
  

A Study of Phrase Fill-in-Blank Problem for Learning Basic C 

Programming 

Xiqin Lu, Nobuo Funabiki*, Annisa Anggun Puspitasari, and Kiyoshi Ueda 

Abstract—In a lot of universities across the world, C 

programming is taught to novice students in the first 

programming course. To assist their self-studies, we have 

developed C programming learning assistant system (CPLAS) 

that offers various programming problems with different 

learning goals where any answer from a student is automatically 

marked at the system. In this paper, we studied the phrase 

fill-in-blank problem (PFP) in CPLAS for learning basic C 

programming. A PFP instance gives a source code where several 

key phrases (set of elements) are blanked and requests to fill in 

them by a student. The correctness of answers is checked 

through string matching with the original ones. For evaluations, 

we generated 22 PFP instances for learning basic grammar 

topics and logic functions and assigned them with previous 15 

instances for recursive functions to 21 students in Okayama 

University. The results confirmed the correctness of the 

generated instances and found the weakness of students in C 

programming study. 

 
Index Terms—Introductory C programming, phase 

fill-in-blank problem, novice student, self-study  

I. INTRODUCTION 

Currently, in a lot of universities across the world, C 

programming is taught to novice students in the first 

programming course, before teaching more advanced and 

practical programming languages such as Java, Python, and 

JavaScript. Unfortunately, students are often suffering from 

studying it due to the formality nature of using symbols and 

logics programming. To assist their self-studies at homes 

without teachers, we have developed C programming 

learning assistant system (CPLAS) that offers several types of 

exercise problems with different leaning goals and levels. In 

any problem, an answer from a student is marked at the system 

automatically. 

Previously, in CPLAS, we have defined and implemented 

the grammar-concept understanding problem (GUP) [1], the 

value trace problem (VTP) [2], the element fill-in-blank 

problem (EFP) [3], and the code completion problem (CCP) 

[4]. In these problems, one problem instance consists of a 

source code, a set of questions, and their correct answers. The 

correctness of any answer is determined through string 

matching with the stored correct answer in the system. The 

common answer interface for them has been implemented on 

a web browser [5], where the marking function was 

implemented by JavaScript that runs on the web browser. 

 
Manuscript received July 8, 2022; revised August 12, 2022; accepted 

September 19, 2022. 

Xiqin Lu and Nobuo Funabiki are with the Department of Electrical and 

Communication Engineering, Okayama University, Okayama, Japan.  

Annisa Anggun Puspitasari is with the Department of Intelligent 

Mechatronics Engineering, Sejong University, Seoul, South Korea. 

Kiyoshi Ueda is with the Department of Computer Science, Nihon 

University, Koriyama, Japan. 

*Correspondence:  funabiki@s.okayama-u.ac.jp (N.F.) 

In a GUP instance, the source code contains basic 

keywords in C programming to be studied, such as reserved 

words and common library elements. Each question describes 

the grammar concept on a keyword and requests to answer the 

corresponding element appearing in the source code. It is 

noted that an element represents the least unit of the source 

code. GUP aims the grammar study. 

In a VTP instance, the source code contains several 

standard output statements for important variables or output 

messages. Each question requests to answer the 

corresponding output value. VTP aims the code reading 

study. 

In an EFP instance, the source code contains several blank 

elements with specifying the locations. An element can be a 

reserved word, an identifier, an operator, and a control 

symbol here. Each question requests to fill in the blank. EFP 

aims the code writing study. 

In a CCP instance, the source code contains several blank 

elements like EFP, but does not specify the locations. Then, 

each question requests to find the location of a missing 

element in the code and fill in it with the proper one. CCP 

aims the code reading & writing study. 

For any exercise problem type, every time a student 

submits the answer for an instance, it is stored in the web 

browser with the time stamp using Web Storage [6]. When the 

student needs to submit the answers to a teacher, the answers 

by this student can be saved in a text file to be downloaded 

from the web browser. 

After collecting the answers from the students, the teacher 

will analyze and tally them by running the answer analyzer. 

This Java program selects only the final answer of the student 

to each instance using the time stamp. Then, it calculates the 

average correct answer rate and the average number of 

submission times for each instance and each student from all 

the submitted answers by the students. After that, it will 

output them into the Excel file.  

The existing problem types have different learning goals to 

assist step-by-step programming self-studies of students with 

CPLAS. Unfortunately, they are not sufficient for the code 

writing study. The question only asks to fill in one element in 

the source code. To complete a source code, it is necessary to 

make a combination of multiple elements properly. 

Recently, as a new problem type for the code writing study 

of C programming by novice students, we have proposed and 

studied the phrase fill-in-blank problem (PFP) [7]. In a PFP 

instance, the source code contains several blanks of phrases or 

sets of multiple elements. Each question requests to fill in the 

blank with the phrases that originally existed in the code. To 

generate a new PFP automatically as best as possible, we have 

implemented the PFP generator using Python. 

In PFP, one blank can substitute any number of elements in 

the source code, unlike EFP or CCP where one blank can do 

International Journal of Information and Education Technology, Vol. 13, No. 9, September 2023

1445doi: 10.18178/ijiet.2023.13.9.1948

mailto:pch55zhl@s.okayama-u.ac.jp


  

only one element. This flexibility of PFP is able to increase 

the number of candidates or choices for blanks in the source 

code, which can enhance learning effects and difficulty levels 

at solving problems by novice students. 

In this paper, we studied the phrase fill-in-blank problem 

(PFP) in CPLAS for learning basic C programming. 

Collecting proper source codes from [8–12] and running the 

PFP generator, we newly generated 13 PFP instances for 

learning basic grammar topics and nine instances for learning 

logic functions. Then, we assigned them with previously 

generated 15 instances for recursive functions, to 21 students 

in Okayama University. 

For evaluations of the PFP instances, we collected the 

answer files from the students, and calculated the average 

correct rate and the number of submission times from them 

using the answer analyzer. Then, from them, we could 

confirm the correctness of the generated PFP instances and 

find the weakness of the students in C programming topics 

and the students to be cared. 

The rest of this paper is organized as follows: Section II 

provides a review of related works in literature. Section III 

presents the PFP instances generated for this application. 

Section IV shows the example of PFP instance. Section V 

shows their application results to novice students and 

discussions. Finally, Section VI concludes this paper with 

future work. 

 

II. RELATED WORKS 

In this section, we discuss related works in literature. 

In [13], Freund et al. developed the Thetis programming 

environment that is designed specifically for student to use. 

This system consists of the C interpreter and the associated 

user interface to provide simple and easily-understood editing, 

debugging, and visualization capabilities. It is more suitable 

for students in introductory computer science courses, 

because some commercially available compilers, particularly 

those used for languages like ANSI C, assume the level of 

sophistication that novice students do not possess. 

In [14], Boada et al. presented a web-based tool, named 

ACMEp, with the aim of reinforcing teaching and learning of 

introductory programming. From the teacher’s perspective, 

this system can introduce important gains with respect to the 

classical teaching methodology where the teacher can 

perform continuous assessments of progresses of students. 

From the student’s perspective, it provides a learning 

framework for programming and correction environments 

with helps, which facilitates their personal works. 

In [15], Bravo et al. described several educational 

computer tools, named SICAS, PlanEdit, COLLEGE, and 

OOP-Anim, to support programming learning, and presented 

a global environment of integrating them, allowing a broader 

approach to programming teaching and learning. This 

environment offers animations and the computer-supported 

collaborative learning (CSCL) paradigm. 

In [16], Li et al. presented a game-based learning 

environment to support programming learning. It exploits 

game construction tasks to make the elementary programming 

more intuitive to learn, and comprises concept visualization 

techniques, to allow students to learn key concepts in 

programming through game object manipulation. 

 

III. PHRASE FILL-IN-BLANK PROBLEM FOR BASIC C 

PROGRAMMING 

In this section, we present the design goal and the 

generation of the phrase fill-in-blank problem (PFP) for 

learning basic C programming.  

A. Design Goal of PFP 

For the introductory coding study, EFP performs the 

limited programming activity of filling in only one element to 

each blank in the given source code. As the next step coding 

study, PFP is designed to work on the more realistic 

programming activity of filling in multiple elements together 

to one blank in the code. The number of elements in one blank 

has no limitation, as long as the blank elements belong to one 

statement in the code and can give the unique answer to the 

blank. These constraints come from string matching at the 

marking function.  

B. PFP with Blank Phrases 

For learning basic C programming efficiently, first, novice 

students should learn how to write standard input/output 

functions in the source code because they are necessary for 

visualizing the behaviors of the source code. Second, they 

should learn how to use the conditional statements using if for 

the control flow. Third, they should learn how to give the 

input and output of a function. By knowing the proper 

input/output of a function, it is expected that the whole source 

code can be understood. Fourth, they should learn the 

conditional statement for looping using while and for. Last, 

they should learn recursive functions and other important 

concepts in C programming.  

In this paper, we generated 13 PFP instances for basic 

grammar concepts and nine instances for logic functions. 

As summary, the following phrases or sets of elements are 

blanked from the given C source codes for basic grammar 

concepts: 

1) the conditional statement of if and while  

2) the statement of printf and scanf. 

Then, the following phrases or sets of elements are 

additionally blanked from the source codes for logic functions, 

where 5) is added to allow a teacher to make blanks flexibly: 

1) the conditional statement of for, 

2) the argument of the function, 

3) the returning phrase of return, 

4) the header file, 

5) the phrases selected by the teacher manually.  

C. Alternative Answer 

Unfortunately, the correct answer for a blank may not be 

unique. Besides the original phrase removed in the source 

code, other correct phrases may exist. They are called 

alternative answers in the paper, where the alternative 

answers are found and generated manually. 

In a PFP instance, the blanked source code is shown to 

students who are requested to be filled in with the proper 

phases. The correctness of each student answer is marked 

International Journal of Information and Education Technology, Vol. 13, No. 9, September 2023

1446



  

through string matching with the original phase in the source 

code or the alternative answer if registered.  

D. PFP Level 

To make step-by-step studies through solving PFP 

instances at different levels, a teacher can select one of the 

following four levels at PFP instance generations: 

• Level 1: argument of printf, argument of scanf, 

• Level 2: (+) condition of if, 

• Level 3: (+) condition of while, argument of function, 

returning value of function, 

• Level 4: (+) condition of for, common library, other 

concept selected by teacher. 

“(+)” indicates that the phrases in the lower levels are 

included at that level. Level 1 considers only the standard 

input and output. Level 2 considers the if condition in addition 

to Level 1. Level 3 considers the while condition, and the 

argument and the returning value of the function, in addition 

to Level 2. Level 4 considers the for loop condition and the 

common library, in addition to Level 3. Here, a teacher can 

choose any phrase in the source code if necessary. 

E. Code Specification 

In a PFP instance, the code specification is given together 

when it is necessary to reach the unique correct answer. For 

example, to answer the argument of printf, the actual standard 

output message is necessary. Also, to answer the conditional 

statement of while, the corresponding behavior of the code 

should be described there.  

F. Generation of PFP Instance 

A new PFP instance can be generated by the following 

procedure: 

1) To select a proper source code that includes the 

programming concepts to be studied by this instance,  

2) To select one PFP level, 

3) To run the PFP generator which is implemented by 

python, to automatically find and remove the 

corresponding phrases in the code to this level for the 

blanked source code, keep the removed phrases for the 

correct answers, add the alternative answer phrases for 

the correct answers if necessary, and combine them into 

one text file,  

4) To run the answer interface generator in [5] with this text 

file, to generate the CSS/HTML/JavaScript files for the 

answer interface on the web browser,  

5) To add the code specifications into the HTML file, if 

necessary to reach the correct answers,  

6) To register the generated PFP instance as an assignment 

to the students.  

 

IV. EXAMPLE PFP INSTANCE 

In this section, we discuss the example PFP instance where 

Level 3 is selected. 

A. Example Source Code 

BOX1 shows the example source code that accepts four 

positive integers from the standard input and outputs the 

maximum value among them. This code is used for the first 

PFP instance (ID=1) for learning basic grammar concepts. 

BOX1: C source code for Maximum 

#include <stdio.h>  

int main(void) { 

int i, max, value; 

for (i = 1; i <= 4; i++) { 

printf("Value No.%d:", i);  

scanf("%d", &value); 

while (value <= 0) { 

printf("Value is not a positive number\n"); 

printf("Value No.%d:", i); 

scanf("%d", &value);  

} 

if (value > max)  

max = value; 

} 

printf("The maximum value is %d\n", max);  

return 0; 

}  

B. Text File to Answer Interface Generator 

BOX2 shows the corresponding input text file to the 

answer interface generator for this PFP instance. The 

conditional statements of if and while, and the statements of 

printf and scanf are blanked. The correct answers are stored 

in the system when they are blanked from the source code 

automatically. The correct answer for each blank is separated 

by ”,,”. Since the system can register up to two correct 

answers for each blank to consider alternative answers, the 

two answers are separated by ”- - -” if exist. In this instance, 

value>max and max<value are registered as the correct 

answers for ( _7_). 

 

BOX2: Text input file for generator 

#include <stdio.h>  

int main(void) { 

int i, max, value; 

for (i = 1; i <= 4; i++) { 

printf( _1_ );  

scanf( _2_ ); 

while ( _3_ ) { 

printf( _4_ ); 

printf( _5_ ); 

scanf( _6_ );  

} 

if ( _7_ )  

max = value; 

} 

printf( _8_ );  

return 0; 

}  

 

"ValueNo.%d:",i,,"%d",&value,,value<=0,,"Valueisnotaposi

tivenumber\n",,"ValueNo.%d:",i,,"%d",&value,,value>max-

--max<value,," Themaximumvalueis%d\n",max,, 

C. Code Specification 

BOX3 shows the code specification for this PFP instance. 

To describe the output messages of the code, it includes the 

International Journal of Information and Education Technology, Vol. 13, No. 9, September 2023

1447



  

standard input/output example when the code is executed. 

 

BOX3: Code specification 

Create a program that inputs four positive integer values and 

outputs the largest value. However, if a negative value is 

entered, re-enter it. An example of output: 

Value No.1:20 

Value No.2:-10 

Value is not a positive number 

Value No.2:0 

Value is not a positive number 

Value No.2:10 

Value No.3:100 

Value No.4:50 

The maximum value is 100 

D. Answer Interface 

Fig. 1 shows the answer interface to this example PFP 

instance. The left side shows the source code with the input 

forms to be filled in. When a student clicks the “Answer” 

button, the correctness of the input answers is checked 

through string matching, and the background of the incorrect 

answer becomes red while the correct one keeps white. In this 

figure, the incorrect answer should be corrected to value<=0. 

The right side shows the code specification, which is given to 

solve this PFP instances. 

E. Data Analysis Program 

After a student completes answering the given PFP 

instances, he/she will submit the answer text file. BOX4 

shows the example. The first column in the file represents the 

student ID number. The second column does the PFP instance 

ID. The third and fourth columns do the submission date and 

time. The last column does the submitted answers and their 

making results, where those for each question are separated 

by ”,”. [o] indicates the correct answer and [x] does the 

wrong one respectively. Since any submission record is stored 

in the text file, it becomes difficult for a student to copy the 

file of other student and submit it to the teacher. 

After collecting the answers from the students by emails or 

a file server, the teacher will calculate the average correct 

answer rate and the average number of submission times by 

running the answer analyzer and analyze them using the 

output Excel file. 

 

 
Fig. 1. PFP answer interface. 

 

BOX4: Answer text file 

123   3   2022-06-14   18:58:25   n1[o],num!=0[o],sum+=ld*ld*ld[o],num==n1[o]  

123   9   2022-06-14   19:18:01   struct course *[o],[x],struct course[o],ptr[o] 

123   8   2022-06-14   19:11:24   int*[o],sizeof(int)*n[o],[x],ptr[o] 

123   1   2022-06-14   18:52:18   arr1[o],i<n[o],mxelem<arr1[i][o],i++[o],mxelem[o] 

123   2   2022-06-14   18:53:08   &n1,&n2[o],tmp=*p[o],*p=*q[o],*q=tmp[o] 

123   4   2022-06-14   19:00:23   1[o],2[o],3[o],4[o],5[o],num<n[o],f*=num+1[o],f[o] 

123   7   2022-06-14   19:08:34   arr_size<=1[o],arr_size[o],i<arr_size[o],nums[i]==nums[j][x],count[o],nums,size[o] 

123   7   2022-06-14   19:06:55   arr_size<=1[o],[x],i<arr_size[o],[x],count[o],nums,size[o] 

123   9   2022-06-14   19:13:08   int*[x],[x],noOfRecords[x],ptr[o] 

123   5   2022-06-14   19:01:50   n1[o],num%i==0[o],n1==sum[o] 

123   9   2022-06-14   19:19:17   struct course *[o],noOfRecords[o],struct course[o],ptr[o] 

123   7   2022-06-14   19:07:18   arr_size<=1[o],arr_size[o],i<arr_size[o],[x],count[o],nums,size[o] 

123   6   2022-06-14   19:04:25   stLimit, enLimit[o],n1%i==0[o],sum==n1[o],1[o],0[o],stLimit<=enLimit[o],stLimit[o] 

123   4   2022-06-14   19:00:17   1[o],2[o],3[o],4[o],5[o],num<n[o],f*=num[x],f[o] 

International Journal of Information and Education Technology, Vol. 13, No. 9, September 2023

1448



  

123   9   2022-06-14   19:15:04   course[x],[x],[x],ptr[o] 

123   1   2022-06-14   18:52:06   arr1[o],i<n[o],mxelem<arr1[x],i++[o],mxelem[o] 

123   9   2022-06-14   19:15:45   struct course *ptr[x],struct course[x],struct course[o],ptr[o] 

123   9   2022-06-14   19:19:08   struct course *[o],ptr[x],struct course[o],ptr[o] 

V. EVALUATION 

In this section, we discuss the evaluation of the phrase fill- 

in-blank problem (PFP) for learning basic C programming. 

We generated PFP instances at Level 3 or Level 4 for learning 

basic grammar topics, logic functions and recursive functions, 

and assigned them to undergraduate students in Okayama 

University, Japan. 

A. Evaluation for Basic Grammar Topics 

First, we discuss the evaluation of PFP instances for basic 

grammar topics. 

1) Generated PFP instances 

Table I shows the instance ID, the program topic, the 

number of lines in the source code (LOC), and the number of 

answer forms in each of the 13 PFP instances. 
 

TABLE I: PFP INSTANCES FOR BASIC GRAMMAR TOPICS 

ID topic # of lines # of forms 

1 Maximum 17          8 

2 Multiplication table 13 3 

3 Odd and even number 13 5 

4 Large small judgment 19 12 

5 Standard output 10 2 

6 Triangle area 19 5 

7 Total 11 2 

8 Error message 14 5 

9 Calculation 12 4 

10 Output of array 13 4 

11 Sum of array 13 2 

12 Value of array 14 4 

13 Struct 12 2 

 

2) Solution results of individual instances 

Fig. 2 shows the average number of answer submission 

times and the average correct answer rate (%) by all the 21 

students of each of the 13 PFP instances. The instance at 

ID=10 gave the lowest correct rate and highest submission 

time, which suggests that array was the hardest basic 

grammar topic for beginners. The instance at ID=13 showed 

the highest correct answer rate, because this instance asked 

only the printf statement. 
 

 
Fig. 2. Solution results of individual instances for basic grammar topics. 

 

3) Solution results of individual students 

Fig. 3 shows the average number of answer submission 

times and the average correct answer rate among the 13 

instances of each student. The 11 students at ID=2, 3, 4, 6, 8, 

10, 11, 17, 18, 19 and 21 achieved the 100% correct rate for 

any instance. The student at ID=14 took the highest 

submission times, which means this student solved them 

seriously but needs improvements in C programming. The 

two students at ID=12 and 15 showed the low correct rates 

43.94% and 18.18%. They need more efforts in studying 

basic grammar topics of C programming, which should be 

watched and cared by the teacher. 
 

 
Fig. 3. Solution results of individual students for basic grammar topics. 

 

B. Evaluation for Logic Functions 

Next, we discuss the evaluation of PFP instances for logic 

functions. 

1) Generated PFP instances 

Table II shows the instance ID, the logic function topic, the 

number of lines in the source code, and the number of answer 

forms for each of the nine PFP instances. 
 

TABLE II: PFP INSTANCES FOR LOGIC FUNCTIONS 

ID Topic # of lines # of forms 

14 Largest element 27          5 

15 Swap numbers 19 4 

16 Armstrong number 23 4 

17 Sum of series 17 8 

18 Check perfect number 23 3 

19 Print perfect numbers 33 7 

20 Remove duplicates 32 6 

21 Calculate sum 21 4 

22 Allocate memory 23 4 

 

2) Solution results of individual instances 

Fig. 4 shows the average number of answer submission 

times and the average correct answer rate (%) by all the 

students for each instance. The instance at ID=22 results in 

the lowest correct rate. Memory allocation will be the difficult 

function for them, where it needs to understand the malloc 

International Journal of Information and Education Technology, Vol. 13, No. 9, September 2023

1449



  

and free functions. The instance at ID=20 took the highest 

submission times, where it has several blanks for if and while 

statements in the recursive function. 

3) Solution results of individual students 

Fig. 5 shows the average number of answer submission 

times and the average correct answer rate among the nine 

instances for each student. The five students at ID=1, 3, 4, 18, 

and 19 achieved 100% correct rate. Again, the same students 

at ID=12 and 15 showed the low correct rates and the low 

submission times. 
 

 
Fig. 4. Solution results of individual instances for logic functions. 

 

 
Fig. 5. Solution results of individual students for logic functions. 

 

C. Evaluation for Recursive Function 

Finally, we review the evaluation of the PFP instances for 

recursive functions in [7]. 

1) Generated PFP instances 

Table III shows the instance ID, the recursive function 

topic, the number of lines in the source code, and the number 

of answer forms for each instance. 
 

TABLE III: PFP INSTANCES FOR RECURSIVE FUNCTIONS 

ID topic # of lines # of forms 

23 Power function 15          4 

24 Sum of digits 18 5 

25 Count digits 19 5 

26 Factorial of number 15 4 

27 Fibonacci series 22 5 

28 String length 19 4 

29 Sum of numbers 19 5 

30 Greatest common divisor(GCD) 19 4 

31 Reverse string 19 4 

32 Decimal to binary 20 5 

33 Prime number 26 7 

34 Even and odd numbers 18 4 

35 Tower of Hanoi 13 3 

36 Levenshtein distance 13 6 

37 Ackermann function 34 9 

2) Solution results of individual instances 

Fig. 6 shows the average number of answer submission 

times and the average correct answer rate (%) by all the 

students for each of the 15 instances. The instance at ID=35 

exhibited the lowest correct rate. Tower of Hanoi can be 

difficult for the students because it recursively calls the same 

function twice with the different arguments. The instance at 

ID=37 showed the highest submission times, where they may 

be not familiar to the source code of the Ackermann Function 

using the recursive function. 
 

 
Fig. 6. Solution results of individual instances for recursive functions. 

 

3) Solution results of individual instances 

Fig. 7 shows the average number of answer submission 

times and the average correct answer rate among the 15 

instances by each student. The four students at ID=3, 4, 18, 

and 19 achieved the 100% correct rate, and the seven students 

at ID=5, 8, 12, 14, 15, and 17 did under 80%. 
 

 
Fig. 7. Solution results of individual students for recursive functions. 

 

D. Discussions 

Here, we discuss the following research questions on the 

effectiveness of PFP for learning basic C programming: 

1) The generated PFP instances can be correctly marked 

with manually added alternative answers? 

2) Most of C programming novice students can solve PFP 

instances by themselves? 

3) The teacher can find the students who need cares in the C 

programming course? 

For the first question, the answer is yes, because some 

students solved all the questions correctly. For the second 

question, the answer can be yes or no, because the correct 

rates in many instances exceed 80% whereas in some PFP 

instances, they were lower than 70%. It will be necessary to 

give hints for hard questions that cannot be solved even after 

several submissions, which will be in future works. For the 

last question, the answer is yes, because the two students at 

International Journal of Information and Education Technology, Vol. 13, No. 9, September 2023

1450



  

ID=12 and 15 showed the very low correct rates and 

submission times. 

 

VI. CONCLUSION 

This paper studied the phrase fill-in-blank problem (PFP) 

for learning basic C programming. 13 instances for basic 

grammar topics, nine instances for logic functions, and 15 

instances for recursive functions were generated using C 

source codes containing the corresponding concepts. The 

application results of the 37 PFP instances to 21 

undergraduate students confirmed the correctness of the 

generated instances and found the weakness of students in C 

programming study. In future works, we will implement hint 

functions for hard PFP instances, generate new PFP instances 

for other topics in C programming, and evaluate them through 

applications to novice students.  

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

All the authors conducted the research together. 

Particularly, Xiqin Lu generated the problems, analyzed the 

result data, and wrote the paper. Nobuo Funabiki supervised 

the activities and refined the paper. Kiyoshi Ueda assigned the 

generated problems to students and Annisa Anggun 

Puspitasari collected the data. All the authors had approved 

the final version. 

REFERENCES 

[1] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, 

N. K. Dim, and W.-C. Kao, “A proposal of grammar-concept 

understanding problem in Java programming learning assistant 

system,” J. Adv. Inform. Tech., vol. 12, no. 4, pp. 342–350, Nov. 2021. 

[2] X. Lu, N. Funabiki, H. H. S. Kyaw, E. E. Htet, S. L. Aung, and N. K. 

Dim, “Value trace problems for code reading study in C 

programming,” Adv. Sci. Tech. Eng. Syst. J. (ASTESJ), vol. 7, no. 1, pp. 

14–26, Jan. 2022. 

[3] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A 

graph-based blank element selection algorithm for fill-in-blank 

problems in Java programming learning assistant system,” IAENG Int. 

J. Comput. Sci., vol. 44, no. 2, pp. 247–260, 2017. 

[4] H. H. S. Kyaw, S. T. Aung, H. A. Thant, and N. Funabiki, “A proposal 

of code completion problem for Java programming learning assistant 

system,” in Proc. VENOA-2018, pp. 855–864, July 2018. 

[5] N. Funabiki, H. Masaoka, N. Ishihara, I.-W. Lai, and W.-C. Kao, 

“Offline answering function for fill-in-blank problems in Java 

programming learning assistant system,” in Proc. ICCE-TW, pp. 

324-325, May 2016. 

[6] P. Lubbers, B. Alers, and F. Salim, Pro HTML5 Programming, 2010, 

pp. 213–241. 

[7] X. Lu, S. Chen, N. Funabiki, M. Kuribayashi, and K. Ueda, “A 

proposal of phrase fill-in-blank problem for learning recursive function 

in C programming,” in Proc. LifeTech, pp. 127–128, Mar. 2022. 

[8] W3resourceurl: Function, array. [Online]. Available: 

https://www.w3resource.com/c-programming-exercises/function/inde

x.php 

[9] Programiz: Store data in structures dynamically. [Online]. Available: 

https://www.programiz.com/c-programming/examples/structure-dyna

mic-memory-allocation 

[10] J. H. Conway and R. K. Guy, Perfect Numbers, New York: 

Springer-Verlag, pp. 136–137, 1996. 

[11] Recursion in C. [Online]. Available: 

https://www.javatpoint.com/recursion-in-c 

[12] C programming recursion examples, programs. [Online]. Available: 

https://www.includehelpcom/c-programs/recursion-examples.aspx 

[13] S. N. Freund and E. S. Roberts, “Thetis: An ANSI C programming 

environment designed for introductory use,” SIGCSE Bull., vol. 28, no. 

1, pp. 300–304, Mar. 1996. 

[14] I. Boada, J. Soler, F. Prados, and J. Poch, “A teaching/learning support 

tool for introductory programming courses,” in Proc. ITHET, pp. 

604–609, May 2004.  

[15] C. Bravo, M. J. Marcelino, A. Gomes, M. Esteves, and A. J. Mendes, 

“Integrating educational tools for collaborative computer programming 

learning,” J. Univers. Comp. Sci., vol. 11, no. 9, pp. 1505–1517, Feb. 

2005. 

[16] F. W. B. Li and C. Watson, “Game-based concept visualization for 

learning programming,” in Proc. MTDL, pp. 37–42, Dec. 2011. 

 

Copyright © 2023 by the authors. This is an open access article distributed 

under the Creative Commons Attribution License which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original 

work is properly cited (CC BY 4.0). 

 

 

 

International Journal of Information and Education Technology, Vol. 13, No. 9, September 2023

1451

https://creativecommons.org/licenses/by/4.0/

