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Abstract—Software Testing is an important element in the 

Software Development Life Cycle which helps in the validation 

of the software. It should be made sure that before release, the 

software is free of errors and produces the desired outputs. This 

paper proposes a method for Behavioral Testing of a software 

under test (SUT) using the concept of Ant Colony Optimization 

for test data generation. 

 

Index Terms—Ant colony optimization, software testing, test 

data, test sequence, graph coverage, behavioral testing.  

 

I. INTRODUCTION 

Software testing is any activity aimed at evaluating an 

attribute or capability of a program or system and determining 

that it meets its required results.It remains the primary 

technique used to gain consumers’ confidence in the software 

and the process of testing any software system is an enormous 

task which is time consuming and costly [1]. Software 

Development Life Cycle is the process of developing 

information systems through investigation, analysis, design, 

implementation and maintenance and it includes the 

processing steps for development of any software product [2]. 

The inputs for a specific stage are the outputs of the preceding 

step. In SDLC, software testing is more complex and an 

important issue [1].  

Software Testing can be defined as a process of assessing 

the functionality and correctness of a program through 

execution or analytical methods. Thus, software testing could 

ensure that a program meets its intended specifications and 

requirements. Karen et al. [3] have noted that it is impossible 

to completely test an application because: 1) input range of 

the software may be very complex and large, 2) verity of input 

paths are exists in software, and 3) modelling and designing 

structure and its issues related to its specifications are difficult 

to test [2]. They point out the shortcomings of any Software 

Testing method deployed. But nevertheless, in spite of all 

these limitations, a proper software testing process definitely 

improves the quality of the software under consideration. 

Software Testing is broadly of two types, black box testing 

and white box testing [1], [2]. While white box testing focuses 

on the structure (program) of the software under test (SUT), 

black box testing focuses on the functionality of the system. 

This paper proposes a new method for optimized 

test-sequence generation for black box testing of an SUT to 
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derive sets of input conditions that will fully exercise all 

functional requirements of that SUT.  

The algorithm to achieve optimality in the test data 

generation [4] is inspired by the behaviour of ants living in 

colonies. Li and Lam [5] have proposed an Ant Colony 

Optimization (ACO) [6]-[8] approach to test data generation 

for state-based software testing [1]. Ghiduk has also 

employed Ant Colony Optimization (ACO) algorithms for the 

case of software data-flow testing [9]. This paper proposes a 

method of optimal test-sequence generation using ACO on 

control flow graph (CFG) [1], [2] of the SUT to construct a 

test suite for that SUT. 

The paper is organized as follows: Section II details 

previously done work in the area of software testing and 

introduces the ACO technique, Section III gives an overview 

of ACO using it to generate test data. In Section IV, the 

proposed algorithm for test data generation is explained in 

detail which is further analyzed in Section V with the help of 

case studies, in which comparisons are drawn between the 

proposed algorithm and other approaches of test data 

generation by other researchers, with the help of illustrations. 

Conclusion and ideas for future work are discussed in Section 

VI. 

 

II. BACKGROUND 

Software testing is necessary for the delivery of reliable and 

quality oriented software product, more satisfied users, lower 

maintenance cost, and more accurate and reliable results. 

Hence it is an important activity of SDLC. The importance of 

testing can be understood by the fact that “around 35% of the 

elapsed time and over 50% of the total cost are expending in 

testing programs” [10]. To optimize resources in the area of 

software testing, quality and reliability, academicians and 

researchers are using Artificial Intelligence [11] (AI) 

approaches for better accuracy. The application of AI 

techniques in Software Engineering (SE) is an emerging area 

of research. ACO is one of the AI techniques that is used 

extensively by researchers in software testing. For example, 

Karl Doerner and Walter J. Gutjahr [12] have tried to 

investigate methods for deriving a suitable set of test paths for 

a software system. They try to resolve the trade-off between 

coverage and testing costs. Their results have not been 

verified using more extensive experiments. Reasonable 

solutions are obtained after less number of iterations as 

compared with standard ACO but still the number is not small 

enough.  

Li and Lam [5] have proposed an Ant Colony Optimization 

approach to test data generation for state-based software 

testing. Here the test sequence is generated automatically 
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which they claim is always feasible, non-redundant and 

achieves all state coverage criterion. The main problem in 

their work is of the complete software coverage and moreover 

they do not factor in the criticality of states. Ghiduk [9] has 

employed Ant Colony Optimization algorithms for the case of 

software data-flow testing. The approach generated all the 

optimal paths to cover all du-pairs for the program under test. 

The major demerit in his work is that of the redundant paths 

obtained in the test data. As can be seen in the case study 

taken by him, there are redundant def-clear paths which are 

associated with a set of def-use pairs. 

A Genetic Algorithm [13] based test data generation 

technique has also been proposed by Lefticaru [13]. In order 

to generate test data before coding, it uses UML state diagram 

for test data generation. The major drawback of this approach 

is that in this case, coverage of all transitions is not possible 

due to fitness function and their chromosome length. So it is 

not suitable of strong level software coverage. Srivastava [14], 

[15] has proposed a technique to generate optimized test 

sequences from a Markov chain based usage model. Major 

merits of his work are that this technique has proved to be 

capable of deriving test cases giving priority to the most 

critical states and transitions. Also, even with strict cost 

limitations it was able to cover the most critical states but in 

process of covering most critical states his method produces a 

lot of redundant paths. From these works and the approaches 

followed by them, it can be observed that the problems of 

redundant test cases and incomplete state coverage have not 

been completely tackled. In this paper, an algorithm based on 

the concept of ACO has been proposed which tries to solve 

both of these problems and aims to provide an efficient tool 

for software testing.   

Ant Colony Optimization (or ACO) [6]-[8] is a technique 

which can help differentiate the “good paths” (or required 

paths) from the “bad paths” using heuristics. The technique is 

inspired from the foraging behaviour of ant species. Real ants 

are capable of finding shortest path to food source through 

stigmergic communication and without following visual cues 

[16]. Foraging ants deposit chemicals (pheromones) while 

walking in search of food source, thus increasing the 

probability of other ants following the same path. This 

communication is a pheromone mediated indirect 

communication, and the ants exploit the pheromone 

information to help them to find a shortest path in the search 

of food. So in a graphical problem, the behaviour of ants can 

be used to derive optimal paths [1], [2].  

 
 

III. TEST DATA GENERATION USING ACO 

Testing involves three main steps: generation of a set of test 

inputs, execution of those inputs on the program under tests, 

and then checking whether the test executions reveal faults 

[17], [18]. A Control Flow graph (CFG) or program graph 

represents the control flow of a program and is widely used in 

the analysis of software. The nodes of a control flow graph are 

statements of the program and the edges represent the control 

flow between the statements. CFGs have been widely studied 

for many years (Jalote, [19]; Kosaraju, [20]; McCabe, [21]; 

Paige, [22]; Rapps and Weyuker, [23]; White, [24]; Zhu et al. 

[25]) and they have been used for problem representation in 

our algorithm. This paper skips the part of modelling the SUT 

in the form of a CFG and focuses on how the ants can traverse 

the graph and generate an optimal test suite for that SUT. 

For a given CFG, an ant is placed at a specific node which 

travels the rest of the graph until it reaches a “dead end” based 

on the idea that it travels from a node to another node only 

along that outgoing edge which has zero pheromone level. 

The reason for this choice is to cover maximum edges in the 

graph. The presence of pheromone at an edge signals the ant 

that edge has been traversed by some other ant, so it takes the 

one for which pheromone is not yet updated thereby 

increasing the graph coverage. Also, unlike the common ant 

colony behaviour, the evaporation of pheromone with time 

has not been taken into account in the proposed algorithm, as 

the pheromone levels are just an indicator to an ant as to 

which edges have been traversed, and therefore they need not 

be decreased with time. Any value of pheromone other than 0 

indicates that the edge has been traversed and thus no ant 

should take up that edge.  

The pheromone level for every feasible transition in the 

graph is initially set to zero. The transition from a node i to 

node j leads to an increment in the pheromone level of that 

edge by ∆τ, the pheromone update constant. An ant chooses 

path with the least pheromone level avoiding the case when it 

may re-traverse a path. Following sets are referred by an ant at 

a node n traversing the graph in the proposed algorithm. A 

number of ants can be used depending on the structure of the 

root set, which can get modified as the program progresses, to 

cover the CFG of the SUT. 

 

IV. THE PROPOSED ALGORITHM 

Our approach uses as input a CFG for an SUT and gives the 

optimal test sequences to minimize the redundancy and 

maximize graph coverage. We define the following sets that 

are used in our algorithm: 

 Feasibility Set = { Fn } contains those nodes for which the 

corresponding transitions from n to those nodes have a 

pheromone level of zero. 

 Root set = { Ri } contains the nodes which specify the starts 

nodes for the ants in the I
th

 iteration. 

 Pheromone level matrix = { pLevel } is a double-array of 

nodes for storing the pheromone level corresponding to 

every edge in the CFG.  

The following section lists the conditions used in the 

algorithm for any ant K at a node N in the i
th

 iteration: 

 Node visibility condition: An ant can see only those nodes 

from a given node N which are in the feasibility set 

(described in the subsequent part of this section). The 

condition prevents the ant from covering edges that have 

been previously covered thus avoiding re-traversal of paths 

and getting stuck on loops in the graph.  

 Node selection condition: An ant chooses one of the 

visible nodes, say D, from the feasibility set of N as its 

destination node based on the following ordered 

preference: 

If D’s feasibility set is empty i.e. D is a dead end. 

If D’s out-degree is maximum. 
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The out-degree of any node is the adjacency of a node i.e. 

how many nodes are directly reachable from that node via 

feasible transitions. An ant first check for the first preference 

and if it is unsuccessful in doing so, then it looks for a node 

with higher out degree. In case there are more than one node 

satisfying the criterion then the choice is arbitrary amongst the 

colliding nodes. The first preference for a destination node 

makes the algorithm look for shorter sequences of states in 

order to minimize state redundancy. The second preference is 

based on the fact that a path with more number of outgoing 

edges is expected to have a higher number of uncovered paths. 

These selection conditions target the specific segments of 

routes in the graph that have been left uncovered until then 

with minimum re-traversal of edges.     

 Stopping condition: An ant K continues to move over the 

graph until it reaches a node whose feasibility set is empty. 

This condition forces the ant to stop traversal when 

non-redundant paths are not available. 

 Root formation condition: if N has at least one element 

left in feasibility set when K has travelled from N to some 

other node, then N is added to the root set Ri+1. Thus, the 

edges uncovered are traversed by some ants from their root 

itself, ensuring complete coverage of the graph.  

 Coverage condition: This condition is satisfied when all 

the edges of the graph are covered. 

The algorithm stops looking for new test sequences once 

this condition is satisfied. 

In every iteration i, an ant is initially placed on the first 

node specified by the root set. It then uses its node visibility 

and node selection condition to travel further in the graph 

until it meets its stopping condition. During each edge 

transition pheromone is updated for that transition by a 

constant amount ∆τ and thus the pheromone value is updated 

for the edge. Also, the feasibility set is updated for the source 

node because it will not have that edge in its feasibility set any 

longer since it is covered by the ant. This is repeated for every 

node in the root set Ri in the i
th

 iteration. During the i
th

 

iteration, construction of Ri+1 also takes place based on the 

root formation condition. In the next iteration (i+1), same 

procedure is followed for the elements in Ri+1. The whole 

process continues until the coverage condition is met. The 

flowchart of the proposed algorithm for an ant K has been 

given in Fig. 1. 

 

V. CASE STUDY 

To bring out the practicality of the algorithm a tool called 

Optimal Test Sequence generator (OTSG) was developed to 

implement the proposed algorithm. OTSG takes a CFG as an 

input and gives some sequences of nodes as output which 

form a part of the test suite for the SUT. For the practical work 

used in this paper, OTSG was implemented in C programming 

language in accordance with the proposed algorithm. We use 

as case studies the CFGs from the works of Ghiduk [9] and 

Srivastava et al. [15] to demonstrate and compare the 

performance of our proposed algorithm with their algorithms. 

Ghiduk [9] has proposed in his paper an algorithm for 

calculating the test-case sequences and Table I shows the test 

sequences achieved by that algorithm for the CFG shown in 

Fig. 2. Table II shows the test-sequences generated using the 

proposed algorithm. The value of the pheromone update 

constant ∆τ was taken as 1 for our proposed algorithm. 
 

 
Fig. 1. Flowchart of the proposed algorithm for any iteration i. 

 

TABLE I: TEST-SEQUENCE GENERATED USING GHIDUK’S [9] ALGORITHM 

Paths Nodes 

Path 1 0-1-2-3-5-6-7-8-10-6-7-9-10-6-11-12 

Path 2 0-1-2-4-5-6-7-8-10-6-7-9-10-6-11-12 

Path 3 0-1-2-3-5-6-11-12 

Path 4 0-1-2-4-5-6-7-9-10-6-11-12 

 

TABLE II: TEST-SEQUENCES USING THE PROPOSED ALGORITHM 

Paths Nodes 

Path 1 0-1-2-3-5-6-7-8-10-6-11-12 

Path 2 2-4-5 

Path 3 7-9-10 

 

 
Fig. 2. CFG used for comparison taken from the paper of Ghiduk [9]. 

 

As it can be seen, the solution proposed by Ghiduk [9] has a 

lot of redundancy/repetition of paths. The proposed solution 
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removes the redundant paths, thereby giving a more efficient 

and optimal solution. Table III lists the test sequences 

achieved by the algorithm proposed in Srivastava’s work [15] 

for the CFG shown in Fig. 4. Table IV shows the 

test-sequences generated using the proposed algorithm on the 

same CFG, from which it can be observed that the redundancy 

has been reduced. The graph shown in Fig. 3 illustrates the 

results obtained for the effect of increasing the number of 

nodes on redundancy in test cases using Ghiduk’s [9], 

Srivatava’s [15] and the proposed approach. Thus, for 

identical conditions, the proposed algorithm gives optimal 

solution with a zero redundancy. Though with a large number 

of nodes the behaviour is uncertain, but it can be 

approximated to giving close to zero-redundancy solution. 
 

 
Fig. 3. Graph showing the variation in redundancy in the test paths with no. 

of nodes in CFG for the approaches used by Gidhuk [9], Srivastava [15] and 

the one proposed in this paper. 

 

 
Fig. 4. CFG used for comparison taken from the paper of Srivastava [15]. 

 

It is worth mentioning that the algorithm used in this paper 

not only produces optimal paths but produces them in such a 

way that those paths are discovered first which end early 

because of the condition imposed on the ant that it should first 

look for the end nodes. Secondly, during the journey the ant is 

made to go through the denser paths with the help of the 

condition imposed on the ant that it should look for the 

out-degree of the node and proceed towards the one having 

more out-degree. These conditions make the ants look for 

longer paths with uncovered nodes or terminate on shorter 

paths if it is able to find a node which doesn’t have any more 

uncovered outgoing edges. For example from table 4 it can be 

seen that path1 has covered almost all the nodes of the CFG of 

Fig, 4.   
 

TABLE III: TEST-SEQUENCE GENERATED USING SRIVASTAVA’S ALGORITHM 

[15] 

Paths Nodes 

Path 1 0-1-2-3-4-13 

Path 2 0-1-2-4-5-6-7-8-9-13 

Path 3 0-1-2-3-4-5-6-10-11-4-5-6-7-8-9-13 

Path 4 0-1-2-3-4-5-6-10-12-4-5-6-7-8-9-13 

 

TABLE IV: TEST-SEQUENCE USING THE PROPOSED ALGORITHM 

Paths Nodes 

Path 1 0-1-2-3-4-5-6-10-12-4-13 

Path 2 6-7-8-9-13 

Path 3 10-11-4 

 

VI. CONCLUSION AND FUTURE WORK 

Optimality is achieved in the generated test suite for an 

SUT by removing the redundancy in the test–sequences, 

completely, without losing the coverage and efficiency. The 

proposed method makes sure that only paths which are not 

covered in the previous test-sequences are taken into account 

when generating new test sequences. The algorithm is logical 

and follows certain rules to achieve maximum coverage. The 

high running time for large inputs can be said to be one of the 

drawbacks of the algorithm. As for the future work in this 

regard, the algorithm could be made to trade off the running 

time with the coverage of the graph for large inputs. In a 

limited running time, the priorities of the test sequences 

generated will be a subject of matter which could be handled 

by introducing modifications in the algorithm according to the 

tester’s will. 
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