

Design and Implementation of Gamified Learning System for

Mutation Testing

Nien-Lin Hsueh*, Zeng Hung Xuan, and Bilegjargal Daramsenge

Abstract—Mutation Testing is used to test case improvement

mechanism for evaluating the effectiveness of test cases by

generating a large number of mutants. In the past, some

approaches are proposed to improve the performance of

generating the mutants. In recent years, many studies have

begun to explore the software engineering education of

mutation testing, trying to make students understand its

concept through gamification. In this paper, we apply

gamification theory and build a gamified learning system for

mutation testing, named code immunity boost (CIB), taking the

story of vaccine development as a sense of mission. We invited

students to learn mutation testing through the relationship

between leukocyte (test case), vaccine (mutant) and human

body (program). Students can play the role of a vaccine and

stimulate the testing of test cases by writing mutants to improve

the quality of the program. We adopted the benchmark

programs commonly used in mutation testing research, and

developed a code vaccine incubator (CVI) tool to generate a

large number of mutants as the experimental cornerstone of

this study. Final experiments show that our tool can help

mutation testing education, as the performance and quality of

the experimental group is better than that of the control group.

The response from the questionnaire also shows students like

learning by our gamified tool. We therefore recommend to

promote such software testing education approach by

integrating our tool with popular online programming tools

such as Online Judge system.

Index Terms—Mutation testing, mutant, gamified education

I. INTRODUCTION

Software engineering has been an important engineering

technology recently. Students in each software field need to

go through a series of training, such as version management,

requirements analysis, system design, software testing

technology, architecture design, etc. But most of the attention

was paid to programming education, while software testing

and program quality are ignored. Although many students

have good programming ability, they did not have enough

skills to test software improve their quality. Therefore,

software engineering education has also become an important

research topic [1–4].

On the other hand, with the popularity of the Internet, APP,

and games, traditional education methods are gradually

difficult to stimulate students‘ interest in learning. Learning

by gamification is favored by people [5–14]. The application

of gamification theory has also become one of the important

researches in software engineering education. In the paper

[15], 156 papers were discussed on this topic, and it was

found that gamification can help software engineering in the

Manuscript received December 20, 2022; revised January 28, 2023;

accepted February 12, 2023.

The authors are with the Department of Information Engineering and

Computer Science, Feng Chia University, Taiwan.

*Correspondence: nlhsueh@fcu.edu.tw (N.L.H.)

following ways: 1) improve students‘ participation in courses;

2) improve students‘ professional knowledge; 3) encourage

students to adopt software engineering practices; 4) improve

students‘ teamwork skills. In general, the gamification

techniques used in such papers include Leaderboards, Points,

Milestones, Levels, Paths and Progress Competition and

Rewards. The applied software engineering knowledge fields

include software development process, software design,

requirements analysis, software validation, process

improvement, software construction and software

maintenance.

In software engineering gamification learning, most of the

fields involve software design, software process and

requirements analysis, and the number of software tests is

relatively low [15]. However, the importance of software

testing is unquestionable. In order to allow students to learn

mutation testing, Rojas and Fraser developed a game of

mutation testing combined with gamification learning, called

Code Defenders [16], the game is played by two people, one

person plays the role of the attacker to write mutants, the

other plays the defender to write test cases, and the two sides

can compete, so that players can improve their knowledge

and writing ability of mutation testing in the process of

competition.

Inspired by Code Defenders and the COVID-19 pandemic

in the past two years, this study intends to design a gamified

learning system for mutation testing based on the concept of

the human body‘s story of boosting immunity.

In order to provide a learning environment for learning

mutation testing, this study combines mutation testing with

gamification education, and constructs a mutation test based

on the story of vaccine development. We have developed a

learning system, named code immunity boost (CIB), and

developed a mutant generate tool, named code vaccine

incubator (CVI).

The work is organized as below. The second section

introduces the techniques used in this study and related

research literature, including the mutant testing and the

related gamification work. The third section is our game

design including overall system architecture and the

gamification methods used in the research. The fourth section

is the results of a pilot experiment and questionnaire. The

fifth section is the conclusion, which describes the

contribution and future development direction of this

research.

II. BACKGROUND AND RELATED WORK

Mutation testing was originally proposed by DeMillo et al.

as a test method for evaluating the effectiveness of test cases

for unit testing [17]. DeMillo et al. believed that the original

program could be modified by a small amount to form a

International Journal of Information and Education Technology, Vol. 13, No. 7, July 2023

1150doi: 10.18178/ijiet.2023.13.7.1916

mailto:nlhsueh@fcu.edu.tw

program that are extremely similar but different are called

mutants.

The process of mutation testing is described as follows:

First, generate a large number of different mutants from the

original program; second, test the original program and the

mutants by the test cases; and then compare their output:

 if the outputs are the same. It means that the test cases

cannot detect the difference between the mutant and the

original program. In this case, the mutant is regarded as

alive, waiting for testers to add more effective test cases to

remove (kill) it from the mutant set.

 if the outputs are different. It implies the test suite is

effective enough to detect the difference between the

original program and its mutants. In this case the mutant

will be killed and removed from the mutant set.

Adding test cases to kill mutants is an iterative process in

mutation testing until all mutants except equivalent mutant

are killed. An equivalent mutant is a mutant that do not

change the behavior of the original program and would not be

killed by any test case. The mutation score (ms) is an

indicator used to calculate the effectiveness of the test case:

where killed, all and equiv represent the number of killed

mutants, all mutants and equivalent mutants. The range of the

mutation score is between 0.0 ∼ 1.0. Mutation score is the

percentage of mutants that were killed by the test suite. The

higher the mutation score, the more effective the test suite is

at detecting errors.

A. Mutation Testing with Gamification

Code Defenders is a game developed by Jos and Gordon

based on mutation testing [18, 19]. The research team

believes that there are still many computer science students

do not understand mutation testing. They combine mutation

testing with gamification, hoping that students can learn

mutation testing through competition and entertainment. In

the game, player can choose to play the role of attacker or

defender. The attacker will write mutants to not be killed by

the test cases that are created by defender; The defender has

to create test cases to kill the mutants that are created by

attacker.

While Code Defenders was a successful mutation testing

game, the study initially required at least two people to play,

and it would happen that the ability gap between the attacker

and defender was so large that one side would suffer from a

lack of ability. Although subsequent studies have added a

computer mode that can be played by one player, the

difficulty of the single player mode does not have a clear

difficulty index, and it is difficult to completely replace the

two-player mode.

III. GAME DESIGN AND TOOL IMPLEMENTATION

In this section, we will introduce the design of our game,

and its implementation.

A. Game Design

The following will explain the game cores, game level

design, implementation of Code Immunity Boost, and

implementation of Code Vaccine Incubator.

In our design, students will learn about mutation testing

through the relationship between leukocyte (test case),

vaccine (mutant), and human (program). Fig. 1 shows this

relationship. Students can play the role of vaccine and

stimulate the testing of test cases by writing mutants to

improve the quality of the program. Playing the role of

leukocyte and eliminate the mutants by writing test cases to

improve the quality of the program. Our system design game

levels and points based on the mutation score of the mutation

testing and the fragility of the mutant. No matter what kind of

role-playing it is, it can make students think about the

relationship between the program and the test case, and then

stimulate the students‘ learning motivation through the

stimulation of achievement such as leveling and scoring, and

then learn the mutation testing.

Fig. 1. Program, test case and mutant.

B. Game Cores

Three cores in Octalysis are embedded in our approach.

1) Meaning is player believes that he is doing something

greater than himself. The reason for choosing meaning

is to give the user a background. The background of

our game is set as the pathogen is raging all over the

world. The user needs to develop mutant, and let the

test case kill the mutant. The test case will upgrade

ability of detect errors, thereby reducing the risk of

program errors.

2) Accomplishment is that people are driven by a sense

of growth towards a goal and accomplishing it. Status

points are an easily identifiable signal, and by showing

small improvements, they will motivate people to

move in the right direction. In this work we use the

immunity (mutation score) and vaccine efficacy

(1−fragility) to allow users to be more involved in the

background of the story, but also to learn the meaning

of both the mutation score and fragility at the same

time; The progress bar is a way of using incomplete

graphics to encourage people to fill up the blank areas

in the graphics.

3) Empowerment brings imagination to real life. The

reason for choosing empowerment is that people can

play two roles leukocyte and vaccine, and use their

International Journal of Information and Education Technology, Vol. 13, No. 7, July 2023

1151

software knowledge and play experience to

continuously improve the skill to write test cases and

mutants, and the writing of test cases and mutants is

varied.

C. Benchmark Programs

Many studies about mutation testing use the following

programs to generate mutants, and use these mutants to

conduct benchmark tests [20]. In this work we select the

following programs as our benchmark examples: Triangle,

Computing the median, Euclidean GCD, Fibonacci Search,

Binary Search, Interpolation search and Leap year.

D. Game Level Design

In this study, the fragility is used as the standard of level

difficulty, which is divided into four types of difficulty, Easy,

Medium, Hard, Difficult. Users can gradually challenge from

easy to difficult.

The level screenshot is shown in the Fig. 2. The user needs

to pass the level to unlock the next level. (1) The level that

has been cleared will be able to see the corresponding ranking,

and the level that has not been cleared will display the locked

symbol; (2) The level number, program, and difficulty; (3)

The basic condition and better condition that each level needs

to meet. The user needs to meet the basic condition of the

level at least to pass the level, and the better condition are

used to encourage users to challenge more difficult problems.

Fig. 2. Level screenshot.

E. How to Play

CIB is a mutation testing game based on Python and the

framework unittest. Each level assigns the user to play one of

the roles of leukocyte or vaccine, and immunity and vaccine

efficacy to refer to the two indicators of mutation score and

fragility. The purpose is to get closer to the background of

vaccination to improve human immunity. Immunity is equal

to the mutation score, which corresponds to the ability of

leukocyte to resist mutants from invading the human body. A

powerful leukocyte can kill a large number of mutants. The

more effective test cases, the more errors can be detected.

Vaccine efficacy is equal to 1 − fragility, which corresponds

to the vaccine can improve the protective efficacy of the

human body. Vaccine with insufficient vaccine efficacy

cannot protect the human body.

When playing leukocyte, you need to follow the mutants

provided by the level, and develop test cases to find out the

errors of the mutants (see Fig. 3). Table I shows an example

for playing leukocyte. Assuming that there are 10 mutants

(m1 – m10), the player will pass the level if the test cases kill at

least 5 mutants (immunity greater than or equal to 0.5), and

will get points if test cases kill more than 8 mutants

(immunity greater than or equal to 0.8). The following is a

playing scenario:

1) In the first round, the user submitted the test case t1, t1,

killed the mutants m1, m2, resulting in the immunity to

be 0.2.

2) In the second round, the user submitted test cases t2, t2,

killed the mutants m1, m3, m4, m5 and m6. The immunity

is 0.5, greater than the level condition. The user passed

the level.

3) In the round, the user submitted test cases t3, t3, killed

the mutants m1, m2, m3, m4, m5, m6, m7, m8. The

immunity is 0.8. The user passed the level with high

points.

TABLE I: LEUKOCYTE EXAMPLE

R TC Killed Mutants Immunity Result

1 t1 m1, m2 0.2 Not Pass

2 t2 m1, m3-m6 0.5 Pass

3 t3 m1-m8 0.8 Pass

Fig. 3. Screen of playing leukocyte.

F. Code Immunity Boost

The system architecture of the code immunity boost

developed in this research is shown in Fig. 4. The functions

of the system are described as follows:

Fig. 4. The architecture of code immunity boost.

 Code Editor: a front-end editor for users to create test

cases or mutants.

 Code Runner: a compiler to compile submitted test cases

or mutants, and sends the execution results to Metrics

Computer module.

 Metrics Computer: a module will execute mutation

International Journal of Information and Education Technology, Vol. 13, No. 7, July 2023

1152

testing, and then evaluate the mutation score of test case

and the fragility of mutant.

 Game Manager: a module to provide information about

the game to Code Editor for showing to user, calculate the

score of the game and check if pass the level.

 Code Database: a module to save and manage user

defined code.

 Game Database: a database used to store game

information.

IV. PILOT EXPERIMENTS

In order to evaluate feasibility and cost of using the CIB

before formal experiment, a pilot experiment was performed,

and the test cases and questionnaires generated during the

experiment were used to explore the influence of the

participants on the learning performance and learning

motivation of the mutation testing.

A. Experimental Setting

In this experiment, feedback was collected through real

operations. We want to explore “How do students learn by

using the CIB tool?”

A total of 10 college students participated in this

experiment, 3 females and 7 males. All the students were

from the Department of Information Engineering of Feng

Chia University, and none of them had studied mutation

testing before this experiment. The students who use CIB are

designated as an experimental group, they will design test

cases to kill mutants during the game. Other students are

classified as a control group, who would learn the mutation

test using handwriting by killing mutants.

B. Result and Discussion

As the experiment is a pilot experiment to test if the tool

and the process work well during the learning process. There

were not many participants in our experiment. We use

descriptive statistics to analyze our result. The experiment

shows two results:

 The experimental group outperformed the control group in

constructing valid test cases;

 Although the experimental group has high performance, its

invalid rate is higher than that of control group.

The performance of building test cases was assessed by

comparing the numbers of test cases submitted by the control

and experimental groups. Table II shown the control group

submitted a total of 18 test cases, with an average of 3.6 (18/5)

for each assignment; the experimental group submitted 152

test cases totally, with an average 30.4 (152/5) for each

assignment. Fig. 5 presents the great difference between the

two groups.

The obvious difference in the number of submissions may

be due to the fact that the control group needs to write all the

mutation testing procedures by itself. In addition to designing

test cases, it is necessary to perform simulated execution

manually for each mutation, record the output, and then

calculate the mutation score. Therefore, submission is very

slow. In contrast, the experimental group only needs to

design test cases, and the rest of the process is automatically

completed by the CIB, therefore the submission speed is

faster than that of the control group.

TABLE II: NUMBERS OF TEST CASES SUBMITTED IN EACH GROUP

 All GCD Search Triangle

Control G. 18 11 4 3

Experimental G. 152 13 34 105

Fig. 5. Number of test cases submission.

The performance influences the willing to try new test

cases. Some of the test cases designed by the students are

invalid if they can‘t be compiled or executed correctly. We go

further to compare the valid/invalid test cases in two groups.

Fig. 6 represents the comparison.

Fig. 6. Number of invalid test cases.

The control group has only 8 valid test cases, while the

experimental group has 25 valid test cases, much more than

the control group. Thought the experimental group has more

valid test cases, its proportion of invalid test cases is higher

than that of control group. We speculate that this

phenomenon is due to CIB‘s quick feedback to students.

When an error occurs, the experimental team will fix the

problem as soon as possible according to the error message-

even the fix is still invalid. The quick response results in high

invalid rate. However, we thought this is a trial and error

process for learning test case design.

As the difficulty of the questions increases, the control

group has been unable to write effective test cases, and the

test cases submitted tend to be invalid. In the cases of

Interpolation search and Triangle, the numbers of valid and

invalid submission are close to 0.

To sum up, the experimental group benefited from the

automation of most of the CIB processes, and the

performance and correctness of its test case design were

significantly better than the control group‘s handwriting

method.

International Journal of Information and Education Technology, Vol. 13, No. 7, July 2023

1153

International Journal of Information and Education Technology, Vol. 13, No. 7, July 2023

1154

C. Participant Satisfaction Survey

The content of the questionnaire in this experiment is

based on the content of the questionnaire developed by

Barrio‘s research [21]. The whole questionnaire is divided

into three parts, namely motivation, attention and learning

performance, with a total of 11 questions. The questions

marked with ‗*‘ symbol are questions specific to the

experimental group, and are used to observe whether our

gamified tool is good for learning. We apply a 5-point Likert

scale to collect students‘ feedback. The questions are shown

in Table III.

In the motivation questions, as shown in Table IV, the

average of the three questions in the experimental group is

higher than that in the control group. The experimental group

believes that not only they can learn mutation test by the tool,

but the embedded gamified approach can also increase

learning interest. The instant feedback mechanism in the

experimental group made the participants more willing to try

more test cases. In the question Q1-3 “I think I’d like to go

deeper into mutation testing”, the control group got a very

low score (3.0), which means that students lost their

motivation to learn the mutation testing through the

traditional approach.

TABLE III: EXPERIMENTAL QUESTIONNAIRE

Questions

Motivation (Q1)

Q1-1 I like this way of learning to learn mutation testing

Q1-2 I feel like this way of learning will make me more aware of

mutation testing

Q1-3 I think I‘d like to go deeper into mutation testing

Q1-4* I think the level design is challenging and can increase my

motivation to keep learning

Q1-5* I prefer this way of learning over the traditional way of teaching

Attention (Q2)

Q2-1 I feel that I have few distractions and can concentrate on this study

Q2-2 I think the process has been a high-intensity cognitive thinking

Q2-3 I feel like I am actively participating in the process

 Learning outcome (Q3)

Q3-1 I can understand the approach of mutation testing

Q3-2 I can apply the technique of mutation testing

Q3-3* I think this teaching method has better learning effect than

traditional teaching method

TABLE IV: RESULT OF MOTIVATION QUESTIONNAIRE

Q1. Motivation

 Q1-1 Q1-2 Q1-3 Q1-4* Q1-5*

Control G. 3.5 3.5 3.0 - -

Experimental G. 4.5 4.83 4.17 4.33 4.67

In the attention part, the experiment group gets a higher

score than the control group in questions Q2-1 and Q2-3.

Q2-2 “I think the process has been a high-intensity cognitive

thinking” is a special case—the control group get a higher

score (see Table V). The result can reflect that the

handwriting method will force the participants to be think

deeper. Even though the process to compare the output of

mutants is difficult for learners, it is impressive the process to

understand the mutation process. In the question Q2-1 “I feel

that I have few distractions and can concentrate on this

study”, the control group get low score (3.5 points), which

shows that the computation is really hard for learners.

TABLE V: RESULT OF ATTENTION QUESTIONNAIRE

Q2. Attention

 Q2-1 Q2-2 Q2-3

Control G. 3.5 4.5 4.5

Experimental G. 4.5 4.17 4.83

Table VI shows the results in the Learning Performance

part. Three questions are designed to collect students‘

feedback on learning performance. Both groups felt they

could understand and apply the concept and techniques of

mutation testing. The experimental group also expressed high

interest in the CIB tool—they believed that this gamified

learning method is a good way of learning than the traditional

lecturing approach.

In general, both the control group and the experimental

group were satisfied with learning mutation testing. After

experiencing this experiment, they would like to understand

the technology of mutation testing, and even want to

challenge more difficult problems. The control group mainly

felt the pressure on the handwriting method, hoping to reduce

the number of mutants to make the handwriting process a

little easier, while the experimental group did not think that

the number of mutants was too large at all, but expressed

more interest in the CIB.

TABLE VI: RESULT OF LEARNING PERFORMANCE QUESTIONNAIRE

Q3. Learning performance

 Q3-1 Q3-2 Q3-3

Control G. 4.75 4.0 -

Experimental G. 4.67 4.33 4.83

V. CONCLUSION

Mutation testing is a software testing technique that has

been proven to effectively improve the effectiveness of

detecting errors in the test cases. However, in the actual

educational environment, there are few appropriate teaching

materials to support the teaching of mutation testing, which

reduces students‘ chances of learning mutation testing. In this

work we develop the code immunity boost (CIB), a

gamification system developed based on the concept of

pathogen mutation.

A pilot experiment was conducted to evaluate our

approach. The control group used handwriting to learn the

mutation testing, while the experimental group used our

developed gamified CIB tool to learn. We also conducted a

questionnaire to collect students‘ feedback from the

viewpoints of motivation, attention and learning performance.

The result shows that our tool can provide an effect method

for learning mutation testing. Although learning without our

tool can make students impress with the knowledge of

mutation testing, but because the process is too difficult and

no fun, they lose their motivation to learn.

In the field of software testing research, most of them

propose testing techniques to improve the effectiveness of

testing, and seldom use gamification mechanisms and tools to

promote software testing education. We believe our method

can serve as a reference for this type of research. In the future,

we plan to integrate our approach with the more widely used

Online Judge system, through which we can make software

engineering education more robust.

International Journal of Information and Education Technology, Vol. 13, No. 7, July 2023

1155

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Hsueh conducted the research; Xuan implemented the

system; Daramsenge wrote the paper.

FUNDING

This work was supported by the Ministry of Science and

Technology, Taiwan, under grant MOST

110-2221-E-035-031-MY2.

REFERENCES

[1] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal, ―A
survey on online judge systems and their applications,‖ ACM

Computing Surveys (CSUR), vol. 51, no. 1, p. 3, 2018.

[2] A. Knutas, J. Ikonen, and J. Porras, ―Computer-supported collaborative
learning in software engineering education: A systematic mapping

study,‖ arXiv preprint arXiv:1906.10710, 2019.

[3] M. Shaw, ―Software engineering education: A roadmap,‖ ICSE-Future
of SE Track, pp. 371–380, 2000.

[4] M. Souza, R. Moreira, and E. Figueiredo, ―Students perception on the

use of project-based learning in software engineering education,‖ in
Proc. the XXXIII Brazilian Symposium on Software Engineering, pp.

537–546, 2019.

[5] M. Milosz and E. Milosz, ―Gamification in engineering education–a
preliminary literature review,‖ in Proc. 2020 IEEE Global Engineering

Education Conference (EDUCON), pp. 1975–1979, 2020.

[6] Y.-F. Xu and L.-S. Shi, ―Research and design of app for primary school
students‘ safety education based on embodied cognitive theory,‖ in

Proc. 2020 IEEE 2nd International Conference on Computer Science

and Educational Informatization (CSEI), pp. 1–4, 2020.
[7] W. Chao, C. Yang, S. Hsien, and R. Chang, ―Using mobile apps to

support effective game-based learning in the mathematics classroom,‖

International Journal of Information and Education Technology, vol. 8,
no. 5, pp. 354–357, 2018.

[8] D. Ding, C. Guan, and Y. H. Yu, ―Game based learning in tertiary

education: A new learning experience for the generation z,‖
International Journal of Information and Education Technology, vol. 7,

no. 2, p. 148, 2017.

[9] L. C. Kho, S. S. Ngu, A. Joseph, D. A. A. Mat, L. Y. Ng, and J. L. Hau,
―Gamification approach towards engineering students‘ engagement in

online learning,‖ International Journal of Information and Education

Technology, vol. 12, no. 6, 2022.

[10] J. Jitsupa, M. Takomsane, S. Bunyawanich, N. Songsom, and P.

Nilsook, ―Combining online learning with gamification: An

exploration into achievement, motivation, and satisfaction of the
undergraduate,‖ International Journal of Information and Education

Technology, vol. 12, no. 7, 2022.

[11] J. Kummanee, P. Nilsook, and P. Wannapiroon, ―Digital learning
ecosystem involving steam gamification for a vocational innovator,‖

International Journal of Information and Education Technology, vol.

10, no. 7, pp. 533–539, 2020.
[12] N. Willert, ―A systematic literature review of gameful feedback in

computer science education,‖ International Journal of Information and

Education Technology, vol. 11, no. 10, pp. 464–470, 2021.
[13] D. N. Prata, P. Letouze, S. Cerri, and E. Costa, ―A game approach to

assessing learning outcomes,‖ International Journal of Information

and Education Technology, vol. 6, no. 2, p. 137, 2016.
[14] T. A. Shimoda and M. Borge, ―The web of inquiry: Computer support

for playing epistemic games,‖ International Journal of Information

and Education Technology, vol. 6, no. 8, p. 607, 2016.
[15] R. A. Mauricio, L. Veado, R. T. Moreira, E. Figueiredo, and H. Costa,

―A systematic mapping study on game-related methods for software

engineering education,‖ Information and Software Technology, vol. 95,
pp. 201–218, 2018.

[16] J. M. Rojas and G. Fraser, ―Code defenders: a mutation testing game,‖

2016 IEEE Ninth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 162–167, 2016.

[17] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, ―Hints on test data

selection: Help for the practicing programmer,‖ Computer, vol. 11, no.
4, pp. 34–41, 1978.

[18] J. M. Rojas, T. D. White, B. S. Clegg, and G. Fraser, ―Code defenders:

crowdsourcing effective tests and subtle mutants with a mutation
testing game,‖ in Proc. 2017 IEEE/ACM 39th International Conference

on Software Engineering (ICSE), pp. 677–688, 2017.

[19] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, ―Gamifying a software
testing course with code defenders,‖ in Proc. the 50th ACM Technical

Symposium on Computer Science Education, pp. 571–577, 2019.

[20] Y. Jia and M. Harman, ―Higher order mutation testing,‖ Information
and Software Technology, vol. 51, no. 10, pp. 1379–1393, 2009.

[21] C. M. Barrio, M.-O. Mario, and J. S. Soriano, ―Can gamification

improve the benefits of student response systems in learning? An
experimental study,‖ IEEE Transactions on Emerging Topics in

Computing, vol. 4, no. 3, pp. 429–438, 2015.

Copyright © 2023 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/

