

Abstract—In second language acquisition (SLA) environment,

learner is a community member and communicates with others,

whereas, in a foreign language learning, the practicing

dimension is weaker. When it comes to programming, there is

no community using a programming language, thus a SLA

environment cannot exist. For this reason the most adopted way

is teaching programming like a foreign language with all its

drawbacks. In this paper we compare between programming

language and natural language, knowing that the programming

introductory courses have basic concepts without complex

algorithms, in other terms more expressive than computational.

We propose a new method of teaching programming based

upon dialogues between a facilitator and students. The

facilitator will be part of a communication between each

student and the computer to make an environment suitable for

a SLA. A Socratic way of learning is achieved with a teacher

having few students and can participate with his students in

their dialogue and helps through their guidance to express their

ideas. We list 4 common programming problems and we

showed that using dialogue and raising questions, students were

able to resolve these problems.

Index Terms—Memory concept, programming language,

programming learning, Socratic dialogue.

I. INTRODUCTION

Programming has been always seen as a difficult discipline

to learn and teach.Reference [1] reported that the rate of

failure or drop in undergraduate programming courses varies

from 25 to 80 %. The importance of the computer as an

analysis or simulation tool in the experimental sciences

makes the problem of introductory programming course a

weighted issue. A synthesis of various studies of psychology

and educational programming shows the different difficulties

in learning programming. According to [2], students are not

well oriented and don’t know what programming is about

also the computer is seen as a notional machine or as a black

box [3]. The anthropomorphical errors are typical errors and

are committed when the student assumes that the computer

has a hidden intelligence and it is expected to understand

what the student has in mind [4]. These difficulties are faced

when using a classical approach in teaching and using a

general purpose language and a professional environment

according to [5] and [6]. According to ACM, the introductory

course should include only basic concepts of programming

without tackling complex algorithms [7]. At the level of

resolving primitive problems, the use of a programming

language is similar to the use of a natural language to a far

extent. In this paper we will compare natural language to

programming language in Section I, highlight the fact of

learning a new language in Section II and describe the

appealed difficulties in Section IV.The results of a study

conducted are shown in Section V and a new approach in

learning programming is emphasized. Section VI concludes

this paper.

II. NATURAL LANGUAGE AND PROGRAMMING LANGUAGE

A natural language is a language used by humans to

communicate. A programming language is a language used

by humans and computers to communicate. This is the reason

it is being called a programming language.

There are many natural languages and every country has its

native language. Similarly there are many programming

languages used by different scientific communities.

Natural languages have properties and concepts which are

common between all languages.The nouns and verbs and the

different grammar properties are the same in all languages.

We have always the past tense, the plural, the feminine and

masculine, etc. The Universal Grammar proposed by

Chomksy describes a common formal structure among all

natural languages [8].

While natural languages are characterized by their

vocabulary and grammar, programming languages have their

syntax and keywords. In many cases, a simple program is just

a translation from the natural to the programming language.

While natural languages are much more complicated and

fuzzier, programming languages are more formal and

structured. Fuzzy theory proposed by Zadeh is a tool to

bridge between the two types of languages [9]. Using fuzzy

set theory the representation of many concepts in natural

languages is feasible by using computational terms through a

programming language [10].

III. NEW LANGUAGE LEARNING: FOREIGN LANGUAGE

LEARNING VS. SECOND LANGUAGE LEARNING

Foreign language learning terminology is used to describe

the fact of learning a language which is different than the

society language, for example, learning English in Russia.

Second language learning describes the fact of learning a

language in a foreign country. For example a Russian who is

learning French in France. In the case of second language

learning, the term acquisition is more used since the learner is

acquiring the language because he is living in a foreign

environment and is learning through this environment. The

term second language acquisition has replaced the term

second language learning.

When learning programming by instructions and lectures

we are dealing with the programming language like a foreign

Socratic Programming: An Innovative Programming

Learning Method

Imad H. El-Zakhem

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

247DOI: 10.7763/IJIET.2016.V6.694

Manuscript received March 25, 2014; revised October 27, 2014.

Imad H. El-Zakhem is with the Department of Computer Science,
University of Balamand, Lebanon (e-mail: izakhem@balamand.edu.lb).

language. The difficulties raised during this process are

described in [11]. In the other hand, the second language

acquisition is smoother, faster and more fruitful [12].

IV. METHODS AND DIFFICULTIES IN LEARNING A NEW

LANGUAGE

Learning is a lasting change in the cognitive structures of

the individual. Information (verbal, visual, auditory, motor)

is stored in memory in the form of nonlinear networks. The

network developed about a concept is unique to the person; it

depends on his own history. Learning is the result of the

transformations occurred upon the individual activity like

seeking information, analogies, discrimination,

hypothesizing [13]. Learning is also described as an

individual active construction that requires an emotional

investment. The sustainability of change achieved may

depend on repetitions, on the variety of channels used for

transmitting information and on the depth of processing

performed by the learner [14]. The constructivist approach

tends to embed learning in realistic and relevant contexts,

encourage ownership and voice in the learning process;

students identify their goals and objectives, embed learning

in collaborative social experience [15].

The teacher should promote the retention of learning by

creating mental images, facilitating an initial understanding

of the concepts in greater proximity to the semantic network

of the learner and helping with the information processing.

Two major difficulties in language learning are the anxiety

and the attitude of the learners.

 Anxiety is shown to be a major obstacle of learning a

language. Learners have fear of being misunderstood and

feel threatened by using an unknown communication tool

[16].

 The attitude and the motivation are psychological factors

that have also great influence on foreign language

learning. There are two types of motivation, integrative

motivation which describe the willingness of a learner to

be a member in the foreign community and instrumental

motivation which describes the desire of a learner to seek

recognition from the whole learning process. [17], [18].

High rates of accomplishment are witnessed with

motivational rather than instrumental motivation [19].

V. SOCRATIC METHODOLOGY FOR PROGRAMMING

In a SLA scenario, the learner should live in the foreign

country, take some classes and most important of all

communicate with the society. The lack of communication

will get him back to the scenario of foreign language

learning.

While in programming language, an excessive

communication with the machine using the programming

language is equivalent to SLA. Furthermore, the instructor

will play the role of a facilitator who will assure the viability

of communication. Since the learners couldn’t communicate

with each other with the programming language but only with

the computer, the instructor should facilitate the dialogue

between each student and the computer, thus participating in

many conversations simultaneously. Each dialogue has three

parties, the facilitator, the learner and the computer. The

Socratic methodology consists of raising questions and

dialogue between participants. Socratic dialogue, as we are

told by Plato, aims to bring the disciples to question their

opinions and beliefs. Socrates requests justifications in the

form of rational arguments from his partners and aim to bring

them gradually to discover what they already know and to

become sure about the truth and virtue.

Below are four examples of successful dialogues which led

students to write consistent and correct programs. 90

sophomore students are asked to solve the following

problems in their first introductory programming course.

A. The First Example Shows Students the Correlation

between Human Memory and Thinking on One Side and

Computer Memory and Processing on the Other Side

 Problem 1: Askthe user to enter two numbers, obtain the

numbers and display the sum.

According to human reasoning:

Ask the user Display a message.

Obtain 2 numbers Store the numbers in memory. For

this reason, memory should be ready to receive the values and

that what the declaration of variables stands for.

Display the sum Access the values already stored in

memory and make the addition. If the numbers are forgotten

the addition turned to be impossible. Thus storing the values

of variables in memory is crucial both in real life and in

programming in order to achieve the task. The verb

remember is equivalent to store value in a variable already

Declare var1, var2

Ask user to input

Input values into var1 and var2

Display var1 + var2

The memory concept is primitive for programming and it

is not tackled in mathematics or other sciences; furthermore

the notions from mathematics is hardening and confusing

learners: For example, the notion of variables in

programming differs from that in mathematics; variable in

programming is a memory location which holds any value

and can change its content, while a variable in math can hold

any value but cannot change its value once set. In

programming, a value of a variable is an existing value for an

existing object in memory and can be accessed and modified

while the variable in mathematics is totally abstract.

 Problem 2: Having two variables x and y with values 3 and

5 respectively, swap the values of the 2 variables.

Only 7% of the students achieved their goal. The

statements x = y and y = x was the response of 76% of the

students. When the students were asked how to swap the

containing of two cups, one with water and one with oil, all

students agreed that a third cup is needed to hold temporally

the water and achieve the swap.

A pseudocode of the program is as follows:

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

248

created in memory. Memory in Programming is Similarto

how human hsestheir memory’s neurons and synapses, and in

simple cases, writing a program is achieved by expressing

what is happening in the human memory.

A pseudocode of the program is as follows:

B. A Second Common Exercise Using Variables in

Programming is the Swap

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

249

Declare x = 3, y = 5

Declare Temp

Temp = x

x = y

y = temp

Students were not able to resolve the problem by using

abstract mathematical variables, but when they think that a

variable is a physical container or a memory location, the

solution becomes obvious.

C. Maximum of Numbers

 Problem 3: find the maximum of 4 positive numbers.

78% of the students tried to write nested if-else statements

and 10% wrote if statements with logical operators.In order to

approach a rightful method to resolve the problem we

changed the setting and the instructor played a game with one

student and asked the other students to describe how their

peer is going to find the right solution. The instructor gave a

sequence of numbers to their peer and at the end the student

was able to give the right result by memorizing the maximum

number and comparing each new number to the memorized

maximum. After the game, 85% of the students were able to

write the following pseudocode:

Declare m, no1, no2, no3, no4

Get no1

M= no1

Get no2

If (no2 > m) m = no2

Get no3

If (no3 > m) m = no3

Get no2

If (no4 > m) m = no4

Display m

With a more in depth look to the above code, 22% of the

students can optimize the code and use only one variable to

get the values and one variable to store the maximum and to

repeat the steps.

Declare m, no = 0

Repeat 4 times

Get no

If (no > m) m = no

Display m

The above optimized code is achieved when the students

are asked if they remember any of the values except of the

maximum.

D. Adding up 5 Numbers

 Problem 4: Ask the user to get 5 numbers, add up the

numbers than display the result.

95% of the students declared 5 different variables and a

variable total to hold the total. They wrote a program to input

the values into the variables and add up these values using the

variable total. When asked to do the same problem but with

100 variables, most of the students were able to understand

that a loop is needed but they faced difficulties in how to

declare variables to store the 100 values. 21% of the students

wrote a code similar to the code below:

Declare no, total

Repeat from 1 to 100

Input a value into the variable no

total = total + no

The rest of the students just wrote the loop header but

struggled to achieve the input and the sum. A discussion

occurred about how the problem can be resolved mentally.

The students can describe the solution in English as follows:

Repeat the below steps100 times:

Get a number

Add it to the total

Remember the total for the next iteration

At the end of the problem the given values are overwritten

and only the total is kept in memory. A comparison between

the description written by the students and the correct

pseudocode tells us that with little help those students will be

able to resolve the problem.

In the four examples above, the description of the solution

is translated from English to programming. Students were

able to develop the right solution when first they assimilate

the memory concept and second they express their ideas.

VI. CONCLUSION

Programming languages seems to be difficult at the

beginning but the learner becomes more fluent after practice,

like in all natural languages.

The questions raised and the dialogue between facilitator

and students ensure that the students will find the solutions

and they will be independent from classic tutoring. They

become more motivated and they develop a mental model

about programming concepts.

Using a kind of conversation between few participants is

feasible because there are no complex algorithms or

problems to be resolved in the introductory programming

courses. The formal lectures shall be shorter in time and

learning time is adjusted according to the level of fluency, the

number of participants and the difficulty of the subject in

question.

REFERENCES

[1] J. Kaasboll, Learning Programming, University of Oslo, 2002.

[2] B. D. Boulay, “Some difficulties of learning to program,” Studying the

Novice Programmer, Lawrence Erlbaum Asssocites, pp. 283-299,
1989.

[3] M. Ben-Ari, “Constructivism in computer science education,” in Proc.

29th ACM SIGCSE Technical Symposium on Computer Science
Education, Atlanta, Georgia: ACM press, 1998.

[4] J. Spohrer, “Analysing the high frequency bugs in novice programs,”

presented at First Workshop on Empirical Studies of Programmers,
1986.

International Journal of Information and Education Technology, Vol. 6, No. 3, March 2016

250

[5] P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P.

Miller, “Mini-languages: A way to learn programming principles,”

Education and Information Technologies, vol. 2, pp. 65-83, 1997.

[6] S. Xinogalos, “Educational technology: A didactic micro-world for an

introduction to object-oriented programming,” Ph.D. Thesis, Dept. of

Applied Informatics, University of Macedonia, 2002.
[7] The Joint Task Force on Computing Curricula Association for

Computing Machinery (ACM) IEEE Computer Society. (2013).

Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science. [Online]. Available:

http://www.acm.org/education/CS2013-final-report.pdf

[8] N. Chomsky, Aspects of the Theory of Syntax, MIT Press, 1965.
[9] L. Zadeh, “The concept of a linguistic variable and its application to

approximate reasoning,” I-III, Information Sciences, vol. 9, pp. 43–80,

1976.
[10] L. Zadeh, Computing With Words. Principal Concepts and Ideas,

Berlin: Springer, 2012.

[11] W. Lambert, “Psychological approaches to the study of language,”
Modern Language Journal, vol. 47, pp. 51-62, 1963.

[12] J. H. Hulstijn, “Fundamental issues in the study of second language

acquisition,” EUROSLA Yearbook 7, pp. 1569-9749, John Benjamins
Publishing Company, 2007.

[13] J. Elman, E. Bates, M. Johnson, A. Karmiloff-Smith, D. Parisi, and K.

Plunkett, Rethinking Innateness: A Connectionist Perspective on
Development, Cambridge, MA: MIT Press, 1996.

[14] M. Daly, Developing the Whole Child: The Importance of the

Emotional, Social, Moral and Spiritual in Early Years Education and
Care, Wales: Edwin Mellen Press, 2004.

[15] D. Cunningham, T. M. Duffy, and R. Knuth, “Textbook of the future,”

in Hypertext: A Psychological Perspective, C. McKnight, Ed., London:
Ellis Horwood Publishing, 1993.

[16] S. Kirova, B. Petkovska, and D. Koceva, “Investigation of motivation

and anxiety in Macedonia while learning English as a second / foreign

language,” Procedia - Social and Behavioral Sciences, vol. 46, pp.

3477-3481, 2012.

[17] R. C. Gardner and P. C. Smythe, “On the development of the

attitude/motivation test battery,” Canadian Modern Language Review,
vol. 37, pp. 510-525, 1981.

[18] A. Masgoret and R. Gardner, “Attitudes, motivation and second

language learning: a Meta-analysis of studies conducted by Gardner
and Associates,” Language Learning, vol. 53, no. 1, pp. 123-164, 2003.

[19] W. Lambert, “Persistent issues in bilingualism,” in The Development of

Second Language Proficiency, B. Harley, P. Allen, J. Cummins, and M.
Swain, Eds., Cambridge University Press, 1990, pp. 201-218.

Imad H. El-Zakhem holds a Ph.D degree in
computer science from the University of Reims,

France, and a master degree in electrical and

computer engineering from the National Technical
University of Athens, Greece. The major fields of

study are the perception modeling and programming

learning methodologies and difficulties in
programming. He is currently an assistant professor

in the University of Balamand and served as an IT

manager and a project developer in private companies. He has many
publications in color perception and image classification using fuzzy set

theory and in methodologies of learning programming, learning

programming in schools and difficulties of learning programming.

