

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

219DOI: 10.7763/IJIET.2016.V6.688

Abstract—Plagiarism is the act of copying someone else work

without acknowledging the person. Various plagiarism tools

exist for natural and programming languages to check if the

offence has been committed. This paper discusses the use of

plagiarism tools for automated assessment of student java

programs. Automated assessment involves evaluating or

assessing student’s work automatically with the aid of computer.

Plagiarism tools are utilized for finding similarity between

teacher and student solution. In order to test if the existing tools

for source code plagiarism detection can be used to find

similarity between student and teacher solutions and how the

tools behave in case of different structural and lexical

modifications, two of the existing tools; JPlag and Ferret were

used to test teacher’s solutions with students’ solutions. JPlag

was further explored with larger testbed, however variations in

the results were observed making it difficult to conclude the

usage of existing Plagiarism tool for automated assessment.

Index Terms—Automated assessment, plagiarism tools, JPlag,

ferret.

I. INTRODUCTION

Contrast to the ordinary setup where students’ work and

assignments are evaluated by the teacher manually, automated

assessment involves evaluating or assessing student’s work

automatically with the aid of computer. Evaluating and

grading student’s assignments manually is a very tedious task

on part of the teacher, thus Automated assessment and

grading systems not only eases this strenuous task of teachers

but also are a great tool for assessing and grading in a higher

educational setup such as engineering institutions. In case of

engineering institutes the assignments submitted by the

students are not just plain text but comprise of complicated

academic work such as mathematical solutions, algorithms,

coding in various programming languages, equations,

diagrams etc. Thus more the complicated work more is the

manual labor required on part of teacher for grading and

assessing of such assignments. Massive Open Online Courses

(MOOCs) are recent trend in distance learning, gaining

momentum with support of many prestigious universities like

Stanford University, Udemi, edX, Coursera and Udacity.

However, with increase in popularity of MOOCs, issues and

challenges are emerging. Assessing educational achievement

and providing feedback to learners is crucial in online

Manuscript received August 25, 2014; revised October 30, 2014.

Sonal Jain and Mayuri Singhal are with the Department of Computer

Science & Engineering, Institute of Engineering and Technology, JK

Lakshmipat University, Jaipur, Rajasthan (e-mail:

drsonalamitjain@gmail.com, mayuri.singhal81@gmail.com).

Axita Shah is with Elegant Microweb pvt. Ltd, Ahmedabad, India (e-mail:

axitashah@gmail.com).

distance education. Assessment has been a difficult topic for

MOOCs because it is impossible, or at least difficult, for an

instructor to provide detailed feedback on performance of

thousands of students [1]. Students who take online courses

do not have many chances to communicate with their

instructors and demonstrate mastery of course content in a

direct way [2] fueling demand for online assessments.

Automated student assessment systems in such higher

educational institutes can provide great relief and support to

the teachers who can utilize the time saved in grading and

evaluation more effectively.

The main tasks of an automated assessment system are to

evaluate assignments given by the instructors to the students

to help them apply knowledge gained during the course.

Plagiarism is the act of copying someone else work without

acknowledging the person. Various plagiarism tools exist for

natural and programming languages to check if the offence

has been committed. This paper proposes that the plagiarism

tools for source code plagiarism detection besides detecting

plagiarism can also be employed in online courses for

programming languages and educational institutes to check

similarity between the teacher’s and students’ solutions. In

this case the similarity is desired to prove that the student has

submitted the correct program. Also this can prevent the

students from submitting malicious codes that may crash the

server as the plagiarism tools will be able to detect that the

coding solution submitted by the student is similar to the

teacher’s solution or not. Section II describes source code

plagiarism, Section III shows emergence of automated

assessment systems, section IV describes authors’ approach,

section V includes working of JPlag and Ferret, Section VI

demonstrates comparison results by JPlag and Ferret, Section

VII includes testing JPlag with larger tested followed by

conclusion and future work.

II. SOURCE CODE PLAGIARISM DETECTION TOOLS

Various plagiarism detection tools have been developed to

detect plagiarism in source code files. These tools are based

on various detection approaches which can be classified into

three types: text based approach, attribute counting based

approach and structure based approach [3]-[8]. Source code

plagiarism tools such as JPlag [7], Moss [9], Ferret [9], SIM

[10]-[12] etc. exist to find plagiarism in source code of

various programming languages.

III. AUTOMATED ASSESSMENT OF PROGRAMMING

ASSIGNMENTS

In case of computer science engineering major stress is on

Exploring the Usage of Existing Plagiarism Tools for

Automated Student Assessment for Java Program

Sonal Jain, Member, IACSIT, Mayuri Singhal, and Axita Shah

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

220

programming assignments. More than the theoretical

knowledge of the students their programming skills are valued

thus in engineering educational institutes more effort is made

to enhance the programming skills of the students. For this

purpose various programming labs are used to enhance the

practical knowledge of the students. This also requires a great

deal of effort on part of teachers to design and distribute

programming assignments to the students that increase their

programming capabilities. A great deal of effort is also

required by the teachers to evaluate the coding solutions

submitted by the students and provide them with effective and

proper feedback. More complicated solutions require more

strenuous task on part of teacher for grading and evaluation.

In such a scenario automated assessment systems can prove to

be of a great help.

IV. OUR APPROACH

Source code tools are used to check whether similarity

exists between original source code and suspicious source

code. So if these tools can find similarity between two codes

they can be utilized for automated student assessment in

educational institutes to check students’ programs and in case

of MOOC (massive online open courses) where programming

languages are taught to the users online. In case of automated

student assessment in both the described scenarios, for

various programming languages these tools can be used to

intentionally find similarity between submitted student

program and teacher’s solutions at the server end. Teachers

along with the question can also submit possible solutions. If

similarity between student’s solution and teacher’s solution

exists above a certain threshold that means that the solution

provided by the student is almost correct and can be finally

submitted to be checked or investigated by the teacher. Fig. 1

shows the flow of the system utilized in an engineering

institution.

Fig. 1. System flow for usage of plagiarism tools for assignment submission.

As shown in Fig. 1, the student submits the source code

solution for programming exercise question provided via

online assessment system. The solution is passed to a

plagiarism detection tool at the server end. The plagiarism

tool checks for similarity between the given solution and

stored teacher’s solutions for the same question. If similarity

is found above a predefined threshold level it is passed to the

server for final submission otherwise a message for

resubmitting the solution is sent to the student. The predefined

threshold is a score that signifies that a match that has score

equal to or greater than the defined score is almost similar.

When the plagiarism tools are employed in open online

courses and educational institutes for automated student

assessment of the programming assignments submitted by the

user, it can prevent the students from submitting malicious

code that may crash the server. If the student submits the

source code solution that contains entirely different code

(malicious code) as compared to the coding solution of the

query, the code will be rejected by the plagiarism tool due to

low similarity to the stored teacher’s solutions.

V. TESTING JPLAG AND FERRET FOR STUDENTS’ SOLUTIONS

WITH VARIOUS STRUCTURAL MODIFICATIONS

 Five java programs were used to test the plagiarism tools,

the programs given were: finding given number in an array,

finding whether the number given by user is prime or not, first

ten numbers in Fibonacci series, calculating factorial of the

number given by user, finding the sum of first ten natural

numbers. 30 students submitted programs. It was found that

students submit programs with Lexical modifications like

Space between lines, Additional Comments, Change of

Output Statements, Change of variable names, Change of

Declarations, Change of Order of Statements as well

Structural modifications like Change of Control Structure.

JPlag and Ferret are one of the two plagiarism detection tools

that are available for free. These two plagiarism detection

tools were used to detect similarity between a teacher’s

solution and students’ solutions representing various lexical

and structural modifications.

A. Ferret

Ferret [10] is a copy-detection tool, created at the

University of Hertfordshire by members of the Plagiarism

Detection Group. Ferret locates duplicate text or code in

multiple text documents or source files. The program is

designed to detect copying (collusion) within a given set of

files. Ferret works equally well with documents in natural

language (such as English, German, etc.) and with

source-code files in a wide range of programming languages.

Ferret computes a similarity measure based on the trigrams

found within each of the two documents under comparison;

this measure is a number from 0 (no copying) to 1 (everything

has been copied). This measure should not be taken as an

absolute measure of the amount of copying. Instead, the

measure is intended to indicate the relative amount of copying

that the current pair has compared with the rest of the group.

Pairs which appear on top of the table of all similarity

comparisons should be examined for possible copying, but

the measure itself does not imply any reliable conclusion.

A document may contain natural language text, such as

English, or computer programs, such as Java or C. A measure

of similarity is computed for each pair of documents, based on

matching sequences of words or tokens. Ferret is particularly

suited to assist teachers in checking for plagiarism. Large

collections of documents can be processed in a single run,

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

221

producing a table with every pair of compared documents

arranged in order of similarity. A detailed analysis of each

pair of documents shows every occurrence of copied text.

Reports of the table of comparisons and the detailed analysis

may be saved for later reviewing or printing. Fig. 2 shows

similarity measure between two codes.

Fig. 2. Analysis showing common trigrams.

B. JPlag

JPlag is a web based plagiarism detection system that was

developed by Guido Malpohl at the University of Karlsruhe.

In 1996 it started out as a student research project and a few

months later it evolved into a first online system. In 2005

JPlag was turned into a web service by Emeric Kwemou and

Moritz Kroll. In this the source code is parsed and converted

into token rings that represent the structure of the program

thus it can be regarded as a tool based on structure approach.

The similarity is detected by comparing token rings using

Greedy String Tiling algorithm. JPlag includes some context

of the program structure into the token strings, for example

using the “BEGIN METHOD” token to indicate an open

brace at the beginning of a method and “OPEN BRACE” to

indicate other open braces. Whitespace, comments, and

identifier names are ignored. The languages that are supported

by JPlag are Ada, C#, C, C++, Scheme and natural language

text. Java Web Start Client is available on the website of JPlag

to upload files to the server that are to be compared. JPlag

presents its results as a set of HTML pages. The pages are sent

back to the client and stored locally. The main page is an

overview that includes a table with the configuration used to

run the query, a list of failed parses, a chart showing the

distribution of the similarity values, and listings of the most

similar pairs, sorted by average similarity as well as by

maximum similarity.

JPlag compares source-code files submitted in folders or as

single files. If each student’s work is stored as a separate

folder then JPlag will return a similarity score between the

folders that contain the suspicious files. If, each student’s

work is stored as a single file, then JPlag will return a

similarity score between the suspicious files detected. The

user can begin the comparison process by selecting the folder

that contains the student work to be compared as shown in Fig.

3. Fig. 4 shows results in histogram format.

Fig. 3: JPlag Submission selection.

Fig. 4. JPlag results histogram.

JPlag has worked very fast, and returned only the

suspicious pairs of files. This tool allows the user to view the

entire detected files clearly and provide a clear indication of

the suspicious source-code fragments by colour indicating the

suspicious fragments. It also provides easy navigation for

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

222

viewing the suspicious source-code fragments between files

that contain similar code that has been rearranged in different

positions. One of the drawbacks of JPlag is that it cannot

handle files which do not parse. Because of this JPlag has

missed the suspicious file pair 37 and 40. A nice feature of

JPlag is that it displays the groupings of suspicious files found

which is a very useful feature for catching suspected

plagiarism between groups of students.

VI. RESULTS BY JPLAG AND FERRET FOR STUDENTS’

SOLUTIONS WITH VARIOUS STRUCTURAL MODIFICATIONS

Table I shows the results for Ferret and JPlag for the

student programs with lexical and structural modifications

when compared with the teacher’s solutions. Percentage

indicates similarity between student’s solution and teacher’s

solution.

TABLE I: SIMILARITY MESURE BETWEEN PROGRAMS GENERATED BY TWO

PLAGIARISM TOOLS

Modification Student Program JPlag (%)
Ferret

(%)

Space Between

Lines (Lexical)

Array1.java 100 95

Prime1.java 100 95

Fibonacci1.java 100 93

Factorial1.java 100 94

Sum101.java 100 93

Additional

Comments

(Lexical)

Array2.java 100 76

Prime2.java 100 78

Fibonacci2.java 100 73

Factorial2.java 100 74

Sum102.java 100 68

Change of O/P

Statements

(Lexical)

Array3.java 100 80

Prime3.java 100 79

Fibonacci3.java 100 77

Factorial3.java 100 75

Sum103.java 100 79

Change of

Variable Names

(Lexical)

Array4.java 100 49

Prime4.java 100 43

Fibonacci4.java 100 24

Factorial4.java 100 39

Sum104.java 100 29

Joint Declaration

(Lexical)

Array5.java 100 90

Prime5.java 100 86

Fibonacci5.java 100 72

Factorial5.java 100 84

Sum105.java 100 82

Change of Order

of Statements

(Structural)

Array8.java 59 89

Prime6.java 58 86

Fibonacci6.java 58 84

Factorial6.java 56 85

Sum106.java 59 80

Additional Print

Statements

(Structural)

Array9.java 87 77

Prime7.java 89 75

Fibonacci7.java 88 72

Factorial7.java 88 84

Sum107.java 87 70

Change of

Control Structure

(Structural)

Array10.java 48 79

Prime8.java 47 75

Fibonacci8.java 45 63

Factorial8.java 48 76

Sum108.java 48 57

JPlag performed well for all the modifications but there

was a drop in similarity percentage in case of structural

modifications. The drop was drastic in case of modifications

where the order of the statements was changed and different

control structure was used. Ferret performed well for most of

the modifications with similarity above 70. But there was a

drop in case of lexical modification where different variable

names were used. It is a matter of concern as in case of online

assessment system the student solution is more prone to this

lexical modification as it is obvious that the variable names

used by the student will be different from the variable names

used by the teacher unless specified in the question that what

variable names should be used. Specifying names is quite

impractical as a program consists of a large number of

identifiers such as variable names, class names, method

names etc. The reason why JPlag not performed well for the

structural modifications can’t be stated as its working is not

known. In case of Ferret, the reason it was not able to detect

similarity in case of change of variable names might be the

change of trigrams due to change in variables. It was

concluded that JPlag was more suitable to test java programs

particularly when intention is to assess similarity measure

between student solution and teacher solution.

VII. TESTING JPLAG FOR AUTOMATED ASSESMENT

To achieve goal of automated assessment, a testbed of java

programming exercises was created and two folders named

teacher and student were used to store the solutions for the

programming exercises. The teacher folder comprised of

solutions given by the teacher for the programming questions

and the student folder is used to store the solutions provided

by the students. The plagiarism detection tool JPlag was used

to compare the source code files by the teacher with the

solutions provided by the students as files stored in folders.

Testbed included sample java progams shown in Table II.

TABLE II: TEST SAMPLE

1. Take ten numbers from the user as input and print even and odd

numbers. Also display total number of even and odd numbers?

2. Write a program that consists of a separate class called Fibonacci with a

method to find Fibonacci series of the number provided by the user.

3. Write a program that consists of class called Rectangle with two

methods; one is for length and breadth (passed as parameters) and the

other to calculate the area of rectangle.

4. Write a program that consists of a class called Room. This class consists

of constructor for length and breadth and a method to calculate its area.

Now extend this class, the subclass consists of constructor for variable

height (length and breadth of super class using super keyword) and a

method to calculate volume.

Table III shows the result of JPlag based on which solution

is correct or incorrect was assumed.

The results received by the test are not constant and show

variations. All the programs submitted by the student 2 are

correct coding solutions but JPlag gave very low similarity

percentage to all the solutions which will result in their

rejection if JPlag is implemented to check similarity between

student and teacher solution. One of the reasons of this low

percentage is the difference in the structure of teacher’s and

student’s coding solutions and less number of variations

provided by the teacher. JPlag performs poorly in case

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

223

structural modifications which has been shown in section VI.

For example, student 2 has used two loops for first java

program number.java to print even and odd numbers whereas

in the coding solution provided by the teacher only one loop is

used for printing even and odd numbers. Also the first

program submitted by student 3 ArrayEvenOddNumber.java

is correct but JPlag was unable to parse the program and thus

no comparison is done. The reason JPag was not able to parse

the program is not known as JPlag is not an open source

plagiarism tool. The coding solution Room.java submitted by

the student 4 is incorrect but JPlag assigns it a score of 69

which is quite high, one of the reasons for this score can be the

use of scanner statements in both teacher and student coding

solution.

TABLE III: RESULT OF ASSESSMENT SYSTEM UTILIZING JPLAG

Student

Number

Student Program Correct /

Incorrect

JPlag (max %)

1 Q1.java C 100

Q2.java C 100

Q3.java C 66

Q4.java C 93

Q5.java C 83

2 number.java C 18

series.java C 0-10

area.java C 37

room.java C 38

series.java C 0-10

3 ArrayEvenOddNumber.java C Parse error

FibonacciSeries.java I 0-10

RectArea.java I 0-10

AreaofRoom.java C 100

Prime.java I 32

4 FindEvenOrOddNumber.java I 0-10

Fibonacci.java C 0-10

Area.java C 100

Room.java I 69

PrimeNumbers.java I 0-10

5 OddorEven.java I 0-10

Fibonacci.java I 0-10

CalculateRectArea.java I 0-10

AreaVolume.java C 72

Sum.java I 0-10

VIII. CONCLUSION AND SUMMARY

Freeware plagiarism tools JPlag and Ferret were used to

test teacher’s programming solutions for five java programs

with programming solutions of students with various lexical

and structural modifications. JPlag performed well and thus

was used with larger test bed and more variations in programs

submitted by student. However, it cannot be concluded

clearly that whether or not plagiarism tools can be used in

online courses and educational institutes for checking

similarity between student and teacher coding solutions and to

prevent the students from submitting malicious code

submission, as the results of the test were not constant and

showed variations. The less number of teacher solution

variations and JPlag parse error (reason unknown) are some

of the reasons that a clear conclusion can’t be stated. Also

experiments with other existing plagiarism tools for source

code plagiarism detection have not been conducted. In future,

authors aim to continue to locate the reason behind the

variations in results and solutions to reduce the same.

REFERENCES

[1] S. L. Richter and M. Krishnamurthi, “Preparing faculty for teaching a

MOOC: Recommendations from research and experience,”

International Journal of Information & Educational Technology, vol.

4, no. 5, October 2014

[2] A. P. Rovai, “Online and traditional assessments: What is the

difference?” Internet and Higher Education, vol. 3, no. 3, pp. 141-151,

2000.

[3] C. Georgina and M. Joy, “An approach to source-code plagiarism

detection and investigation using latent semantic analysis,” IEEE

Transactions on Computers, vol. 61, no. 3, pp. 379-394, 2012.

[4] Đ. Zoran and D. Gašević, “A source code similarity system for

plagiarism detection,” The Computer Journal, vol. 56, no. 1, pp. 70-86,

2013.

[5] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker, "Shared

information and program plagiarism detection," IEEE Transactions on

Information Theory, vol. 50, no. 7, pp. 1545-1551, 2004.

[6] H. Jurriaan, P. Rademaker, and N. V. Vugt, “A comparison of

plagiarism detection tools,” Utrecht University, Utrecht, The

Netherlands, vol. 28, 2010.

[7] JPlag. [Online]. Available: https://jplag.ipd.kit.edu/

[8] Aiken. [Online]. Available: http://theory.stanford.edu/~aiken/moss/

[9] Ferret. [Online]. Available: http://peterlane.info/software/ferret.html

[10] Dickgrune. [Online]. Available:

http://dickgrune.com/Programs/similarity_tester/

[11] Heacademy. [Online]. Available:

http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/de

mo_jplag.html

[12] A. Christian and S. M. Tahaghoghi, “Plagiarism detection across

programming languages,” in Proc. the 29th Australasian Computer

Science Conference, vol. 48, Australian Computer Society, Inc., 2006.

Sonal Jain has over 14 years of academic experience.

She is actively involved in teaching, training and

research. Currently she is an associate professor at JK

Lakshmipat University, Jaipur. Dr. Jain has several

publications to her credit and has presented research

papers at National and International conferences

organized by institutes like IITB, IITK and, NTU

Singapore. She has received the award for one of the

research papers at National Conference. Dr. Jain has co-authored books

including Personal Computer Software (Wiley India), Simplifying C

(Dreamtech Publications) and six text books for Gujarat State Education

Board. Dr. Jain is life member of Computer Society of India. She is the

committee member with IACSIT Singapore. Her area of interests are in

research, training and consultancy including technology for education,

information retrieval and natural language processing.

Mayuri Singhal completed her schooling from

Seedling Public School (Jaipur, Rajasthan, India) and

did her graduation from Arya College of Engineering

and Research Center (Kukas, Rajasthan, India) in

Btech (information and technology). She completed

her MTech (computer science) from JK Lakshmipat

(Jaipur, Rajasthan, India). Her dissertation topic was

“Possibilities of Usages of Existing Plagiarism tools

for Student Assessment (Programming Languages).”

Axita Shah has 6 years of industry and academic

experience, and she is pursuing Ph.D in computer

science and working as a technology lead in Elegant

Microweb pvt. Ltd. in business intelligence product.

She has experience of teaching various core as well as

advanced subjects such as data structure, data

warehousing, data mining, and internet marketing to

post graduate students. She has worked on predictive

analytics techniques, data warehouse architecture in

business intelligence product.

