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Abstract—Learners’ performances in intelligent tutoring 

systems or e-learning environments depend on various factors 

such as the nature of the task presented, their cognitive and 

affective abilities, etc. In this paper, we focus on studying in 

detail the variation of these different factors and more 

specifically the electroencephalogram (EEG metrics) and how 

they differ according to a category and a type of cognitive tasks. 

We also studied the possibility of predicting a learner’s 

performance using feature selection and multiple regressions. 

Primarily, results shows that learners’ scores could be predicted 

using in descending order the difficulty level of the task, the type 

of a task, the duration of a task and the EEG workload metric by 

building a multiple regression model that fit our data.  

 

Index Terms—Cognitive tasks, EEG features, engagement, 

workload, distraction, multiple regression. 

 

I. INTRODUCTION 

To date, several studies have focused on intelligent tutoring 

systems and e-learning environments in order to offer a more 

reliable and adjustable learning experience according to the 

learners’ capacities and performances. For this purpose, 

several approaches have been proposed in order to assess, 

predict and improve the learners’ performance. However, in 

our knowledge, there is no study that takes into consideration 

the category or the type of a learning task. Yet, we think that 

learner’s performances depend strongly on the category 

and/or the type of a proposed task.  

From these approaches, we cited as an example some 

works in the field of artificial intelligence, human computer 

interaction, cognition and neuroscience [1]-[4]. These works 

were mainly based on the use of electrophysiological metrics 

and log files in order to assess more accurately certain 

learner’s states or behaviors (emotions, workload, distraction, 

engagement, performance, gaming the system, off-task 

behavior, etc.).  

In this paper, we focus only on the use of 

electrophysiological metrics and log files to study mainly the 

variation of these metrics and the learners’ performance 

according to different types of cognitive tasks that we 

implemented.  Electroencephalogram (EEG) was processed 

by applying Fast Fourier Transformation (FFT) on the signals 
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and extracting from the latter five main power spectral 

densities (Delta:0-4Hz; Theta:4-8Hz; Alpha:8-12Hz; 

Beta:12-40Hz and Gamma:>40Hz), and using these measures, 

Stevens and his colleagues has established three main metrics: 

mental engagement, mental workload, and distraction [5]. 

Mental engagement is related to the level of mental vigilance 

and alertness during the task (high or low states of vigilance). 

Mental workload can also be seen as the mental vigilance and 

cognitive load in a particular task. However, distraction or 

drowsiness reflects the feeling of being sleepy and lethargic 

[5]. 

Galvanic Skin Response (GSR) was used to assess the 

electrodermal activity and the skin temperature. It measures 

actually the individual degree of sweating, known as the 

excitation factor of emotions (low or strong). It is also 

correlated with cognitive load, stress [6] and frustration [7]. 

Other than the use of EEG and GSR sensors, researchers 

employ more complex sensors (such as eye trackers, kinect2 

depth sensor, posture detection, etc.). In this paper, we use 

only two main sensors (EEG and GSR) and we conducted an 

empirical study where we collected data from our cognitive 

environments (composed of 7 tasks in total and 3 main 

categories: memory, concentration and reasoning). We also 

studied the variation of these outputs on the participants, and 

finally built a multiple regression model using the task 

information (difficulty level, type of a task, duration and 

workload EEG metric) to further predict the learners’ 

performance in our cognitive environment. 

In the following, we present previous works to our study, a 

description of our cognitive environment, our experiment, 

some exploratory and statistical results using EEG features 

(engagement, workload, and distraction) and GSR, and finally 

a linear model that uses feature selection in order to provide a 

moderately useful prediction of the learners’ performance. 

 

II. PREVIOUS WORKS 

In intelligent tutoring systems and e-learning environments, 

the detection and assessment of some learners’ states (for 

example: engagement, distraction, motivation, emotions, etc.) 

remains of a great importance in order to build more adaptive 

and effective human computer interaction systems. For 

instance, an intelligent system that is able to automatically 

identify if the student is engaged or not in a task and adjust its 

content according to this variation, would be more effective 

for the student and could significantly improve his 

performance. Moreover, an intelligent system that detects if a 

student is sleepy and distracted while accomplishing a task 

using a machine learning algorithm for a classification of this 

state, may be used in order to adjust its learning strategy and 
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provide a learner with more suitable content and/or feedback 

that allows him to avoid these situations of disengagement. 

In order to detect and regulate the disengagement behavior, 

some researchers have used log files, data mining and 

machine learning techniques. Among these works, we cite as 

an example those of Baker and his colleagues [7], [8]. In ref. 

[7], Baker has established a classification of a student 

disengagement behavior into four main categories: 1) off-task 

behavior, 2) gaming the system, 3) carelessness and 4) 

without thinking behavior. He also discussed the conditions 

that promoted the occurrence of each type of these behaviors 

and proposed some methods to detect them automatically. 

Whereas, in ref. [8], Baker was interested more specifically to 

off-task behavior that occur when a student is inactive or 

doing some actions which are not related to the learning 

content (speak to other students, stay inactive, etc.). This 

behavior was initially modeled by extracting certain features 

and using latent variable models as a machine learning 

technique. 

Other studies have adopted a different approach by using 

mainly the outputs of electrophysiological sensors, such as 

EEG, GSR, and HR (heart rate). For example, Pope and his 

colleagues [1] at NASA have developed an EEG engagement 

index based on brainwave band power spectral densities and 

applied in a closed-loop system to modulate task allocation. 

They proved that performance in a vigilance task improved 

when this index was used as a criterion for switching between 

manual and automated piloting. Berka and her colleagues [9] 

explored the feasibility of monitoring EEG indices of 

engagement and workload acquired and measured during 

cognitive tests. Results showed an increase of these two 

indices during the encoding period of verbal and image 

learning and memory tests compared with the recognition 

period. She showed also that workload increased linearly with 

the level of difficulty and that the EEG measures correlated 

with both subjective and objective performance metrics. 

Mostow, Chang and Nelson [10] used EEG (single channel) 

to distinguish the reading of adults and children and to predict 

the difficulty of the text. Nourbakhch and his colleagues [11] 

have used GSR as an indicator of cognitive load and emotions. 

They have assessed GSR data from two experiments: 1) 

during text reading tasks and 2) during arithmetic tasks that 

have different levels of difficulty. From these experiments, 

they found a strong relationship between GSR features and 

mental workload. Moreover, GSR data was also used in order 

to detect emotions [6], [12] and stress states [7], [13]. Other 

studies combined the outputs of different sensors to build 

more reliable models. For instance, in ref. [14], a framework 

based on Bayesian network was built to recognize three trends 

of the interactions, namely: flow (a total involvement within 

the task), stuck (a difficulty to maintain focused attention) and 

off-task (a drop out from the task), as well as the emotional 

responses occurring subsequently. EEG and physiological 

devices (GSR and HR) were used and the resulting 

evaluations showed an accuracy rate of 82% to characterize a 

positive vs. a negative experience, and an accuracy ranging 

from 81% to 90% was achieved to assess four emotions 

related to the interaction namely stress, confusion, frustration 

and boredom.  

Other than assessing learners’ emotions and behaviors, 

some works have focused on using machine learning 

technique in order to predict in advance a learner’s 

performance. For example, Beal and Galan [15] studied the 

use of certain mental states extracted from the 

electroencephalogram established by [5] as two fundamental 

features that predict the success or failure of the learner in the 

next task. These two mental states (engagement and workload) 

have been tested and trained on a support vector machine 

(SVM) to construct fairly reliable models of learner 

performance prediction for mathematical problems. Naser [16] 

used knowledge extracted from learner models to determine 

the academic performance of a learner in order to offer him 

the proper difficulty level of problems to solve. Recently, the 

US Army Research Laboratory (ARL) evaluated and 

developed concepts for two types of learner models: 1) 

short-term learners and 2) long-term learners. Sottilare [17] 

also studied the feasibility of using recorded learners’ 

performances in the development of adaptive tutoring 

learning chains to design future learner models. 

 

III. DESCRIPTION OF OUR COGNITIVE TASKS  

In this section, we describe the cognitive environment we 

used to study the evolution of a learner’s profile which is 

mainly based on three parameters: his EEG metrics, his GSR 

and the nature of a cognitive task presented. This environment 

is mainly divided in the three categories mentioned below: 

A. Memory 

This category contains two subcategories of the famous 

task of Digit Span (DS) where the learner is shown a series of 

numbers according to an ascending difficulty level and asked 

to remember and type them in the appropriate place. 1) 

Forward Digit Span (FDS) consists of typing the numbers in 

the same order that they appeared on the screen and 2) 

Backward Digit Span (BDS) where numbers should be 

entered in reverse. 

B. Concentration 

This category has two different tasks: 1) Feature Match and 

2) Rotation. Feature Match (FM) consists in identifying 

whether the two images appearing on the screen are identical 

or not according to their forms, numbers and colors (see Fig. 

1). It has also six difficulty levels (ranging from 1 to 6) which 

vary in their geometrical number and forms. However, 

Rotation task (RT) consists in identifying whether two 

images are identical or not if any rotation is allowed. It has 

also five difficulty level. 

C. Reasoning 

This category has three subcategories of tasks: 1) 

Arithmetic Addition, 2) Odd One Out and 3) Intuitive 

Reasoning. In the Arithmetic Addition task (AA), the learner 

is asked to add two numbers and the difficulty level (3 

difficulty levels were implemented) increases according to the 

numbers of digits to add. In Odd One Out (OO), the learner 

has to identify the odd image from a series of nine images 

appearing on the screen, and has four difficulty levels. Finally, 

for Intuitive Reasoning (IR), it has three levels of difficulty 

(varying according a time constraint: unlimited, 1 minute and 
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30 seconds), and 15 series in total; every level contains 5 

series of exercises. Unlike other tasks, this task is based on 

intuitive or analogical reasoning (see Fig. 2).  

 

 
Fig. 1. Feature match task. 

 

 
Fig. 2. An example of intuitive reasoning task. 

 

IV. DESCRIPTION OF THE EXPERIMENT, GATHERING THE 

DATA AND OUR APPROACH 

A. Experiment Protocol 

In order to study a learner’s profile’s evolution during the 

completion of our cognitive tasks, we conducted an 

experiment to gather several types of data from different 

subjects. In this study, all the participants (20 in total) are 

from the Université de Montreal. They are wearing an EEG 

helmet (B-Alert X10) and a bracelet (Affectiva Q-sensor). 

Participants are from different disciplines, and they are 

distributed as follows: 9 women and 11 men, a mean age of 28, 

and a standard deviation of 4.67. The study is located in our 

research laboratory, where we explained the objectives of the 

study and asked the participants to sign a consent form (ethics 

agreement) before starting the experiment. The study lasted 

about 2 hours, during which they performed the following 

four steps: (1) installation of the B-Alert X10 headset on the 

participant (mean duration of 20-25 minutes), (2) installation 

of Q-sensor bracelet (about 2 minutes), (3) the participant is 

invited to do 3 baseline tasks defined by the manufacturer of 

the headset to establish a classification of mental states of 

engagement, workload and distraction (mean duration ≃ 20 

minutes), and (4) the participant is finally invited to use our 

cognitive environment, which includes different sets of 

cognitive tasks as described in the previous section (mean 

duration ≃ 80 minutes). Fig. 3 illustrates the whole process. 

 
Fig. 3. Experimental process. 

 

B. Data Recording and Preprocessing 

The electroencephalogram (EEG) was recorded from 9 

sensors (F3, Fz, F4, C3,Cz, C4, P3, Poz and P4) integrated 

into a cap covering the upper half of the head, with 2 reference 

signals attached to the mastoid bones (behind the ears). The 

location of each sensor was determined by the international 

10-20 system. This cap was equipped with a small USB 

dongle which received the wireless transmissions connected 

to a PC computer. Each second, 256 EEG signals were 

transmitted and converted to power spectral densities (Alpha, 

Beta, Theta and Sigma) and processed by the B-Alert software 

which is the proprietary of Advanced Brain Monitoring 

Company [18]. This software allows us to obtain a real time 

classification of certain mental states (Sleep Onset, 

Distraction, Low Engagement, High Engagement and High 

Workload). In this study, we selected the mental states of 

High Engagement, Workload and Distraction. Galvanic Skin 

Conductance (GSR) also known as ElectroDermal Activity 

(EDA) was measured using Affectiva Q-sensor bracelet 2.0 at 

a sampling rate of 32 Hz. This bracelet allows us to measure 

three features: skin conductance (GSR or EDA), skin 

temperature and an accelerometer that outputs 

three-dimensional displacements of the sensors. From 20 

participants, only 18 data subjects were considered in the data 

analysis for EEG and only 16 data for GSR due to missing 

recordings. The EEG mental states and the GSR measures 

were manually synchronized with all the tasks of the cognitive 

environment based on the date and time extracted from log 

files. We calculated for each category and for each level of a 

task the EEG mental states values and the GSR values in order 

to analyze their variation depending on category and 

difficulty level of a task. All the data was preprocessed and 

labeled according to SPSS rules. 

C. Our Approach 

In this section, we show a diagram that summarizes our 

proposed approach (Fig. 4). We recall that we are mainly 

based on the study of the results from the experiment 

described above and the collected data from two sensors 

(EEG and GSR). In the first step of this approach, we gathered 

data from different students based on the sensors and 

students’ interaction with our cognitive tasks (step 2). In the 

third step, we analyzed and studied the obtained results. 

Finally (step 4), we predicted learners’ performances (scores) 

using mainly multiple regression algorithms. 

International Journal of Information and Education Technology, Vol. 6, No. 8, August 2016

586



  

 
Fig. 4. Our proposed approach. 

 

V. EXPERIMENTAL RESULTS 

In this part, we analyze the variation of EEG and GSR 

metrics among all the participants. We also take into 

consideration the type and/or the category of a task in our 

study. It is mainly divided into two parts: 1) the study of EEG 

and GSR evolution during the cognitive tasks and 2) the 

possibility of predicting the learner’s score using linear 

models such as regression. 

A. EEG and GSR Metrics Evolution in Learning 

In the first step, we studied the distribution of the 

electrophysiological metrics (EEG indices of engagement, 

workload and distraction) between the learners during all the 

cognitive tasks. 

For EEG indices (distraction, engagement and workload) 

and for GSR metrics, we calculated the average of these 

metrics for each participant during the completion of our 

cognitive environment and the average for all the participants 

for each metric. We consider the latter as a threshold that we 

represent with a red solid line in the following figures. 
 

 
Fig. 5. Distraction distribution among learner’s. 

 

For the distraction (D) indice (Fig. 5), we notice that almost 

all the learners have an indice below the threshold, except the 

first one that has the highest value of distraction (may be due 

to a feeling of tiredness during the experiment). That means 

that almost all the learners are very awake and not sleepy 

during these cognitive tasks. It also shows that our tasks are 

interesting for the participants. 

However, for the engagement (E) and workload (W) 

indices (see Fig. 6 and Fig. 7), we notice that theses indices 

vary and fluctuate according to the individual differences and 

situations. Therefore, some people have a high level of 

engagement or workload and others have low ones. So, we 

can say that this variation may depend on each category or 

type of a task but not on the overall of the cognitive 

environment. 
 

 
Fig. 6. Engagement distribution among learner’s. 

 

 
Fig. 7. Workload distribution among learner’s. 

 

To verify this hypothesis, we calculate for each task 

category and each task type the variation of these EEG indices 

(mean and standard deviation). These results are presented in 

the following table (Table I). 

From this table, we can see clearly that the workload indice 

(W) has almost the highest value comparing to the other EEG 

metrics (E and D). This means that our cognitive environment 

requires a minimum effort and level of mental workload to 

complete the tasks. Moreover, according to a comparison by 

the category of a task, we can see that reasoning category has 

the highest values of workload (0.64) and engagement (0.62) 

and a lower value of a standard deviation, which indicates that 

the data points tend to be very close to the mean. Conversely, 

the distraction’s values are very small (near to 0) which results 

in a highest standard deviation for all the categories and types 

of tasks. Alike, we can notice that for the type of a task, the 

workload value has always the highest value except for the 

Arithmetic Addition (AA) and Rotation (RT) tasks. Moreover, 

we can see that Intuitive Reasoning (IR) task is the most 

difficult one because it has the highest value of workload 

among all types of tasks. These results lead us to accomplish 

two one way ANOVA tests to study if the Engagement and/or 

the Workload depend on a category and/or type of cognitive 

tasks. By realizing a one way ANOVA between the 

engagement EEG metric and the workload and the three 

categories of tasks (independent variables), we reported a 

F(2,401)=10.89; p=0.00**. Three popular post hoc tests were 

also taking into consideration (Least Significant Level (LSD), 

Tukey and Scheffe) for multiple mean comparisons and 

corrections. For all these three post hoc tests and for the 
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engagement metric, we obtained a very significant result by 

comparing all the categories twice. Whereas for the workload 

EEG metric, it also depends on a category of a task 

(F(2,401)=3.9; p=0,02*) but the results are not significant 

when we consider all the three post hoc tests previously 

mentioned. We performed likewise another ANOVA test 

which studied the EEG metrics and a type of a task. We find 

that the engagement depends on a type of a task 

(F(6,397)=4.95; p=0.00**) and the same result for the 

workload (F(6,397)=2.86; p=0.01*). However, results for 

post hoc tests are not significant in the two cases. 

 

TABLE I: DISTRIBUTION OF EEG METRICS ACCORDING TO CATEGORY AND TYPE OF A TASK 

Category              Mean (SD) Task Type          Mean (SD) 

D E W D E W 

Memory 0.08 (0.17) 0.52 (0.19) 0.65 (0.11) FDS 0.1 (0.16) 0.5 (0.2) 0.61 (0.16) 

BDS 0.09 (0.18) 0.51 (0.21) 0.67 (0.09) 

Concentration 0.08 (0.14) 0.56 (0.18) 0.58 (0.12) FM 0.09 (0.17) 0.54 (0.02) 0.6 (0.13) 

RT 0.06 (0.07) 0.6  (0.1) 0.6 (0.1) 

Reasoning 0.06 (0.13) 0.62 (0.19) 0.64 (0.09) AA 0.03 (0.04) 0.62 (0.16) 0.62 (0.12) 

OO 0.05 (0.07) 0.62 (0.1) 0.63 (0.06) 

IR 0.08  (0.18) 0.58 (0.23) 0.65 (0.09) 

 

After studying the behavior of EEG metrics, we analyze in 

a next step the GSR metric (Galvanic Skin Response) which 

gives an indication of emotions valence or a level of stress [6], 

[7]. The figure below illustrates the variation of this metric 

accounting the average values for each participant and a 

threshold computed by considering the average of all the data 

as we mentioned in the last section. 
 

 
Fig. 8. GSR distribution among participants. 

 

From this figure, we realize that almost the values are under 

the threshold which is also very low comparing to other 

studies (1.22). We can see that we have only five values that 

we can take into consideration for more statistical analysis, 

which is a small number of data and we can’t apply a 

technique to change these values according to the data 

distribution (such as Expectation Maximization technique or 

Multiple Imputation) due to this small sample of data. This 

result could be explained by a technical problem occurring 

during recording the learners’ GSR or the individual 

difference reactions to this metric [11], [19]. For this reason, 

we don’t focus too much to study the relationship between this 

metric and the different tasks of our cognitive environment. 

We think rather that we don’t have a reliable dataset for this 

purpose. 

B. Multiple Regression for Predicting Learners’ Scores 

After studying the electrophysiological metrics and their 

influence depending on a category and a type of task, we focus 

next to find a reliable function that connects the 

electrophysiological variables (EEG indices of workload (W), 

engagement (E) and distraction (D)) and task information 

(task duration, task level: ranging from 1 to 6 and task type) in 

order to predict learners’ score.  

For this purpose, we performed cross tables that studied the 

Pearson correlation between the score (the dependent variable) 

and the others variables (engagement, workload, the 

distraction, the type, the duration and the level of the task). 

Results from this tables show a very low correlation between 

the score and the distraction (R=0.036; p=0.233>5%). That 

means that there isn’t any correlation between these two 

variables and the distraction logically could be eliminated if 

we want to predict the score using fewer features. We 

obtained significant results for the EEG metrics and the task 

information: type of a task (TT), level of difficulty (DL) and 

duration of completing the task (D). Table II reports in details 

the values obtained for the different metrics using mainly 

Pearson’s Correlation. 

 

   

  

   

 

 

 

 

 

 

 

where ** presents a significantly level at 1%, and * at 5%. 

This table gives us a brief idea which variables are 

independent from the score and could be used further to fit a 

linear regression curve according to these values. 

We performed next a linear regression using multiple 

variables and using a stepwise method to establish the best 

model that fit our data. Using EEG indices and task 

information, we obtained the best model with a coefficient of 

Dubin-Watson value equal to 1.34 which is in the interval of 

[0, 4] and near to 2. Our model is constructed in descending 

order by the difficulty level of a task, the task type, the 

duration of the task and the workload EEG metric (see Table 

III). 

From this table, we can deduce the equation of a predicted 

score: 
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TABLE II: RESULTS OF PEARSON CORRELATIONS

Pearson Correlation Score

Results R p

Distraction (D) 0.036 0.233

Engagement (E) -0.118 0.009**

Workload (W) -0.122 0.007**

Task Type (TT) -0.13 0.004**

Difficulty Level (DL) -0.382 0.000**

Duration (D) -0.125 0.006**

correlation R equal to 0.501 (medium correlation) and a 
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TABLE III: MULTIPLE REGRESSION MODEL TO PREDICT LEARNERS’ SCORES 

Model 

Components 

Coefficients 

B Beta t p 

Constant 125.89  17.02 0.000** 

Difficulty 

Level (DL) 

-8.667 -0.484 -10.4 0.000** 

Task Type 

(TT) 

-4.304 -0.293 -6.3 0.000** 

Duration (D) -0.002 -0,122 -2.81 0.005** 

Workload (W) -23.268 -0,099 -2.27 0.024* 

 

125.89 8.667 4.304 0.002 32.268score DL TT D W      

(1) 

This equation (1) indicates that all our variables have a 

negative sign indicating an inverse relationship between those 

independent variables and the dependent one (score). 

Finally, in order to study the role of task information, we 

conducted another linear regression using only the EEG 

metrics, more precisely the engagement and workload. By 

eliminating the task information, we noticed that correlation 

indices R decreased to more than three times (R=0.162). We 

noticed also that the p-value increases when constructing the 

model. However, using only this information, the score could 

be predicted as follows: 

95.4 26.32 15.75score W E                  (2) 

This second equation (2) confirms too that the score has a 

negative relationship with EEG metrics. 

 

VI. CONCLUSION 

In this paper, we conducted an empirical study of how to 

include EEG features depending on a category or a type of 

cognitive task. For GSR feature, we don’t have unfortunately 

correct values from all the participants and the reliable values 

are not enough to establish a conclusion of how it varies 

according to a type of cognitive task. We also noticed a very 

significant result between the engagement and the category of 

a task. This result is confirmed by applying three post hoc 

tests (LSD, Tukey and Scheffe). Moreover, we noticed a 

strong negative correlation between engagement, workload 

and task information (difficulty level, task type and duration). 

The latter leads us to build a linear regression model that fits 

our dataset, and we successfully obtained an inverse 

relationship with the score (the variable to predict). As a 

conclusion, we can moderately predict the score using a 

multiple regression model that is constructed in descending 

order of relevance by the difficulty level, the task type, the 

duration of a task and the EEG workload feature. 

Nevertheless, our work has some limitations. For instance, 

we can improve the prediction of learners’ scores by using 

more complex machine learning techniques (nonlinear 

models, decision trees, Adaboost, etc.). We also can integrate 

the best model in real time estimation and regulation of 

learning content in order to improve the low scores. We can 

also develop pedagogical strategies in order to deal with 

learner’s performances and the type of a cognitive task. 
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