

International Journal of Information and Education Technology, Vol. 6, No. 2, February 2016

117DOI: 10.7763/IJIET.2016.V6.669

Abstract—Software Testing is an important element in the

Software Development Life Cycle which helps in the validation

of the software. It should be made sure that before release, the

software is free of errors and produces the desired outputs. This

paper proposes a method for Behavioral Testing of a software

under test (SUT) using the concept of Ant Colony Optimization

for test data generation.

Index Terms—Ant colony optimization, software testing, test

data, test sequence, graph coverage, behavioral testing.

I. INTRODUCTION

Software testing is any activity aimed at evaluating an

attribute or capability of a program or system and determining

that it meets its required results.It remains the primary

technique used to gain consumers’ confidence in the software

and the process of testing any software system is an enormous

task which is time consuming and costly [1]. Software

Development Life Cycle is the process of developing

information systems through investigation, analysis, design,

implementation and maintenance and it includes the

processing steps for development of any software product [2].

The inputs for a specific stage are the outputs of the preceding

step. In SDLC, software testing is more complex and an

important issue [1].

Software Testing can be defined as a process of assessing

the functionality and correctness of a program through

execution or analytical methods. Thus, software testing could

ensure that a program meets its intended specifications and

requirements. Karen et al. [3] have noted that it is impossible

to completely test an application because: 1) input range of

the software may be very complex and large, 2) verity of input

paths are exists in software, and 3) modelling and designing

structure and its issues related to its specifications are difficult

to test [2]. They point out the shortcomings of any Software

Testing method deployed. But nevertheless, in spite of all

these limitations, a proper software testing process definitely

improves the quality of the software under consideration.

Software Testing is broadly of two types, black box testing

and white box testing [1], [2]. While white box testing focuses

on the structure (program) of the software under test (SUT),

black box testing focuses on the functionality of the system.

This paper proposes a new method for optimized

test-sequence generation for black box testing of an SUT to

Manuscript received August 10, 2014; revised October 18, 2014.

The authors are with the Birla Institute of Science and Technology, Pilani,

India (e-mail: agarwal.sumesh@gmail.com, shubham2490@gmail.com,

nitishsab@gmail.com).

derive sets of input conditions that will fully exercise all

functional requirements of that SUT.

The algorithm to achieve optimality in the test data

generation [4] is inspired by the behaviour of ants living in

colonies. Li and Lam [5] have proposed an Ant Colony

Optimization (ACO) [6]-[8] approach to test data generation

for state-based software testing [1]. Ghiduk has also

employed Ant Colony Optimization (ACO) algorithms for the

case of software data-flow testing [9]. This paper proposes a

method of optimal test-sequence generation using ACO on

control flow graph (CFG) [1], [2] of the SUT to construct a

test suite for that SUT.

The paper is organized as follows: Section II details

previously done work in the area of software testing and

introduces the ACO technique, Section III gives an overview

of ACO using it to generate test data. In Section IV, the

proposed algorithm for test data generation is explained in

detail which is further analyzed in Section V with the help of

case studies, in which comparisons are drawn between the

proposed algorithm and other approaches of test data

generation by other researchers, with the help of illustrations.

Conclusion and ideas for future work are discussed in Section

VI.

II. BACKGROUND

Software testing is necessary for the delivery of reliable and

quality oriented software product, more satisfied users, lower

maintenance cost, and more accurate and reliable results.

Hence it is an important activity of SDLC. The importance of

testing can be understood by the fact that “around 35% of the

elapsed time and over 50% of the total cost are expending in

testing programs” [10]. To optimize resources in the area of

software testing, quality and reliability, academicians and

researchers are using Artificial Intelligence [11] (AI)

approaches for better accuracy. The application of AI

techniques in Software Engineering (SE) is an emerging area

of research. ACO is one of the AI techniques that is used

extensively by researchers in software testing. For example,

Karl Doerner and Walter J. Gutjahr [12] have tried to

investigate methods for deriving a suitable set of test paths for

a software system. They try to resolve the trade-off between

coverage and testing costs. Their results have not been

verified using more extensive experiments. Reasonable

solutions are obtained after less number of iterations as

compared with standard ACO but still the number is not small

enough.

Li and Lam [5] have proposed an Ant Colony Optimization

approach to test data generation for state-based software

testing. Here the test sequence is generated automatically

Automatic Test Data Generation-Achieving Optimality

Using Ant-Behaviour

Sumesh Agarwal, Shubham Gupta, and Nitish Sabharwal

International Journal of Information and Education Technology, Vol. 6, No. 2, February 2016

118

which they claim is always feasible, non-redundant and

achieves all state coverage criterion. The main problem in

their work is of the complete software coverage and moreover

they do not factor in the criticality of states. Ghiduk [9] has

employed Ant Colony Optimization algorithms for the case of

software data-flow testing. The approach generated all the

optimal paths to cover all du-pairs for the program under test.

The major demerit in his work is that of the redundant paths

obtained in the test data. As can be seen in the case study

taken by him, there are redundant def-clear paths which are

associated with a set of def-use pairs.

A Genetic Algorithm [13] based test data generation

technique has also been proposed by Lefticaru [13]. In order

to generate test data before coding, it uses UML state diagram

for test data generation. The major drawback of this approach

is that in this case, coverage of all transitions is not possible

due to fitness function and their chromosome length. So it is

not suitable of strong level software coverage. Srivastava [14],

[15] has proposed a technique to generate optimized test

sequences from a Markov chain based usage model. Major

merits of his work are that this technique has proved to be

capable of deriving test cases giving priority to the most

critical states and transitions. Also, even with strict cost

limitations it was able to cover the most critical states but in

process of covering most critical states his method produces a

lot of redundant paths. From these works and the approaches

followed by them, it can be observed that the problems of

redundant test cases and incomplete state coverage have not

been completely tackled. In this paper, an algorithm based on

the concept of ACO has been proposed which tries to solve

both of these problems and aims to provide an efficient tool

for software testing.

Ant Colony Optimization (or ACO) [6]-[8] is a technique

which can help differentiate the “good paths” (or required

paths) from the “bad paths” using heuristics. The technique is

inspired from the foraging behaviour of ant species. Real ants

are capable of finding shortest path to food source through

stigmergic communication and without following visual cues

[16]. Foraging ants deposit chemicals (pheromones) while

walking in search of food source, thus increasing the

probability of other ants following the same path. This

communication is a pheromone mediated indirect

communication, and the ants exploit the pheromone

information to help them to find a shortest path in the search

of food. So in a graphical problem, the behaviour of ants can

be used to derive optimal paths [1], [2].

III. TEST DATA GENERATION USING ACO

Testing involves three main steps: generation of a set of test

inputs, execution of those inputs on the program under tests,

and then checking whether the test executions reveal faults

[17], [18]. A Control Flow graph (CFG) or program graph

represents the control flow of a program and is widely used in

the analysis of software. The nodes of a control flow graph are

statements of the program and the edges represent the control

flow between the statements. CFGs have been widely studied

for many years (Jalote, [19]; Kosaraju, [20]; McCabe, [21];

Paige, [22]; Rapps and Weyuker, [23]; White, [24]; Zhu et al.

[25]) and they have been used for problem representation in

our algorithm. This paper skips the part of modelling the SUT

in the form of a CFG and focuses on how the ants can traverse

the graph and generate an optimal test suite for that SUT.

For a given CFG, an ant is placed at a specific node which

travels the rest of the graph until it reaches a “dead end” based

on the idea that it travels from a node to another node only

along that outgoing edge which has zero pheromone level.

The reason for this choice is to cover maximum edges in the

graph. The presence of pheromone at an edge signals the ant

that edge has been traversed by some other ant, so it takes the

one for which pheromone is not yet updated thereby

increasing the graph coverage. Also, unlike the common ant

colony behaviour, the evaporation of pheromone with time

has not been taken into account in the proposed algorithm, as

the pheromone levels are just an indicator to an ant as to

which edges have been traversed, and therefore they need not

be decreased with time. Any value of pheromone other than 0

indicates that the edge has been traversed and thus no ant

should take up that edge.

The pheromone level for every feasible transition in the

graph is initially set to zero. The transition from a node i to

node j leads to an increment in the pheromone level of that

edge by ∆τ, the pheromone update constant. An ant chooses

path with the least pheromone level avoiding the case when it

may re-traverse a path. Following sets are referred by an ant at

a node n traversing the graph in the proposed algorithm. A

number of ants can be used depending on the structure of the

root set, which can get modified as the program progresses, to

cover the CFG of the SUT.

IV. THE PROPOSED ALGORITHM

Our approach uses as input a CFG for an SUT and gives the

optimal test sequences to minimize the redundancy and

maximize graph coverage. We define the following sets that

are used in our algorithm:

 Feasibility Set = { Fn } contains those nodes for which the

corresponding transitions from n to those nodes have a

pheromone level of zero.

 Root set = { Ri } contains the nodes which specify the starts

nodes for the ants in the I
th

 iteration.

 Pheromone level matrix = { pLevel } is a double-array of

nodes for storing the pheromone level corresponding to

every edge in the CFG.

The following section lists the conditions used in the

algorithm for any ant K at a node N in the i
th

 iteration:

 Node visibility condition: An ant can see only those nodes

from a given node N which are in the feasibility set

(described in the subsequent part of this section). The

condition prevents the ant from covering edges that have

been previously covered thus avoiding re-traversal of paths

and getting stuck on loops in the graph.

 Node selection condition: An ant chooses one of the

visible nodes, say D, from the feasibility set of N as its

destination node based on the following ordered

preference:

If D’s feasibility set is empty i.e. D is a dead end.

If D’s out-degree is maximum.

International Journal of Information and Education Technology, Vol. 6, No. 2, February 2016

119

The out-degree of any node is the adjacency of a node i.e.

how many nodes are directly reachable from that node via

feasible transitions. An ant first check for the first preference

and if it is unsuccessful in doing so, then it looks for a node

with higher out degree. In case there are more than one node

satisfying the criterion then the choice is arbitrary amongst the

colliding nodes. The first preference for a destination node

makes the algorithm look for shorter sequences of states in

order to minimize state redundancy. The second preference is

based on the fact that a path with more number of outgoing

edges is expected to have a higher number of uncovered paths.

These selection conditions target the specific segments of

routes in the graph that have been left uncovered until then

with minimum re-traversal of edges.

 Stopping condition: An ant K continues to move over the

graph until it reaches a node whose feasibility set is empty.

This condition forces the ant to stop traversal when

non-redundant paths are not available.

 Root formation condition: if N has at least one element

left in feasibility set when K has travelled from N to some

other node, then N is added to the root set Ri+1. Thus, the

edges uncovered are traversed by some ants from their root

itself, ensuring complete coverage of the graph.

 Coverage condition: This condition is satisfied when all

the edges of the graph are covered.

The algorithm stops looking for new test sequences once

this condition is satisfied.

In every iteration i, an ant is initially placed on the first

node specified by the root set. It then uses its node visibility

and node selection condition to travel further in the graph

until it meets its stopping condition. During each edge

transition pheromone is updated for that transition by a

constant amount ∆τ and thus the pheromone value is updated

for the edge. Also, the feasibility set is updated for the source

node because it will not have that edge in its feasibility set any

longer since it is covered by the ant. This is repeated for every

node in the root set Ri in the i
th

 iteration. During the i
th

iteration, construction of Ri+1 also takes place based on the

root formation condition. In the next iteration (i+1), same

procedure is followed for the elements in Ri+1. The whole

process continues until the coverage condition is met. The

flowchart of the proposed algorithm for an ant K has been

given in Fig. 1.

V. CASE STUDY

To bring out the practicality of the algorithm a tool called

Optimal Test Sequence generator (OTSG) was developed to

implement the proposed algorithm. OTSG takes a CFG as an

input and gives some sequences of nodes as output which

form a part of the test suite for the SUT. For the practical work

used in this paper, OTSG was implemented in C programming

language in accordance with the proposed algorithm. We use

as case studies the CFGs from the works of Ghiduk [9] and

Srivastava et al. [15] to demonstrate and compare the

performance of our proposed algorithm with their algorithms.

Ghiduk [9] has proposed in his paper an algorithm for

calculating the test-case sequences and Table I shows the test

sequences achieved by that algorithm for the CFG shown in

Fig. 2. Table II shows the test-sequences generated using the

proposed algorithm. The value of the pheromone update

constant ∆τ was taken as 1 for our proposed algorithm.

Fig. 1. Flowchart of the proposed algorithm for any iteration i.

TABLE I: TEST-SEQUENCE GENERATED USING GHIDUK’S [9] ALGORITHM

Paths Nodes

Path 1 0-1-2-3-5-6-7-8-10-6-7-9-10-6-11-12

Path 2 0-1-2-4-5-6-7-8-10-6-7-9-10-6-11-12

Path 3 0-1-2-3-5-6-11-12

Path 4 0-1-2-4-5-6-7-9-10-6-11-12

TABLE II: TEST-SEQUENCES USING THE PROPOSED ALGORITHM

Paths Nodes

Path 1 0-1-2-3-5-6-7-8-10-6-11-12

Path 2 2-4-5

Path 3 7-9-10

Fig. 2. CFG used for comparison taken from the paper of Ghiduk [9].

As it can be seen, the solution proposed by Ghiduk [9] has a

lot of redundancy/repetition of paths. The proposed solution

International Journal of Information and Education Technology, Vol. 6, No. 2, February 2016

120

removes the redundant paths, thereby giving a more efficient

and optimal solution. Table III lists the test sequences

achieved by the algorithm proposed in Srivastava’s work [15]

for the CFG shown in Fig. 4. Table IV shows the

test-sequences generated using the proposed algorithm on the

same CFG, from which it can be observed that the redundancy

has been reduced. The graph shown in Fig. 3 illustrates the

results obtained for the effect of increasing the number of

nodes on redundancy in test cases using Ghiduk’s [9],

Srivatava’s [15] and the proposed approach. Thus, for

identical conditions, the proposed algorithm gives optimal

solution with a zero redundancy. Though with a large number

of nodes the behaviour is uncertain, but it can be

approximated to giving close to zero-redundancy solution.

Fig. 3. Graph showing the variation in redundancy in the test paths with no.

of nodes in CFG for the approaches used by Gidhuk [9], Srivastava [15] and

the one proposed in this paper.

Fig. 4. CFG used for comparison taken from the paper of Srivastava [15].

It is worth mentioning that the algorithm used in this paper

not only produces optimal paths but produces them in such a

way that those paths are discovered first which end early

because of the condition imposed on the ant that it should first

look for the end nodes. Secondly, during the journey the ant is

made to go through the denser paths with the help of the

condition imposed on the ant that it should look for the

out-degree of the node and proceed towards the one having

more out-degree. These conditions make the ants look for

longer paths with uncovered nodes or terminate on shorter

paths if it is able to find a node which doesn’t have any more

uncovered outgoing edges. For example from table 4 it can be

seen that path1 has covered almost all the nodes of the CFG of

Fig, 4.

TABLE III: TEST-SEQUENCE GENERATED USING SRIVASTAVA’S ALGORITHM

[15]

Paths Nodes

Path 1 0-1-2-3-4-13

Path 2 0-1-2-4-5-6-7-8-9-13

Path 3 0-1-2-3-4-5-6-10-11-4-5-6-7-8-9-13

Path 4 0-1-2-3-4-5-6-10-12-4-5-6-7-8-9-13

TABLE IV: TEST-SEQUENCE USING THE PROPOSED ALGORITHM

Paths Nodes

Path 1 0-1-2-3-4-5-6-10-12-4-13

Path 2 6-7-8-9-13

Path 3 10-11-4

VI. CONCLUSION AND FUTURE WORK

Optimality is achieved in the generated test suite for an

SUT by removing the redundancy in the test–sequences,

completely, without losing the coverage and efficiency. The

proposed method makes sure that only paths which are not

covered in the previous test-sequences are taken into account

when generating new test sequences. The algorithm is logical

and follows certain rules to achieve maximum coverage. The

high running time for large inputs can be said to be one of the

drawbacks of the algorithm. As for the future work in this

regard, the algorithm could be made to trade off the running

time with the coverage of the graph for large inputs. In a

limited running time, the priorities of the test sequences

generated will be a subject of matter which could be handled

by introducing modifications in the algorithm according to the

tester’s will.

REFERENCES

[1] R. Pressman, Software Engineering – A Practitioner’s Approach, 5th

edition, New York, NY: McGraw Hill, 2001.

[2] I. Sommerville, Software Engineering, 8th Edition, Pearson Education,

2009.

[3] K. J. Rothermel, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G.

Green, and G. Rothermel, “WYSIWYT testing in the spreadsheet

paradigm: An empirical evaluation,” in Proc. the 22nd International

Conference on Software Engineering, ACM Press, 2000, pp. 230–239.

[4] W. H. Deason, “Rule-based software test data generation,” IEEE

Transactions on Knowledge and Data Engineering, vol. 3, issue 1, pp.

108-117, Mar. 1991.

[5] H. Li and C. P. Lam, “Software test data generation using ant colony

optimization,” in Proc. International Conference of Computational

Intelligence, Istanbul, Turkey, pp. 1-4, 2004.

[6] M. Dorigo and T. Stutzle, Ant Colony Optimization, Phi publishers,

2005.

[7] M. Dorigoa and T. Stutzle, “Ant colony optimization,” The Knowledge

Engineering Review, New York, USA: Cambridge University Press,

vol. 20, pp. 92 – 93, 2005.

[8] M. Dorigo, “The ant colony optimization metaheuristic: Algorithms,

applications, and advances,” International Series in Operations

Research & Management Science, vol. 57, Springer, New York, pp.

250-285, 2003.

[9] A. S. Ghiduk, “A new software data-flow testing approach via ant

colony algorithms,” Universal Journal of Computer Science and

Engineering Technology, pp. 64-72, 2010.

[10] D. Ślęzak, T.-H. Kim, A. Kiumi, T. Jiang, and J. Verner “Advances in

software engineering,” in Proc. International Conference on

Advanced Software Engineering and Its Applications,” Jeju Island,

Korea, December 10-12, pp. 20-35, 2009.

International Journal of Information and Education Technology, Vol. 6, No. 2, February 2016

121

[11] M. Last, A. Kandel, and H. Bunke, Artificial Intelligence in Software

Testing, Quality and Reliability, World Scientific Publishers, 2004.

[12] K. Doerner and W. J. Gutjahr, “Extracting test sequences from a

markov software usage model by ACO,” Genetic and Evolutionary

Computation Conference (GECCO), pp. 2465-2476, 2003.

[13] R. Lefticaru and F. Ipate, “Automatic State-based test generation Using

genetic algorithms,” in Proc. Ninth International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC

2007), 2007, pp.188-195.

[14] P. R. Srivastava, N. Jose, S. Barade, D. Ghosh, “Test sequence

generation from usage models using ant colony optimization,”

International Journal of Software Engineering & Applications (IJSEA

2010), vol.1, no.2, 2010.

[15] P. R. Srivastava, K. Baby, and G Raghurama, “An approach of optimal

path generation using ant colony optimization,” in Proc. TENCON

2009, IEEE Press, 2009, pp. 1-6.

[16] B. Holldobler and E. O. Wilson, The Ants, Berlin: Springer-Verlag,

1990.

[17] A. Roya and L. Shahriar, “The new approach for software testing using

a genetic algorithm based on clustering initial test instances,” in Proc.

International Conference on Computer and Software Modeling,

IACSIT Press, Singapore, 2011.

[18] W. Zheng, M. R. Lyu, and T. Xie, Test Selection for Result Inspection

via Mining Predicate Rules, 2008, pp. 1-4.

[20] S. Kosaraju, “Analysis of structured programs,” in Proc. the 5th

Annual ACM Symposium on Theory of Computing, Austin, TX, USA,

1973, pp. 240–252.

[21] T. McCabe, “A complexity measure,” IEEE Transactions on Software

Engineering, vol. 2, issue 4, 1976, pp. 308–320.

[22] M. Paige, “On partitioning program graphs,” IEEE Transactions on

Software Engineering, vol. 3, issue 6, 1977, pp. 386–393.

[23] S. Rapps and E. Weyuker, “Data flow analysis techniques for test data

selection,” in Proc. the 6th International Conference on Software

Engineering, Tokyo, Japan, 1982, pp. 272–278.

[24] L. White, “Basic mathematical definitions and results in testing,” in B.

Chandrasekaran and S. Radicchi eds., Computer Program Testing,

North-Holland, New York, 1981.

[25] H. Zhu, P. Hall, and J. May, “Software unit test coverage and

adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366–427,

1997.

Sumesh Agarwal is a web developer. Currently he is

working at Hyderabad. He obtained his masters of

science & tech degree in information systems from

Birla Institue of Science and Technology, Pilani. His

research interests include software development

models, data mining, web development, information

security and computational applications.

Shubham Gupta is a software developer. Currently

he is working at Bangalore. He obtained his masters of

science & tech degree in information systems from

Birla Institue of Science and Technology, Pilani and is

currently working at providing innovative web

solutions in IT industry. His research interests include

study and analysis of algorithms, web development,

mobile development and machine learning.

Nitish Sabharwal is a software developer. Currently

he is working in Hyderabad. He obtained his bachelor

of engineering degree in computer science (hons.)

from Birla Institute of Technology and Science, Pilani.

His research interests include artificial intelligence,

genetic algorithms, computation and analysis, web and

mobile development, machine learning and

computational neuropsychology.

[19] P. Jalote, An Integrated Approach to Software Engineering, Springer,

New York, 2005.

