relation of 4

core problems of teaching and learning in OOP courses that

can be solved by 2 main solutions.

The distinction and relation between Models, Approaches,

Strategies, Methods, and Techniques of Learning

The learning approach can be interpreted as a starting point

or point of view on the learning process, which refers to the

view of the occurrence of a process that is still very general,

in which it accommodates, inspires, strengthens, and

underlies learning methods with a certain theoretical scope.

Judging from the approach, there are two types of learning

approaches, namely: student-centered approach and

teacher-centered approach.

The learning approach that has been determined, is then

derived into a learning strategy. Kemp and Rodriguez [74]

suggests that a learning strategy is a learning activity that

must be done by lecturers and students so that learning

objectives can be achieved effectively and efficiently.

Sanjaya [75] states that the learning strategy contains the

meaning of planning. This means that the strategy is still

conceptual about the decisions to be taken in the

implementation of learning.

Learning strategies are still conceptual and to implement

them, certain learning methods are used. In other words, the

strategy is ―a plan of operation achieving something‖ while

the method is ―a way of achieving something‖ [75]. So, the

learning method can be interpreted as a method used to

implement plans that have been prepared in the form of real

and practical activities to achieve learning objectives.

Furthermore, the learning method is translated into

techniques and learning styles. Thus, learning techniques can

be interpreted as the way someone does in implements a

specific method.

If the approaches, strategies, methods, and learning

techniques have been strung together into a unified whole,

what is called a learning model is formed. So, the learning

model is a form of learning that is illustrated from beginning

to end and is presented specifically by the lecturer. In other

words, the learning model is a wrapper or frame from the

application of an approach, method, and learning technique,

see Fig. 6.

Fig. 6. Relation of model, approaches, strategies, methods and techniques of

learning.

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

309

V. CONCLUSION

The research questions that have been raised at the

beginning of the study have led this research to find problems

in the learning process of Object-Oriented Programming

courses. The problems found are divided into 3 main aspects,

namely those related to students, related content and

technology, and related lecturers. From the many problems

found in these three aspects, it is known that the core

problems of the current OOP course learning process are the

Material Complexity and Abstraction; the Learning Models

or Methods; Background, and Student Learning Experiences;

and Availability of Time & Lecturer-Student Ratio.

In addition, these research questions have also led this

research to find concrete solutions offered as answers to the

problems found. There are 7 categories of solutions offered

by previous researchers. Of the seven categories, it is known

that the majority of researchers offer solutions in the form of

developing or implementing technology or learning media. In

addition, the majority of researchers also offer the

development of learning models.

Future research is expected to contribute to solving

problems related to content and technology, especially

problems of complexity and abstraction of material as well as

the application of learning models in OOP courses. In

addition, it is also expected to contribute to solving problems

related to students and lecturers, especially the problem of

availability of lecturers' time and the background and

learning experiences of students. Furthermore, these studies

can be focused on solutions by developing learning models

accompanied by the application of appropriate learning tools

or technology.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Efan conducted the research and wrote the paper;

Krismadinata and Jalius Jama verified the manuscript before

it was be submitted; Rudi Mulya enhanced the manuscript

language before it was be submitted; all authors had

approved the final version.

FUNDING

This work was supported in part by the Institut Teknologi

Pagar Alam, Indonesia

REFERENCES

[1] J. Keung, Y. Xiao, Q. Mi and V. C. S. Lee, ―BlueJ-UML: Learning

object-oriented programming paradigm using interactive programming

environment,‖ in Proc. 2018 International Symposium on Educational

Technology (ISET), 2018, pp. 47-51.

[2] N. Bouali, E. Nygren, S. S. Oyelere, J. Suhonen, and V. Cavalli-Sforza,

―Imikode: A VR game to introduce OOP concepts,‖ in Proc. 19th Koli

Calling International Conference on Computing Education Research

(Koli Calling '19), 2019, pp. 1-2.

[3] V. Niculescu, C. Şerban and A. Vescan, ―Does cyclic learning have

positive impact on teaching object-oriented programming?‖ in Proc.

2019 IEEE Frontiers in Education Conference (FIE), 2019, pp. 1-9.

[4] V. Silva and F. A. Dora, ―An automatic and intelligent approach for

supporting teaching and learning of software engineering considering

design smells in object-oriented programming,‖ in Proc. 2019 IEEE

19th International Conference on Advanced Learning Technologies

(ICALT), 2019, pp. 321–323, vol. 2161–377X.

[5] E. Lotfi and B. Mohammed, ―Teaching object oriented programming

concepts through a mobile serious game,‖ in Proc. 3rd International

Conference on Smart City Applications (SCA '18), 2018, pp. 1-6.

[6] A. M. Reyna et al., ―Object-oriented programming as an alternative to

industrial control,‖ in Proc. 9th International Conference on Electrical

Engineering, Computing Science and Automatic Control (CCE), 2012,

pp. 1–7.

[7] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, ―Mining java class

naming conventions,‖ in Proc. 2011 27th IEEE International

Conference on Software Maintenance (ICSM), 2011, pp. 93-102.

[8] Y. S. Wong, I. M. Hayati, M. Yatim and T. W. Hoe, ―A propriety game

based learning mobile game to learn object-oriented programming —

Odyssey of Phoenix,‖ in Proc. 2017 IEEE 6th International

Conference on Teaching, Assessment, and Learning for Engineering

(TALE), 2017, pp. 426-431.

[9] W. Yoke Seng, M. H. Mohamad Yatim, and T. Wee Hoe, ―Learning

object-oriented programming paradigm via game-based learning game

— Pilot study,‖ The International journal of Multimedia & Its

Applications, vol. 10, no. 06, pp. 181–197, Dec. 2018.

[10] C. Boudia, A. Bengueddach, and H. Haffaf, ―Collaborative strategy for

teaching and learning object-oriented programming course: A case

study at Mostafa Stambouli Mascara University, Algeria,‖ Informatica

(Slovenia), vol. 43, no. 1, pp. 129–144, 2019.

[11] D. P. Y. Ardiana and L. H. Loekito, ―Gamification design to improve

student motivation on learning object-oriented programming,‖ Journal

of Physics: Conference Series, vol. 1516, no. 1, pp. 1-8, 2020.

[12] B. Kitchenham and S. Charters, Guidelines for performing Systematic

Literature Reviews in Software Engineering, UK: Keele University &

University of Durham, 2007.

[13] E. Kaila, E. Kurvinen, E. Lokkila, and M. J. Laakso, ―Redesigning an

object-oriented programming course,‖ ACM Transactions on

Computing Education, vol. 16, no. 4, pp. 1–21, 2016.

[14] X. You, C. Xiong, and P. Zhang, ―Brief discuss the application of

object-oriented in java language programming course,‖ in Proc. 2018

3rd International Conference on Automation, Mechanical and

Electrical Engineering (AMEE 2018), 2018, pp. 544-548.

[15] Y. Asano and K. Kagawa, ―Development of a web-based support

system for object oriented programming exercises with graphics

programming,‖ in Proc. 2019 18th International Conference on

Information Technology Based Higher Education and Training

(ITHET), 2019, pp. 1–4.

[16] E. A. Kalinga, ―Learning software development through modeling

using object oriented approach with unified modeling language: A case

of an online interview system,‖ Journal of Learning for Development,

vol. 8, no. 1, pp. 74–92, 2021.

[17] L. Grobbelaar, ―The effects of a software artefact designed to stimulate

abstract thinking ability on the academic performance in object

oriented programming of first year information technology students,‖

in Proc. 2018 International Conference on Intelligent and Innovative

Computing Applications (ICONIC), 2018, pp. 1–8.

[18] T. Tanielu, R. Akau‘ola, E. Varoy, and N. Giacaman, ―Combining

analogies and virtual reality for active and visual object-oriented

programming,‖ in Proc. ACM Conference on Global Computing

Education (CompEd '19), 2019, pp. 92–98.

[19] C. C. Lin, Z. C. Liu, C. L. Chang, and Y. W. Lin, ―A genetic

algorithm-based personalized remedial learning system for learning

object-oriented concepts of java,‖ IEEE Transactions on Education,

vol. 62, no. 4, pp. 237–245, Nov. 2019.

[20] E. Lotfi, O. Bakkali Yedri, and M. Bouhorma, ―Towards a mobile

serious game for learning object oriented programming paradigms,‖

Innovations in Smart Cities Applications, Switzerland: Springer, 2019,

pp. 450–462.

[21] J. Stovold and S. Powell, ―Teaching object-oriented programming in

secondary schools using swarm robotics,‖ Educational Robotics in the

Context of the Maker Movement, Switzerland: Springer, 2020, vol. 946,

pp. 201–204.

[22] P. Sedlacek, M. Kvet, and M. Vaclavkova, ―Development of FRIMAN:

Supporting tool for object oriented programming teaching,‖ Open

Computer Science, vol. 11, pp. 90–98, 2021.

[23] P. Muyan-Özçelik, ―A hands-on cross-platform mobile programming

approach to teaching OOP concepts and design patterns,‖ in Proc. 2017

IEEE/ACM 1st International Workshop on Software Engineering

Curricula for Millennials (SECM), 2017, pp. 33-39.

[24] Y. S. Wong and M. H. M. Yatim, ―A propriety multiplatform

game-based learning game to learn object-oriented programming,‖ in

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

310

Proc. 2018 7th International Congress on Advanced Applied

Informatics (IIAI-AAI), 2018, pp. 278–283.

[25] H. Jusuf, N. Ibrahim, and A. Suparman, ―Developing a hybrid learning

strategy for students‘ engagement in object-oriented programming

course,‖ Universal Journal of Educational Research, vol. 7, no. 9 A, pp.

78–87, 2019.

[26] M. Huri, B. Orcid, B. English, and S. T. Orcid, ―Face-to-face

collaborative learning groups,‖ Online Journal of Distance Education,

no. July, pp. 0–3, 2019.

[27] S. Xie, L. Fan, and W. Wu, ―Teaching research of object oriented

programming course based on SPOC and project-driven,‖ in Proc. 2nd

International Conference on Digital Technology in Education (ICDTE

2018), 2018, pp. 53–57.

[28] Q. Sun, J. Wu, and K. Liu, ―How are students‘ programming skills

developed: an empirical study in an object-oriented course,‖ in Proc.

ACM Turing Celebration Conference (ACM TURC ’19), 2019, pp. 1–6.

[29] F. Batur, ―How does an educational IDE influence students‘

conceptions of object-oriented programming?: Design of a Ph.D.

research project to explore secondary school students‘ conceptions of

OOP,‖ in Proc. 14th Workshop in Primary and Secondary Computing

Education (WiPSCE’19), 2019, pp. 1–2.

[30] M. Amarif and S. Ahmed, ―The effect of visualizing role of variable in

object oriented programming understanding,‖ Computer Science &

Information Technology (CS & IT), vol.9, no. 2, pp. 11–20, 2019.

[31] Q. Sun, J. Wu, and K. Liu, ―Toward understanding students‘ learning

performance in an object-oriented programming course: The

perspective of program quality,‖ IEEE Access, vol. 8, pp. 37505–37517,

2020.

[32] H. Julie, D. Bruno, H. Patrick and L. Tony, ―Object-oriented

programming: Diagnosis understanding by identifying and describing

novice perceptions,‖ in Proc. 2020 IEEE Frontiers in Education

Conference (FIE), 2020, pp. 1-5.

[33] S. Xie, W. Wu, C. Hu, and L. Fan, ―Reform of object oriented

programming based on task driven and blended teaching,‖ in Proc.

2020 the 4th International Conference on Education and E-Learning

(ICEEL 2020), 2020, pp. 38-41.

[34] M. A. López, E. V. Duarte, and E. C. Gutiérrez, ―Experience in

teaching object-oriented programming and advanced topics of

programming through the development of a video game project,‖

CEUR Workshop Proc, vol. 2747, pp. 109–118, 2020.

[35] F. Rahman, ―From app inventor to Java: Introducing object-oriented

programming to middle school students through experiential learning,‖

ASEE Annual Conference and Exposition, Conference Proceedings,

vol. 2018-June, 2018.

[36] C. K. Mosquera, A. Steinmaurer, C. Eckhardt, and C. Guetl,

―Immersively learning object oriented programming concepts with

sCool,‖ in Proc. 6th International Conference of the Immersive

Learning Research Network, iLRN 2020, 2020 no. June, pp. 124–13.

[37] S. Abbasi, H. Kazi, A. W. Kazi, K. Khowaja, and A. Baloch, ―Gauge

object oriented programming in student‘s learning performance,

normalized learning gains and perceived motivation with serious

games,‖ Information (Switzerland), vol. 12, no. 3, pp. 1–21, 2021.

[38] M. D. B. Castro, G.M. Tumibay, ―A literature review : efficacy of

online learning courses for higher education institution using

meta-analysis,‖ Educ Inf Technol, vol 26, pp. 1367–1385, 2021.

[39] F. Batur and T. Brinda, ―Students‘ conceptions of object-oriented

programming in the context of game designing in computing

education,‖ in Proc. the 52nd ACM Technical Symposium on Computer

Science Education, 2021, p. 1290.

[40] J. Krugel and P. Hubwieser, ―Computational thinking as springboard

for learning object-oriented programming in an interactive MOOC,‖

IEEE Global Engineering Education Conference, no. November, pp.

1709–1712, 2017.

[41] A. M. Brito Jr. and A. A. D. Medeiros, ―A motivating approach to

introduce object-oriented programming to engineering students,‖ The

International Journal of Electrical Engineering & Education, pp. 1-10,

2019.

[42] V. T. Lokare, P. M. Jadhav, and S. S. Patil, ―An integrated approach for

teaching object oriented programming (C++) course,‖ Journal of

Engineering Education Transformations, vol. 31, no. 3, pp. 17–23,

2018.

[43] W. Tylman, ―Computer science and philosophy: Did plato foresee

object-oriented programming?‖ Found Sci, vol. 23, no. 1, pp. 159–172,

2018.

[44] R. Fojtík, ―Teaching of object-oriented programming,‖ in Proc. the

12th International Scientific Conference on Distance Learning in

Applied Informatics., 2018, pp. 273–282.

[45] M. Thongmak, ―Creating gameful experience in the object-oriented

programming classroom: A case study,‖ Online Journal of Applied

Knowledge Management, vol. 6, no. 1, pp. 30-53, 2018.

[46] J. Gabaruk, D. Logofătu, D. Groskreutz, and C. Andersson, ―On

teaching java and object oriented programming by using children board

games,‖ in Proc. 2019 IEEE Global Engineering Education

Conference (EDUCON), 2019, pp. 601–606.

[47] I. Moreno Santos, M. Hauswirth, and N. Nystrom, ―Experiences in

bridging from functional to object-oriented programming,‖ in Proc.

2019 ACM SIGPLAN Symposium on SPLASH-E (SPLASH-E 2019),

2019, pp. 36–40.

[48] A. L. Ribeiro and R. A. Bittencourt, ―A PBL-based, integrated learning

experience of object-oriented programming, data structures and

software design,‖ in Proc. 2018 IEEE Frontiers in Education

Conference (FIE), 2018, pp. 1–9.

[49] R. Kelter, M. Kramer, and T. Brinda, ―Teachers‘ perspectives on

learning and programming environments for secondary education,‖ in

Proc. Open Conference on Computers in Education (OCCE), no. July,

2019, pp. 47-55.

[50] A. J. Olier, A. A. Gómez, and M. F. Caro, ―Design and implementation

of a teaching tool for introduction to object-oriented programming,‖

IEEE Latin America Transactions, vol. 15, no. 1, pp. 97–102, 2017.

[51] X. Zhang, J. D. Crabtree, M. G. Terwilliger, and T. T. Redman,

―Assessing students‘ object-oriented programming skills with java: the

‗department-employee‘ project,‖ Journal of Computer Information

Systems, vol. 60, no. 3, pp. 274–286, May 2020.

[52] J.-M. Su and F.-Y. Hsu, ―Building a visualized learning tool to

facilitate the concept learning of object-oriented programming,‖ in

Proc. 2017 6th IIAI International Congress on Advanced Applied

Informatics (IIAI-AAI), 2017, pp. 516-520.

[53] V. Holmstedt and S. A. Mengiste, ―Zirr — Why and how practice

impacts confidence in introductory object oriented programming

courses,‖ in Proc. Fifth International Conference Modelling and

Development of Intelligent Systems, 2017, pp. 29–42.

[54] G. Oliveira and R. Bonacin, ―A method for teaching object-oriented

programming with digital modeling,‖ in Proc. 2018 IEEE 18th

International Conference on Advanced Learning Technologies

(ICALT), 2018, pp. 233–237.

[55] J. Udvaros, ―Teaching object oriented programming by visual

devices,‖ in Proc. eLearning and Software for Education Conference,

2019, pp. 407–413.

[56] K. K. Zaw, N. Funabiki, E. E. Mon, and W.-C. Kao, ―An informative

test code approach for studying three object-oriented programming

concepts by code writing problem in java programming learning

assistant system,‖ in Proc. 2018 IEEE 7th Global Conference on

Consumer Electronics (GCCE), 2018, pp. 629–633.

[57] K. Kanaki and M. Kalogiannakis, ―Introducing fundamental

object-oriented programming concepts in preschool education within

the context of physical science courses,‖ Educ Inf Technol (Dordr), vol.

23, 2018.

[58] V. Thurner, ―Fostering the comprehension of the object-oriented

programming paradigm by a virtual lab exercise,‖ in Proc. 2019 5th

Experiment International Conference (exp.at’19), 2019, pp. 137–142.

[59] S. Ahmed and M. Amarif, ―An interactive animation tool for java

object oriented programming understanding,‖ International Journal of

Programming Languages and Applications, vol. 9, no. 3, pp. 1–17,

2019.

[60] E. Kucera, O. Haffner, and R. Leskovsky, ―Multimedia application for

object-oriented programming education developed by unity engine,‖ in

Proc. 30th International Conference on Cybernetics and Informatics,

K and I 2020, no. March, 2020.

[61] N. Passerini and C. Lombardi, ―Postponing the concept of class when

introducing OOP,‖ in Proc. 2020 ACM Conference on Innovation and

Technology in Computer Science Education (ITiCSE '20), 2020, pp.

152–158.

[62] Z. Z. Abidin and M. A. A. Zawawi, ―OOP-AR: Learn object oriented

programming using augmented reality,‖ International Journal of

Multimedia and Recent Innovation, vol. 2, no. 1, pp. 60–75, 2020.

[63] M. Barkmin, M. Kramer, D. A. Tobinski, and T. Brinda, ―Code

structure difficulty in OOP: An exploration study regarding basic

cognitive processes,‖ in Proc. 17th Koli Calling International

Conference on Computing Education Research, 2017, pp. 185-186.

[64] M. Torchiano and G. Bruno, ―Integrating software engineering key

practices into an OOP massive in-classroom course: An experience

report,‖ in Proc. International Conference on Software Engineering,

no. June, pp. 64–71, 2018.

[65] M. Dlamini and W. Leung, ―Enhancing object-oriented programming

pedagogy with an adaptive intelligent tutoring system,‖ in Proc. 47th

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

311

Annual Conference of the Southern African Computer Lecturers’

Association, SACLA 2018, 2019, pp. 269–284.

[66] Y. Tateishi and U. Inoue, ―GUI static testing for object-oriented

programming exercises,‖ in Proc. 2019 20th IEEE/ACIS International

Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD), 2019, pp.

280–285.

[67] U. Inoue, ―GUI Testing for introductory object-oriented programming

exercises,‖ Computational Science/ Intelligence & Applied Informatics,

vol. 787, pp. 1–13, 2019.

[68] Ç. Çubukçu, B. Wang, L. Goodman et al., ―Gamification for

assessment of object oriented programming,‖ in Proc. ICICTE 2017,

2017, pp. 226–237.

[69] Y. Wu, ―Object-oriented programming course reform using python

language in the background of artificial intelligence,‖ in Proc. 019 3rd

International Conference on Education, Management Science and

Economics (ICEMSE 2019), 2019, pp. 93-96.

[70] R. Shmallo and N. Ragonis, ―Understanding the ‗this‘ reference in

object oriented programming: Misconceptions, conceptions, and

teaching recommendations,‖ Educ Inf Technol (Dordr), vol. 26, no. 1,

pp. 733–762, 2021.

[71] N. Passerini, C. Lombardi, J. Fernandes, P. Tesone, and F. Dodino,

―Wollok: Language + IDE for a gentle and industry-aware introduction

to OOP,‖ in Proc. 12th Latin American Conference on Learning

Objects and Technologies (LACLO 2017), 2017, pp. 1–4.

[72] Q. ZHU and Y. ZHA, ―Teaching reform of object-oriented

programming course based on OBE,‖ in Proc. 2018 3rd International

Conference on Education, Management and Systems Engineering

(EMSE 2018), 2018.

[73] M. Kebritchi, A. Lipschuetz, and L. Santiague, ―Issues and challenges

for teaching successful online courses in higher education,‖ Journal of

Educational Technology Systems, vol. 46, no. 1, pp. 4–29, 2017.

[74] J. E. Kemp and L. Rodriguez, ―The basics of instructional design,‖ J

Contin Educ Nurs, vol. 23, no. 6, 1992.

[75] W. Sanjaya, Strategi pembelajaran berorientasi standar proses

pendidikan, 1st ed. Jakarta: Prenada Media, 2011.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Efan received the S.Kom. degree from Bina Darma

University, Palembang, Indonesia, in 2007 and the

M.Kom. degree from the University of Putera

Indonesia YPTK, Padang, Indonesia, in 2013. Since

2017, He has continued doctoral college in

Universitas Negeri Padang, Indonesia.

He is currently a lecturer of the Department of

Informatics Engineering, Sekolah Tinggi Teknologi

Pagaralam (now reformed to Institut Teknologi

Pagar Alam), Indonesia.

His research interests include TVET, information system, artificial

intelligence, and database.

Krismadinata was born in Padang Indonesia. He

received the B.Eng. degree from Universitas

Andalas, Padang, Indonesia, in 2000 and the M.Eng.

degree from the Institute of Technology Bandung,

Indonesia, in 2004 and the Ph.D. degree from the

University of Malaya, Kuala Lumpur, Malaysia, in

2012, and post-doctoral at UMPEDAC within

2012–2014.

He was one of awardees ASEAN-INDIA Research Training Fellowship in

2019. He is currently with the Department of Electrical Engineering,

Universitas Negeri Padang, where he is also a professional engineer and the

director of Center for Energy and Power Electronics Research Universitas

Negeri Padang. Dr. Kris has international patents and also as reviewer for

many international journals in electrical engineering and energy fields. He is

actively involved in consulting on renewable energy projects.

His research interests are power electronics, control system and renewable

energy.

Jalius Jama is a professor in Universitas Negeri

Padang. He received engineer (Ir.) degree form

Institut Keguruan dan Ilmu Pendidikan Yogyakarta,

Indonesia and M.Ed. degree from Sam Houston State

University, USA. Then he received Ph.D. degree from

The OHIO State University, USA. He is currently a

lecturer of the Department of Electrical Engineering,

Universitas Negeri Padang, Indonesia.

Rudi Mulya was born in Padang. He received B.Eng.

degree from Department of Electrical Engineering

Universitas Andalas Padang in 2008. Then He

received M.Kom. from Universitas Putera Indonesia

YPTK Padang, Indonesia in 2016. In 2022 he

received the Ph.D. degree on Technical and

Vocational Education Training program from

Universitas Negeri Padang, Indonesia.

He is currently a lecturer of the Department of Electrical Engineering,

Universitas Negeri Padang, Indonesia. His research interests include

electrical engineering, informatic technology, vocational technology,

education.

International Journal of Information and Education Technology, Vol. 13, No. 2, February 2023

312

https://creativecommons.org/licenses/by/4.0/

