

Learners’ Differences in Blended Learner-Centric Approach

for a Common Programming Subject

Qi Cao*, Chee Kiat Seow, Li Hong Idris Lim, Sye Loong Keoh, Vicki Dale, Sarah Honeychurch, Nathalie Tasler, and Duncan

Bremner


Abstract—As the number of students entering higher

education increases with a growing diversity of background,

educators of programming courses face increasing challenges.

Different teaching pedagogies need to be explored for students

with different background knowledge. Some students find

programming courses difficult to understand and practice. It

may lead to de-motivation and disengagement in learning

process with consequential impact on their grades. Addressing

these issues demands approaches for effective teaching

programming courses to multidisciplinary cohorts. This article

investigates how computing science (CS) and engineering

cohorts respond differently to teaching approaches in a

common module, Fundamentals of Programming. Both

traditional teacher-centric teaching and a blended

learner-centric approach have been explored in a diverse group

of students. The blended learner-centric approach combines

classroom teaching and self-paced blended learning using work

examples videos method. These two teaching approaches have

been evaluated in Academic Year 2019/2020. It can be seen

from the evaluation results of 92 CS and 150 Engineering

students who participate in this research that the performance

is improved by about 5% through blended learner-centric

approach. It is further observed that quantitatively the

performance gap between CS and Engineering students has

been reduced. Questionnaire survey has also been conducted

with 54 CS and 89 Engineering students being responded. The

learners’ perceptions of the blended learner-centric approach

have also been compared between these two cohorts.

Index Terms—Diverse learners, learners’ difference, learners

perceptions, learning of programming

I. INTRODUCTION

Software programming skills have become key for 21st

century students [1]. Software programming courses in

computing science (CS) have become essential courses to

students in multiple fields. In the science, technology,

engineering, and mathematics (STEM) areas, the software

programming education is no longer just for computing

science (CS) students, but also for other majors, who have a

wide spectrum of prior background knowledge and

programming experiences [2]. Some CS fundamental

subjects have become popular options for non-CS majors [3].

It is an interesting topic of how to manage the diversity of

Manuscript received October 9, 2022; revised November 15, 2022;

accepted December 12, 2022.

Qi Cao, Chee Kiat Seow, and Sye Loong Keoh are with School of

Computing Science, University of Glasgow, UK.

Li Hong Idris Lim is with School of Engineering, University of Glasgow,

UK.

Vicki Dale, Sarah Honeychurch, and Nathalie Tasler are with Academic

and Digital Development, University of Glasgow, UK.

Duncan Bremner is with James Watt School of Engineering, University of

Glasgow, UK.

*Correspondence: qi.cao@Glasgow.ac.uk (Q.C.)

learner differences in teaching programming subjects.

Teaching programming subjects to first year students is a

difficult task in higher education [4], with many challenges

encountered by lecturers [3], as large cohorts may exhibit a

wide spectrum of prior programming experience,

background, and interests [5]. On one end of the spectrum,

some students have minimum prior programming skills,

while on the other end, some of them already have substantial

hands-on programming experience [6]. This diversity brings

difficulties in teaching programming courses in higher

education institutions (HEIs), as course contents must cater

for all students [3, 7].

The fundamentals of programming (FoP) subject which

provides basic knowledge and coding training to students is

an introductory programming subject in HEIs [8]. If students

can excel in the introductory programming subjects, it may

prevent students from switching to other majors [9] and

reduce the dropout rate. However, learning programming

skills can be challenging. Robins et al. [10], further

supported by Grover and Pea [11], suggest that much of the

challenges are the acquisition of Computational Thinking

skills. As a fundamental competence, Computational

Thinking skills include formulating problems, representing

data, analysing data, implementing solutions [12]. Many

students feel programming is not easy to learn [13], and as a

subject it is hard to score good grades [14]. Some students

even perceive software programming as one of their hardest

subjects [6, 15, 16]. It results in a high dropout or failure rates,

as compared to other subjects [17–21], which could be up to

30-50% [20, 21]. Several potential reasons include variations

in reference materials, lectures delivery, lab session

approaches, problem solving ability, time management,

students’ characteristics, and motivation to study

programming [4, 14]. Another reason is large number of

students present in single programming labs [6, 22].

Prior programming knowledge of students could be a

possible predictor of success in programming courses [6, 23];

it can trigger better motivation and confidence levels to

achieve learning goals [5]. Students with prior hands-on

programming experience have a more positive attitude and

lower chances of dropping out, as compared with students

without prior programming knowledge [9]. Students from

non-CS backgrounds may have difficulty in applying

theorical knowledge to real world programming

problems [24, 25].

Various approaches have been explored to improve

teaching of programming courses, with different levels of

curriculum for students with less prior experience [5].

Separate optional introductory courses have been offered to

students with less experience [26, 27]. Some redesigned

introductory course content is provided to students with less

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

906doi: 10.18178/ijiet.2023.13.6.1886

mailto:qi.cao@Glasgow.ac.uk

prior experience [28]. A computing approach with digital

media materials may reduce failure rates for students without

prior experiences [16]. The value of a collaborative learning

approach is reported in [22, 29], for students to help each

other in group assignments through discussions and

teamworking. A learner-centred approach is another possible

method for teaching programming courses [30].

Existing literature suggests that blended learning is

effective in improving the student learning

experience [31, 32]. Blended learning, also known as hybrid

learning, is explored in teaching introductory programming

courses [33, 34], including online collaboration learning

model, and online self-paced learning models, etc. [4].

Online self-paced learning models provide flexibility to

students, at different locations and time. According to

students’ feedback, blended learning better enables them to

understand programming concepts [35]. Blended learning

results in improved outcomes compared with traditional

teacher-centric learning method in programming courses [4].

It is interesting to explore the teacher-centric teaching

approach and a blended learner-centric approach in the

common subject, Fundamentals of Programming (FoP) for

CS and Engineering students. It is particularly interesting to

investigate what extent does a blended learner-centric

approach benefit students majoring in CS versus Engineering

in the programming subject. It is also worth to study what

extent do learners’ perceptions of the blended learner-centric

approach differ between CS and Engineering cohorts when

learning programming courses. In this paper, the

comparisons of the differences in learning a common subject,

FoP between Year 1 CS and Engineering students are

investigated with the blended learner-centric approach. To

the best of our knowledge, this is the first work comparing

differences between CS and Engineering cohorts, in their

response to a blended learner-centric approach on a common

programming subject in HEIs.

The University of Glasgow, Singapore (UGS) partners

with Singapore Institute of Technology (SIT) to offer a joint

degree with honours programmes. The teaching approach of

the University of Glasgow emphasises active learning and

independence in learning [36], which are retained in the

offering of degree programmes in Singapore.

FoP is a common module for students of CS, Mechanical

Engineering (MEC), and Aerospace Engineering (AEE). It is

taught in the first trimester of Year 1. Students have the

options to opt for exemption from this subject, if they can

show their syllabus and transcripts with results higher than

Grade B in their prior study. The content of this subject is

designed to be taken by any student interested in acquiring

programming skills. The topics are covered in this subject as

follows:

1) Introduction to social context of computing.

2) Concepts and knowledge in programming, such as data

types, control structures, functions, arrays, pointers, and

files input/output.

3) Secure coding, such as input validation, data sanitization,

and buffer overflows.

4) Compiling, running, debugging, and testing programs.

5) Overview of programming paradigms.

The programming concepts are practiced and

demonstrated in standard programming languages, i.e., C and

C++. In each week, the contact hours include two-hour

lectures, and a one-hour lab session. The lab session involves

hands-on practice and skill-based learning activities with

specialised software. Performance of students is assessed by

a final exam, as well as continuous assessments (CA)

including lab exercises and project assignments. The

weighting between the final exam and CA is 60%:40%.

Details of the case study and performance evaluations will be

discussed in this paper.

II. STRUCTURE OF ASSIGNMENT PROJECTS

In this subject, there were two project assignments as the

continuous assessments (CA), to assess students’ hands-on

programming skills by solving real-world problems.

Considering the projects’ difficulty, students were divided

into small groups and solve the problems through teamwork.

Each group was required to submit a final solution report

with all source codes attached.

In the first project assignment, students were asked to

develop a C program to perform a linear regression analysis

on a given dataset (10,000 data pairs) with certain noise.

Compared to the first one, the second project assignment was

more difficult in terms of scopes and deliverables. It required

students to not only perform analyses on noise probability

and obtain random noise statistics in a large noisy dataset, but

also compute probability density function for this dataset.

To compare how CS and Engineering cohorts responded

differently to two alternative learning approaches, there were

two project assignments being conducted in this FoP subject.

The traditional teacher-centric teaching approach was used

for the first assignment, its project specifications, scope, and

deliverables explained to all students in a face-to-face (F2F)

lecture. Before the F2F lecture, the project assignment

documents were shared online for students’ pre-reading

through the learning management system (LMS). Students

could follow instructions in these project documents and

work in groups. A F2F Q&A session was also provided to CS

and Engineering students separately, with a half hour

duration.

The blended learner-centric approach was adopted for the

second project assignment. Besides the traditional

teacher-centric F2F lecture session and project documents

shared online via the LMS, worked example videos as

complementary materials were also provided. Worked

example videos illustrated step-by-step problem-solving

processes for students [37]. In the second project assignment,

the worked example videos were recorded using an iPad with

a pen. Students could watch the complementary worked

example videos repeatedly in their own time. One F2F Q&A

session was also offered to CS and Engineering students

separately, with a half hour duration.

For this FoP subject, 92 students from CS, and 150

students from Engineering (both MEC and AEE) were

enrolled in AY2019/2020. These students came from diverse

backgrounds in terms of their programming knowledge and

skills. The spectrum distributions of prior programming

experiences of CS cohort and Engineering cohort were

different.

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

907

One of the admission criteria to the School of CS was that

applicants had been learned a few programming courses in

their prior study, evidenced on their transcripts. Most CS

students graduated from an Information Technology (IT)

related Diploma in Singapore polytechnics with prior

programming knowledge. Some CS students even had few

years’ working experience in the IT industry with good

hands-on programming skills. Only a small percentage of CS

students who graduated from a non-IT related Diploma did

not learn programming courses previously, but they usually

obtained a high GPA in their prior study illustrating good

learning capabilities, with some programming theory

knowledge by self-study.

In contrast, most Engineering (both MEC and AEE)

students did not learn programming courses when they

matriculated into the joint degree programmes, according to

their transcripts and syllabus at the admission application

stage. However, there was a small percentage of Engineering

students having gained programming knowledge through

previous self-study, indicated by these students in lectures

and tutorials’ discussions of the FoP subject.

Teamwork in group projects was very important to a

successful project. The grouping of students was conducted

as the voluntary basis, that students formed their grouping

with whom they were comfortable to work. Due to this

consideration, the students with prior programming

knowledge were not specifically distributed into different

groups. CS students were divided into groups of three.

Engineering students typically worked in a larger group size,

as their subjects often involved use of electronic hardware or

mechanical components. Engineering students requested to

be divided into groups of four for the assignments, as they

had less prior programming knowledge than the CS cohort,

allowing more of a collective effort and manpower to apply

programming theory in solving real-world problems. It could

increase their confidence level to complete the project

assignments on time. The group size is suggested to be four

or five that tends to work better [38, 39].

In view of the learners’ differences between the CS and

Engineering cohorts, the requests of Engineering students

were considered reasonable. In response, 92 CS students

were divided into 28 groups of three and two groups of four

while 150 Engineering students were divided into 36 groups

of four members, and two groups of three members. The

groupings were kept the same for both project assignments.

In a quick summary, the first assignment was less difficult

with the traditional teacher-centric teaching approach, while

the second assignment was less difficult with the blended

learner-centric approach. Students were given three weeks to

complete each assignment. The first assignment was released

in Week 5 in the semester, the second in Week 9, to give

students enough exposure to the course content before the

assignments were given. At the end of the semester, an

evaluation was conducted for comparison analysis from the

perspectives among learners with different backgrounds, i.e.,

between the CS cohort and the Engineering cohort.

III. RESULTS ANALYSIS

In this section, the results analysis is presented, with quick

summary as follows:

1) Performance comparisons between CS and Engineering

cohorts were conducted taking a common programming

subject. Results showed a consistent performance

improvement with about 5% by the blended

learner-centric approach for both cohorts. The

performance gap between these two cohorts comparably

had been reduced.

2) Feedback from CS and Engineering students had been

collected through the survey questionnaire with about

59% response rate (54 CS students and 89 Engineering

students). Detailed analysis had been conducted on

learners’ perceptions of the blended learner-centric

approach, revealing key behavioural differences

between the two cohorts.

 CS students reported higher acceptance to learning

programming with the blended learner-centric approach

and showed a higher appreciation for the worked

example videos that covered profound mathematical

concepts and the detailed programming steps. On the

other hand, it was found that Engineering students were

less appreciative of them and more likely to have

struggled with watching them, although some of them

watched the videos repeatedly to gain better

understanding.

 Although more time was needed for independent

learning with the blended learner-centric approach,

Engineering students preferred to learning contents

consisting of a high proportion of worked example

videos at about 60%–80% versus F2F lecturing for

programming courses, illustrating that more

Engineering students realised the benefits of blended

learner-centric approach on programming courses.

A. Academic Performance Comparisons

The mean score differences between CS and Engineering

cohorts for these two project assignments are shown in

Table I. It is observed that the mean score of Assignment 2

was higher by about 4.35% than that of Assignment 1 for the

CS students. The mean value of Assignment 2 was higher by

about 5.2% than that of Assignment 1 for the Engineering

students. Comparing the CS and Engineering cohorts, it is

observed that the mean score of CS students was higher by

about 1.55% than that of Engineering students with the

traditional teacher-centric teaching approach in

Assignment 1. The mean score of CS students was higher by

about 0.74% than that of Engineering students after the

adoption of the blended learner-centric approach in

Assignment 2. It is observed that both CS and Engineering

cohorts benefited from the blended learner-centric approach

in Assignment 2, and that the performance gap between the

CS and Engineering cohorts had been reduced after the

adoption of the blended learner-centric approach.

TABLE I: RESULTS COMPARISONS BETWEEN TWO COHORTS

Average

Marks

Computing Science

(92 students)

Engineering

(150 students)
Difference

Assignment 1 73.42 marks 72.30 marks 1.55%

Assignment 2 76.62 marks 76.06 marks 0.74%

Improvement 4.35% 5.20%

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

908

The t-test was used to evaluate if there was a statistically

significant difference of the mean values of CS and

Engineering cohorts. For the t-test, the value of the alpha

level was set as 0.05. The results of the t-test between

Assignment 1 and Assignment 2 of the CS cohort are shown

in Table II, representing improvements after adopting the

blended learner-centric approach. The P-value of the t-test

(i.e., P << α level) indicated that there was a statistically

significant difference between the mean scores of CS

students in Assignment 1 and Assignment 2, showing

significant improvement with the blended learner-centric

approach.

TABLE II: T-TEST FOR CS STUDENTS IN ASSIGNMENT 1 AND 2

Assignment 1 of

CS Students

Assignment 2 of

CS Students

Mean scores 73.41 76.62

Variance 31.06 28.92

Observations 92 92

P value (at α = 0.05; two-tail) 1.46E−10

The results of the t-test between Assignment 1 and

Assignment 2 of the Engineering cohort are shown in Table

III, i.e., before and after adopting the blended learner-centric

approach. The P-value of the t-test (i.e., P << α level)

indicated a statistically significant difference between the

mean scores of Engineering students in Assignment 1 and

Assignment 2, illustrating significant improvement.

TABLE III: T-TEST FOR ENGINEERING STUDENTS IN ASSIGNMENT 1 AND 2

Assignment 1 of

Eng. Students

Assignment 2 of

Eng. Students

Mean scores 72.30 76.06

Variance 27.77 30.12

Observations 150 150

P value (at α = 0.05; two-tail) 4.53E−15

The results of the t-test between CS and Engineering

cohorts comparisons for Assignment 2 are shown in Table IV.

The P-value of the t-test (i.e., P = 0.44) is much larger than

the alpha level (i.e., α = 0.05). Hence, there was no

statistically significant difference between the mean scores of

CS and Engineering cohorts in Assignment 2. The difference

was small, although CS students obtained slightly higher

mean scores with the blended learner-centric approach.

TABLE IV: T-TEST FOR TWO COHORTS IN ASSIGNMENT 2

Assignment 2 of

CS Students

Assignment 2 of

Engineering Students

Mean scores 76.62 76.06

Variance 28.92 30.12

Observations 92 150

P value (at α = 0.05;

two-tail)
0.44

B. Comparison of Learners’ Perceptions

A survey was conducted after the last lecture of the FoP

subject. All students enrolled in this subject (92 CS students

and 150 Engineering students) were invited to participate. It

was made known to the students that their responses were

fully anonymous, and that completion of the survey was

voluntary, and that participation would not have any impact

on their academic results. We designed the survey questions,

consisting of nine major questions that will be illustrated next

in this section. The response rates of CS and Engineering

students were about 59%, with 54 CS students and 89

Engineering students as shown in Table V.

TABLE V: SURVEY RESPONSE RATES

No. of Enrolled

Students

No. of

Responses

Response

Rate

CS 92 54 59%

Engineering 150 89 59%

The perceptions on blended learner-centric approach

between the CS and Engineering cohorts had been explored.

Students’ feedback had been collected through a survey. The

results of the survey questionnaires are discussed next.

1) Q1: Acceptance of blended learner-centric approach

The feedback comparisons of the two cohorts for Question

1 in the survey are shown in Fig. 1. It is observed that CS

students were more comfortable with the blended

learner-centric approach than Engineering students, as the

mean value of CS students was 4.11, while that of

Engineering students was 3.64. It has the positive impact to

better academic performance of CS students achieved.

Fig. 1. Comparison on Question 1: To what extent you like blended

learner-centric approach and would you recommend it?

2) Q2: Acceptance of worked example videos

For Question 2 in the survey, the feedback from the two

cohorts is compared in Fig. 2. It is observed that CS students

exhibited higher percentages at both extreme ends suggesting

a bimodal distribution, while Engineering students’ feedback

showed higher percentages in the middle of the spectrum.

The mean value of CS students was 3.93, while that of

Engineering students was 3.65. It shows that CS students

have better average learner satisfactions in the learning.

Fig. 2. Comparison on Question 2: To what extent you like online lecture

explanation through worked examples videos?

Mean value:
CS: 4.11
Engineering: 3.64

Mean value:
CS: 3.93
Engineering: 3.65

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

909

3) Q3: Viewing completion of worked example videos

The feedback from CS versus Engineering students for

Question 3 are shown in Fig. 3. It is shown that 98% CS

students completed watching the videos, while only 78%

Engineering students completed watching the videos. It is in

line with the academic performance achieved for these two

cohorts.

Fig. 3. Comparison on Question 3: Did you complete entire worked examples

videos of Assignment 2?

4) Q4: Effectiveness of worked example videos

For survey Question 4, the student comparisons are shown

in Fig. 4. The mean value of CS students was 4.30, while that

of Engineering students was 3.62. It is observed that more CS

students appreciated the worked example videos.

Engineering students showed less appreciation for the videos.

It suggests better learner satisfactions for the CS students,

and it could be one of the reasons for better academic results

of CS students.

Fig. 4. Comparison on Question 4: To what extent, worked examples videos

help in your understanding assignment requirements and deliverables?

5) Q5: Inspirational properties of the worked example

videos

These worked example videos explain relevant knowledge

and working procedure of the project assignments for

students. For survey Question 5, shown in Fig. 5, similar

opinions among CS and Engineering cohorts were observed

for most of the options, except for the second option on the

inspirational feature, where more engineering students

watched the videos to know more about the course concepts.

6) Q6: Repeated viewing of worked example videos

For Question 6, it is observed in Fig. 6 that 10%

Engineering students frequently repeatedly watched the

worked example videos. The mean value of CS students was

2.71, while that of Engineering students was 2.95. It shows

that Engineering students may spend much time in watching

the worked examples videos, when they worked in the

project assignments. It shows that the videos provided some

useful learning materials that Engineering students may take

some time to digest, compared to CS students.

Fig. 5. Comparison on Question 5: Which approach below best describes the

properties of the work examples videos?

Fig. 6. Comparison on Question 6: Did you have to repeat the viewing of the

videos to understand the assignment better?

7) Q7: Challenges experienced with blended

learner-centric approach

Responses to Question 7 are shown in Fig. 7. It is observed

that a slightly lower percentage of CS students reported

encountering challenges compared to Engineering students.

It is in line with the responses on Question 6 where some

students watched the videos repeatedly, when they faced

challenges in the learning.

Fig. 7. Comparison on Question 7: Did you face any challenges of learning in

this blended learner-centric approach?

8) Q8: Future use of the blended learner-centric

approach

The feedback comparisons of the survey Question 8 are

shown in Fig. 8. It shows that CS students were slightly more

positive to have more subjects using the blended

learner-centric approach. About 2/3 students from both

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

910

cohorts indicate positively with the blended learning-centric

approach. It shows the good learner satisfaction achieved,

where CS students show slightly higher satisfaction

compared to the Engineering students. It is in line with the

academic performance achieved for two cohorts.

Fig. 8. Comparison on Question 8: Do you think more courses should be

taught this way?

9) Q9: Optimal proportion of F2F v.s. worked example

videos

Question 9 responses are shown in Fig. 9. It is observed

that more CS students preferred learning contents consisting

of a higher proportion of worked example videos at

60%–80%. It is in line with the observation from the previous

survey questions that CS students achieved higher learner

satisfactions and faced lower learning challenges in the

blended learner-centric approach.

Fig. 9. Comparison on Question 9: What proportion of work examples videos

versus face-to-face lecturing are you comfortable with?

C. Findings and Discussions

It is observed from the results of academic performance

comparisons in Table I–Table IV that both cohorts with

varied prior programming knowledge benefited from the

blended learner-centric approach, which helped reduce the

academic performance gap between CS and Engineering

cohorts. The observations are in line with prior works

exploring the blended learning for programming courses in

the literature [4, 35, 40]. It showed Engineering students

benefited more from the blended learner-centric approach

comparatively, given their less programming experiences.

The comparison results of survey responses between the

two cohorts showed different perceptions of the blended

learner-centric approach. Observed from the feedback, CS

students reported higher learner satisfactions to learn

programming courses with the blended learner-centric

approach. The worked example videos for Assignment 2

could help students better understand the profound

mathematical concepts and the programming steps to achieve

the goal. Observed from the survey results, CS students

appreciated the worked example videos more and benefited

from watching the videos in the project assignments. It is

observed that CS students learned in a steady pace, with

almost all students finished watching the videos. Engineering

students benefitted more from the worked example videos

than CS students in terms of the academic performance

obtained. It is through the repeatedly watching the videos to

gain better understanding when Engineering students

encountered learning challenges. Yet they were less

appreciative of them and more likely to have struggled with

watching them, as 22% Engineering students did not finish

watching these videos. This suggests that some enrolled

Engineering students encountered more challenges, similar

to those encountered by the study reported in [34]. This may

be caused by the lack of prior programming knowledge. As

such, Engineering students may need more time to digest the

contents of the worked example videos, while they can learn

better than the F2F learning. The blended learner-centric

approach enabled Engineering students in learning with their

own paces, which could be better than the F2F learning. It is

observed from the experiment results, more Engineering

students realised the benefits of the blended learner-centric

approach on programming courses.

The research findings of the comparisons between the

enrolled CS and Engineering cohorts are important. However,

there are a few limitations in this research as follows.

1) These two group project assignments assumed that every

group member contributed equally and proactively.

Group assessments were marked with the same score

assigned to all members in the group. However, one

group complained that one of their members contributed

very little in both assignments, known as social loafing

in cooperative learning or group work which negatively

impacts the group spirit [41, 42]. The team dynamics are

an important topic in almost all group projects, that

potentially impacts the success of group projects. To

address this issue, peer evaluation scores should be

incorporated for every student on top of a group

assessment score, to motivate all students.

2) The assessment comparisons were only performed by

the enrolled students of this subject, not all students, and

there could have been a response bias in relation to the

survey response rate. The research only involved a single

case study in a single institute. The methodological

assumptions and findings may not be generalisable to

other institutes. However, the transparency in conveying

the research design should be helpful with potential

transferability to other similar HEIs that teach

programming courses.

3) The group sizes were not equal for CS and Engineering

cohorts. The reason was the change of the original plan

of three members per group, due to the strong requests of

Engineering students to increase one more member by

assuming themselves less prior programming experience.

For a fair comparison in future improvement, the group

size of different cohorts should be the same. But it is a

minor limitation, due to the analysis by the t-test. The

t-test is not necessary to have the assumptions of equal

sample size.

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

911

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

912

IV. CONCLUSION

The FoP is a compulsory subject to Year 1 students

majoring in CS and Engineering in the joint degree

programmes of UGS and SIT in Singapore. There is a wide

diversity of backgrounds and prior knowledge of students

across multi-disciplinary fields. Some students have prior

experience in programming, while others may have no

programming skills. This research work investigates the

difference comparisons on performances and learners’

perceptions between CS and Engineering cohorts in learning

the programming subject. By adopting a blended

learner-centric approach on this FoP subject, the academic

performance of both CS and Engineering cohorts were

consistently improved. The comparison analyses also show

that the performance gap between CS and Engineering

cohorts was reduced. Furthermore, the survey of student

perceptions reveals that both cohorts are satisfied with the

blended learner-centric approach. Although differences in

learning procedure and feedback are observed between two

cohorts, they are open to the benefits of learning

programming courses with such an approach.

V. FUTURE DIRECTIONS

Moving forward, in the next phase of research, the blended

learner-centric approach will be enhanced on both cohorts

with different project assignments, thus addressing the

limitations presented in Sub-section III-C. The performance

results and learners’ perceptions will be compared and

analysed between two cohorts again.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Q. Cao, C.K. Seow, and L.H.I. Lim conducted research

and analyzed the data; Q. Cao, C.K. Seow, L.H.I. Lim, S.L.

Keoh, V. Dale, S. Honeychurch, N. Tasler, and D. Bremner

wrote and revised the paper. All authors had approved the

final version.

ACKNOWLEDGMENT

We would thank our UGS Learning & Teaching

Administrative Officers, Ms. Sheila Devi Rajoo and Ms. Sani

Sanifah, as well as the programme directors of UGS for their

contributions and support in this research.

REFERENCES

[1] S. Kanbul and H. Uzunboylu, “Importance of coding education and

robotic applications for achieving 21st-century skills in North Cyprus,”

International Journal of Emerging Technologies in Learning, vol. 12,

2017, doi: 10.3991/ijet.v12i01.6097.

[2] Q. Cao, L. H. I. Lim, V. Dale, and N. Tasler, “Experiences in python

programming laboratory for civil engineering students with online

collaborative programming platform,” in Proc. 14th Annual

International Conference of Education, Research and Innovation,

2021, pp. 5784-5791, doi: 10.21125/iceri.2021.1305.

[3] S. Alhazmi, M. Hamilton, and C. Thevathayan, “CS for all: Catering to

diversity of master’s students through assignment choices,” in Proc.

49th ACM Technical Symposium on Computer Science Education, 2018,

doi: 10.1145/3159450.3159464.

[4] A. Alammary, “Blended learning models for introductory

programming courses: A systematic review,” PloS one, vol. 14, no. 9,

2019, doi: 10.1371/journal.pone.0221765.

[5] C. Alvarado, G. Umbelino, and M. Minnes, “The persistent effect of

pre-college computing experience on college CS course grades,” 49th

ACM Technical Symposium on Computer Science Education, 2018, doi:

10.1145/3210551.

[6] M. Pedroni and M. Oriol, “A comparison of CS student backgrounds at

two universities,” ETH Technical Reports, 2009, doi:

10.1145/366413.364580.

[7] M. Babes-Vroman, I. Juniewicz, B. Lucarelli et al., “Exploring gender

diversity in CS at a large public R1 research university,” ACM SIGCSE

Technical Symposium on Computer Science Education, 2017, doi:

10.1145/3017680.3017773.

[8] F. Moller and T. Crick, “A university-based model for supporting

computer science curriculum reform,” Journal of Computers in

Education, vol. 5, pp. 415–434, 2018.

[9] C. Chen, S. Jeckel, G. Sonnert, and P. Sadler, “Cowboy and cowgirl

programming and success in college computer science,” International

Journal of Computer Science Education in Schools, vol. 2, no. 4, 2019,

doi: 10.21585/ijcses.v2i4.34.

[10] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching

programming: a review and discussion,” Computer Science Education,

vol. 13, pp. 137–172, 2003, doi: 10.1076/csed.13.2.137.14200.

[11] S. Grover and R. Pea, “Computational thinking in K-12: A review of

the state of the field,” Educational Researcher, vol. 42, 2013, doi:

10.3102/0013189X12463051.

[12] F. Restrepo-Calle, J. J. Ramírez Echeverry, and F. A. González,

“Continuous assessment in a computer programming course supported

by a software tool,” Computer Applications in Engineering Education,

vol. 27, pp. 80–89, 2019, doi: 10.1002/cae.22058.

[13] H. Özyurt and O. Özyurt, “Analyzing the effects of adapted flipped

classroom approach oncomputer programming success, attitude toward

programming, and programming self-efficacy,” Computer

Applications in Engineering Education, vol. 26, pp. 2036–2046, 2017,

doi: 10.1002/cae.21973.

[14] M. Rahmat, S. Shahrani, R. Latih et al., “Major problems in basic

programming that influence student performance,” Procedia-Social

and Behavioral Sciences, vol. 59, pp. 287–296, 2012, doi:

10.1016/j.sbspro.2012.09.277.

[15] X. Fang, “Application of the participatory method to the computer

fundamentals course,” Affective Computing and Intelligent Interaction,

pp. 185-189, 2012, doi: 10.1007/978-3-642-27866-2_23.

[16] M. Guzdial, “Exploring hypotheses about media computation,” ACM

Conference on International Computing Education Research, 2013, pp.

19–26, doi: 10.1145/2493394.2493397.

[17] S. Bergin and R. Reilly, “The influence of motivation and

comfort-level on learning to program,” in Proc. 17th Workshop of the

Psychology of Programming Interest Group, 2005.

[18] S. Dasuki and A. Quaye, “Undergraduate students’ failure in

programming courses in institutions of higher education in developing

countries: A Nigerian perspective,” Electronic Journal of Information

Systems in Developing Countries, vol. 76, pp. 1–18, 2016, doi:

10.1002/j.1681-4835.2016.tb00559.x.

[19] Ö. Korkmaz and H. Altun, “Adapting computer programming

self-efficacy scale and engineering students’ self-efficacy

perceptions,” Participatory Educational Research, vol. 1, pp. 20–31,

2014, doi: 10.17275/per.14.02.1.1.

[20] L. E. Margulieux, B. B. Morrison, and A. Decker, “Reducing

withdrawal and failure rates in introductory programming with subgoal

labeled worked examples,” International Journal of STEM Education,

vol. 7, 2020, doi: 10.1186/s40594-020-00222-7.

[21] L. Porter, M. Guzdial, C. McDowell, and B. Simon, “Success in

introductory programming: what works?” Communications of the ACM,

vol. 56, pp. 34–36, 2016, doi: 10.1145/2492007.2492020.

[22] C. Boudia, A. Bengueddach, and H. Haffaf, “Collaborative strategy for

teaching and learning object-oriented programming course: A case

study at Mostafa Stambouli Mascara University, Algeria,” Informatica,

vol. 43, 2019, doi: 10.31449/inf.v43i1.2335.

[23] E. Holden and E. Weeden, “The impact of prior experience in an

information technology programming course sequence,” in Proc. 4th

Conference on Information Technology Curriculum, 2003, doi:

10.1145/947121.947131.

[24] A. Badawy, K. Schmitt, S. Kramer, et al., “Expectations of computing

and other STEM students: a comparison for different class levels, or

(CSE ≠ STEM - CSE),” IEEE Frontiers in Education Conference,

2013, doi: 10.1109/FIE.2013.6685120.

International Journal of Information and Education Technology, Vol. 13, No. 6, June 2023

913

[25] M. Tom, “Five Cs framework: a student-centered approach for teaching

programming courses to students with diverse disciplinary

background,” Journal of Learning Design, vol. 8, 2015, doi:

10.5204/jld.v8i1.193.

[26] M. S. Kirkpatrick and C. Mayfield, “Evaluating an alternative CS1 for

students with prior programming experience,” ACMSIGCSE Technical

Symposium on Computer Science Education, 2017, pp. 333–338, doi:

10.1145/3017680.3017759.

[27] C. Marling and D. Juedes, “CS0 for computer science majors at Ohio

University,” in Proc. 47th ACM Technical Symposium on Computing

Science Education, pp. 138–143, 2016, doi:

10.1145/2839509.2844624.

[28] Z. Dodds, R. Libeskind-Hadas, C. Alvarado, and G. Kuenning,

“Evaluating a breadth-first CS1 for scientists,” ACM Technical

Symposium on Computer Science Education, vol. 40, no. 1, 2008, doi:

10.1145/1352322.1352229.

[29] A. Arboleda, L. Mazuera, and G. Montemiranda, “Competences that

facilitate the achievement of the objectives of an introductory

programming course,” International Conference on Interactive

Collaborative Learning, 2015, doi: 10.1109/ICL.2015.7318166.

[30] W. Lau and A. Yuen, “Exploring the effects of gender and learning

styles on computer programming performance: implications for

programming pedagogy,” British Journal of Educational Technology,

vol. 40, pp. 696-712, 2009, doi: 10.1111/j.1467-8535.2008.00847.x.

[31] M. J. Kintu, C. Zhu, and E. Kagambe, “Blended learning effectiveness:

the relationship between student characteristics, design features and

outcomes,” International Journal of Educational Technology in

Higher Education, vol. 14, no. 7, 2017, doi:

10.1186/s41239-017-0043-4.

[32] G. El-Sayad, N. M. Saad, and R. Thurasamy, “How higher education

students in Egypt perceived online learning engagement and

satisfaction during the COVID-19 pandemic,” Journal of Computers in

Education, vol. 8, pp. 527–550, 2021.

[33] T. B. Bati, H. Gelderblom, and J. Van Biljon, “A blended learning

approach for teaching computer programming: design for large classes

in Sub-Saharan Africa,” Computer Science Education, vol. 24, no. 1,

pp. 71–99, 2014, doi: 10.1080/08993408.2014.897850.

[34] C. Jacobs, G. Gorman, H. Rees, and L. Craig, “Experiences with

efficient methodologies for teaching computer programming to

geoscientists,” Journal of Geoscience Education, vol. 64, no. 3, pp.

183–198, 2016, doi: 10.5408/15-101.1.

[35] K. Tritrakan, P. Kidrakarn, and M. Asanok, “The use of engineering

design concept for computer programming course: a model of blended

learning environment,” Educational Research and Reviews, vol. 11, no.

18, pp. 1757–1765, 2016, doi: 10.5897/ERR2016.2948.

[36] Remote and Blended Teaching, University of Glasgow, [online]:

https://www.gla.ac.uk/myglasgow/anywhere/blendedteaching/.

[37] S. Dart, S. Cunningham-Nelson, and L. Dawes, “Understanding

student perceptions of worked example videos through the technology

acceptance model,” Computer Applications in Engineering Education,

vol. 28, pp. 1278–1290, 2020, doi: 10.1002/cae.22301.

[38] B. G. Davis, Tools for Teaching, Jossey-Bass Inc., San Francisco:

California, 1993.

[39] S. A. Burke, “Group work: How to use groups effectively,” The

Journal of Effective Teaching, vol. 11, pp. 87–95, 2011.

[40] I. Cabrera, J. Villalon, and J. Chavez, “Blending communities and

team-based learning in a programming course,” IEEE Transactions on

Education, vol. 60, no. 4, 2017, doi: 10.1109/TE.2017.2698467.

[41] P. Aggarwal and C. O'Brien, “Social loafing on group projects:

Structural antecedents and effect on student satisfaction,” Journal of

Marketing Education, vol. 30, no. 3, pp. 255–264, 2008, doi:

10.1177/0273475308322283.

[42] Ş. B. Tosuntaş, “Diffusion of responsibility in group work: Social

loafing,” Journal of Pedagogical Research, vol. 4, no. 3, pp. 344–358,

2020, doi: 10.33902/JPR.2020465073.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

