

Abstract—Visualization tool has been proven useful in

enhancing novice programmer’s learning. Despite the large

number of studies performed on visualization tools, it appears

to be very few using it to assist students in understanding the

fundamental concept of hardware software interfacing

programming. Therefore, in this study, a program visualization

(PV) kit was developed with the main objective is as a practical

hands-on learning kit for novice in exploring and gaining basic

skills of hardware software interfacing in visual environment.

The ADDIE instructional design model was utilized in the

design process; which consists of five principal phases namely,

analysis, design, development, implementation and evaluation.

The development processes was grounded on Cognitive Load

Theory, Models of Human Memory and educational principles

to ensure the maximum effectiveness of learning. The PV kit

consist hardware visualization and software visualization. The

hardware visualization is an external device that can be

connected to the USB port, where the learners can visualize the

input and output result from the task stimulated by the

software. The software visualization contains main learning

activities that have been organized from simple to complex

tasks. It is expected that the PV kit could be benefited by the

students in developing the basic skills of hardware software

interfacing programming.

Index Terms—Hardware software interfacing, instructional,

programming, visualization.

I. INTRODUCTION

The emergence of computer technology in the era of

Internet and globalization has made programming essential to

be learned. Nowadays, programming skills required not only

in the field of Information Technology alone, but it is also

needed in many other fields such as Science, Mathematics

and Engineering. However, the subject is said to be difficult

and complex [1]-[3], and even it is categorized as one of the

Among the issues discussed concerning the problem faced

by students, particularly novices in learning programming is

difficulty in understanding the abstract concepts and

programming development environment and correlate it with

actual problems. Notably, novice knowledge more likely to

be context-specific and fragile, and they also frequently find

it difficult to apply it properly [5]. They know the syntax and

semantics of the specific programming statements, but they

don‟t know how to incorporate these features into the

program [6]. This factor is due to the limited surface and

superficial of knowledge, so they can‟t build mental models

Manuscript received November 12, 2014; revised March 4, 2015.
Siti Rosminah M. D. Derus and Ahmad Zamzuri Mohamad Ali are with

Faculty of Art, Computing and Creative Industry, Universiti Pendidikan

Sultan Idris, Tanjong Malim, 35900, Perak, Malaysia (e-mail:

zamzuri@fskik.upsi.edu.my).

perfectly in solving the problems involves programming

development process [7], [8]. Besides that, students are not

capable in visualizing the programming flow which appears

to be among the factors that attribute to difficulty in obtaining

programming skills [9], [10]. They face difficulty in

visualizing the processes in computer memory when the

program executed, and this will attribute to failure in

constructing a viable mental model of overall programming

concept.

To address the problem stated above, effective

instructional strategies with the aid of appropriate learning

tools, need to be provided to ensure optimum learning

outcomes. Program Visualization (PV) is a learning support

tool, which can help in strengthen the understanding of the

student in comprehend the process of programming [5],

[11]-[13]. This is moreover true, since humans have better

ability in processing visual information [14]. Thus, PV has

promising potential in assisting students to understand the

key element relating to the program code execution through a

graphical display in a more dynamic presentation.

II. RESEARCH BACKGROUND

Programming involves many dynamic concepts of mental

grasp, causing students‟ difficulty in understanding it through

the use of static media such as textbooks, projected

presentation, whiteboard and verbal explanation [15].

Therefore, Program Visualization (PV) provides a dynamic

environment that represent programming concepts for a

better understanding [16]. PV can be defined as an approach

or technique in the graphical displays that shows the changes

in the program code execution [17]. The main goal of PV is to

assist students in understanding the dynamic behavior of the

program by displaying aspects like values of variables,

evaluation of statements and changes in the program state in

general. In addition, PV could also explain visually the

hidden processes during the program run-time [18].

Generally, PV consists of two categories: dynamic PV and

static PV [19]. Dynamic PV visualizes the flow of

programming execution of each line of code including the

changes of the variables value. Static PV visualizes program

structures and relations between program objects.

There are many PV tools developed for learning

programming subject. JavaVis [20] is a PV tool developed to

visualize the execution of program code through the object

and sequence diagram. JIVE [21] has a characteristic of code

highlighting and visualizes the object structure and the

calling sequence of methods. BlueJ [22] is a static PV tool

has a class view showing relations between classes and an

object dock containing all initialized objects. Jeliot3 [23]

illustrates semi-automatic visualization of the data and

Development of Hardware-Interfacing Learning Kit for

Novice Learning Programming

Siti Rosminah M. D. Derus and Ahmad Zamzuri Mohamad Ali

International Journal of Information and Education Technology, Vol. 6, No. 8, August 2016

647DOI: 10.7763/IJIET.2016.V6.767

seven major challenges in computing education [4].

control flows. ViLLE [24] provides parallel view displaying

a program in two languages simultaneously (Java and C++),

and its built-in editor for interactive quizzes and tests

displayed as pop-up windows. Frances-A [25] have the

ability to represent the programming code between high-level

code and machine code, also capable of illustrate machine

state transition. 3De [26] represent multi abstract view of the

programming stages starting designing problem-solving,

developing code and validating logical flow.

To date, there is a deficiency PV developed to assist

students in understanding the fundamental concept of

hardware-software interfacing programming.

Hardware-software interfacing programming is the concept

where programs code are developed to interface with real

world devices [27]. The program code will communicate

with a hardware interface via the port to enable the external

device automatically to perform the task needed. A port is an

electronic hardware that is used as an interface to connect

with another electronic device for the purpose of information

exchange [28]. Most of the visualization tools for the purpose

of learning the fundamental concept of hardware-software

interfacing available in the market were merely

microcontroller technology oriented, which only visualize

the hardware execution.

III. RESEARCH OBJECTIVES

Most of the visualization tool in the market unable to fulfill

the need of hardware-software interfacing programming

learning, specifically for novices. Therefore, the objective of

this study is to develop a program visualization kit to assist

students, especially novice in understanding the basic

concepts of hardware-software interfacing programming.

IV. RESEARCH METHODOLOGY

PV design and development process is based on the

principles of instructional design framework. The selection

of the appropriate model for instructional design is very

important in providing a framework that can help a developer

to implement tasks in design and develop learning support

tools in a more systematic manner. In this study, ADDIE

development model was chosen because it is a commonly

used model in the development of computer

technology-based learning media [29], [30]. The ADDIE

model includes five phases: 1) analysis, 2) design, 3)

development, 4) implementation and v) evaluation.

A. Analysis Phase

Analysis phase is the first stage in the process of

development of PV where it consists of three main activities:

1) need assessment, 2) setting the goal, and 3) identify the

students‟ background.

Reference [31] defines, “needs is the gap between what is

expected and the existing conditions”. Consequently, based

on interviews with two polytechnic lecturers who teach

Hardware Interfacing course, found that they face difficulty

in teaching interfacing programming topics, as there is no

suitable learning aids to assist students in understanding the

concepts of how to manipulate the input-output data process

between external device and computer systems. In addition,

the students also failed to obtain a clear picture of the

execution of the program code through the slide presentation

only. Therefore, it is crucial to develop a visualization tool

that can facilitate them in understanding the fundamental

concept of hardware interfacing.

Having identified the problems, the researcher set a goal of

development the visualization kit is to be used as a practical

hands-on learning kit to assist students to explore and master

the hardware-software interfacing fundamental concept in

visual environment. However, to ensure the goal can be

achieved, it is vital to gather the information about the

students‟ background and their prior knowledge. Therefore,

the minimum prior knowledge required when using PV kit is

understand the basic principles of digital logic and the ability

to change the number system. This is because interfacing

programming often involves a number system. The computer

consists of the components of the electricity generated by

electric power only works in two conditions, whether there is

a current flow (on) or no current flow (off) [32]. These

conditions represented by the numbers „1‟ for current flow

and „0‟ for no current flow, and this number system is called

binary number system. However, humans have difficulties if

the binary number involving the use of large amounts of data.

Thus, the hexadecimal number system is used to overcome

this problem, which consists of 16 unique symbols: the

numbers 0 to 9 and the letters A to F. In addition to affecting

the number system, the other matter had to be understood as

the concept of the hardware-software interface is how the two

different parts can interact to perform the required functions

through the communication port. To do this, we need to send

the electrical signal by sending a byte of information to the

port. A byte is a unit of data that is eight binary digits long,

and most computers use to represent a character such a letter,

number or typographic symbol [27].

B. Design Phase

The design phase is the process of transferring information

from the analysis phase to a physical sketch that will be used

during the development process. Fig. 1 shows the design

process of the visualization kit.

Fig. 1. Design process of PV.

PV design process taking into account the approach of

Cognitive Load Theory [33] and Models of Human Memory

[34]. Cognitive Load Theory and Models of Human Memory

are closely linked to raising the level of cognitive involving

working memory and long term memory. Due to the limited

capacity of working memory which is 15 seconds to 30

seconds [35], the visual information presented should be

International Journal of Information and Education Technology, Vol. 6, No. 8, August 2016

648

integrated with the scheme in the preexisting long-term

memory to complete the development of mental models in

working memory and reduce the cognitive load.

In order to expedite formation of a mental model that

visual information transmitted can provide meaningful

information, PV architecture is designed in two forms which

consist of the hardware visualization and the software

visualization. Hardware visualization is an external circuit

connected to the USB port on the computer system, in which

students will be able to view the real-world application of

input and output data manipulation. In addition, these tools

can be used to configure, control, and connect as external

devices with Visual software environment to enable students

gain real experience to visualize the effect of program code

have been created. Whereas the software visualization is a

graphical interface that allows students to interact visually on

the monitor screen and contains main learning activities.

Hence, the content of learning activities will be organized

from simple to complex tasks to facilitate students to easily

store the information received into long-term memory for

schema formation and thus reduce cognitive load [36]. In

addition, the principles in terms of the display layout, use of

color and interactivity issues are also taken into account as

proposed by [37] and also [38].

C. Development Phase

The third phase is the development of which involves the

process of „translating‟ activities determined in the analysis

and design phase. As notified through the design phase, PV

kit will be developed in two forms, namely hardware

visualization and software visualization.

The hardware visualization development begins with

identifying the interface between the external devices to the

computer system. For this study, the USB (Universal Serial

Bus) port is used as an interface because it is the most

common type of computer port used in today‟s computers.

The USB port send data in series, which is mean sending one

bit of data at a time but its data transfer speed is high, either

1.5 Megabits per second or 12 Megabits per second over

four-wire cable [28]. However, we need a parallel

communication as an output to view the 8 bit LED to show

effect of the manipulation output data when program code are

executed (Fig. 2). Parallel communication is a method of

conveying multiple binary digits (bits) simultaneously.

Therefore, the Universal Asynchronous

Receiver/Transmitter (UART) is used to make sure the

output will be manipulated simultaneously. UART is a device

to convert the data series to parallel form and vice versa.

Fig. 2. Hardware kit.

For operational control of the hardware, micro controller is

used. Micro controller is a small computer on a single

integrated circuit containing all the major components such

as CPU, RAM, ROM, input/output port and serial

communication interface in one chip.

The software-development process uses Visual software

for the development of the graphical interface that contains a

variety of learning activities. Taking into consideration the

limitations of working memory, this graphics interface is

divided into several segments and organized into five

separate tabs display (Fig. 3) : 1) Introduction tab, 2) Decimal

tab, 3) Hexadecimal tab, 4) Practice tab and v) Interfaces tab.

Introduction tab brief a description of the basic concepts of

hardware and software interfacing. Decimal tab contains

activities to configure the input and output data using a

decimal numbering system, while the hexadecimal tab

contains activities to configure the input and output data

using a hexadecimal numbering system.

Fig. 3. Graphical interface of PV.

Practice tab contains practical activities to understand the

concept of interfacing between the external devices with

programming code provided. This section includes a worked

example of program code where students can visually look on

the changes in every line of program executed. According to

[39] students often looking for worked example rather than

text explanation as the primary and most commonly source in

the learning materials. Past research has shown that examples

play an important role in learning [40], [41] and are vital to

the acquisition of initial cognitive skills [42], [43]. Matrix

table shows the contents of data stored in specific address

locations and the changes of variable value to help students

understand what happens to this data during the program

code execution. Therefore, it guide to student familiarize the

role of variable position in the computer memory when

program code executed [44]. Furthermore, with the

combination of output view and matrix table, the redundancy

effect has been discovered as proposed by cognitive load

theory. The redundancy effect occurs when the information

are presented in multiple sources without reference to each

other [39].

The interface tab briefly explains how to use the PV kit in

VB environment. Therefore, the student will have better

experience in manipulating input-output data process via VB

environment and use the PV kit as the external device and

Tab

International Journal of Information and Education Technology, Vol. 6, No. 8, August 2016

649

http://en.wikipedia.org/wiki/Integrated_circuit

interfaced it.

D. Implementation and Evaluation Phase

Usability study at one of the polytechnic in Malaysia was

conducted once the PV kit has been developed completely. A

total of 25 students enrolled Diploma in Computer

Technology involved in the study. These students have been

selected based on their basic knowledge of VB programming,

hardware and software interfaces and electronic engineering

fundamentals. The aim was to test the effectiveness of the VP

kit and identifying the problems that were not identified

throughout the design and development phases. In addition, it

aims to get students‟ views on the appropriateness of the VP

kits to help them understand the basic concepts of

hardware-software interfacing programming. Overall, the

majority of students indicate they strongly agree and are

satisfied with the VP kit developed and agree it is appropriate

for the use in learning software programming and hardware

interfacing.

V. CONCLUSION

It is undeniable programming is a very challenging subject

to learn because it involves understanding the abstract

concept. Combination of effective learning strategies and the

use of appropriate learning materials have the potential to

address particular problems in learning programming.

Therefore, this study intended to design and develop a

learning kit based on the program visualization concept to

facilitate students learn programming especially in

understanding the basic concepts of hardware-software

interfacing. The design and development processes were

grounded on ADDIE instructional design model. In the

process of development, methods of presenting learning

information are vital to ensure for better learning

understanding and performance. Therefore, Cognitive Load

Theory, Models of Human Memory and educational

principles in terms of layout, use of color and interactivity

issues also were taken into consideration, to ensure the

maximum effectiveness of learning. It is expected that the

development of PV kits can be utilized by students to acquire

programming skills, especially the concept of

hardware-software interfacing.

REFERENCES

[1] T. Jenkins, “On the difficulty of learning to program,” in Proc. the 3rd

Annual Conference of the LTSN Centre for Information and Computer

Sciences, 2002, vol. 4, pp. 53-58.

[2] I. T. C. Mow, “Issues and difficulties in teaching novice computer
programming,” in Innovative Techniques Technology, e-Learning,

e-Assessment and Education, Magued Iskander, ed., Springer, 2008, pp.

199-204.
[3] M. Yousoof, M. Sapiyan, and K. Kamaluddin, “Reducing cognitive

load in learning computer programming,” in Proc. the World Aademy

of Sciene, Engineering and Technology, 2005, vol. 1, no. 12, pp.
469-472.

[4] A. McGetrick, R. Borle, R. Ibbett, J. Llyod, G. Lovegrove, and K.

Mander, “Grand challenges in computing: Education - A summary,”
The Computer Journal, vol. 48, no. 1, pp. 42-48, 2005.

[5] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the

difficulties of novice programmers,” ACM SIGCSE Bulletin, vol. 37,
no. 3, pp. 14, 2005.

[6] L. E. Winslow, “Programming pedagogy - A psychological overview,”
ACM SIGCSE Bulletin, vol. 28, no. 3, pp. 17-22, 1996.

[7] M. Reginamary, S. H. Hew, and A. C. Koo, “Multimedia learning

object to build cognitive understanding in learning introductory

programming,” in Proc. the 7th International Conference on Advances

in Mobile Computing and Multimedia -MoMM ‘09, 2009, pp. 396-400.

[8] A. Robins, J. Rountree, and N. Rountree, “Learning and teaching
programming: A review and discussion,” Computer Science Education,

vol. 13, no. 2, pp. 137-172, 2003.

[9] M. A. Rizal, M. Nurliana, and B. Yahya, “The effect of using a
learning model based on problem solving method on students with

different cognitive style and logic ability,” presented at 2nd

International Malaysian Educational Technology Convention, 2007.
[10] I. Milne and I. Rowe, “Difficulties in learning and teaching

trogramming: Views of students and tutors,” Education and

Information Technologies, vol. 7, no. 1, pp. 55-66, 2002.
[11] M. D. S. Rosminah and M. A. A. Zamzuri, “Integration of visualizaiton

techniques and active learning strategy in learning computer

programming: A proposed framework,” International Journal on New
Trends in Education and Their Implications, vol. 5, no. 1, pp. 93-103,

2014.

[12] T. Linden and R. Lederman, “Creating visualizations from multimedia
building blocks: A simple approach to teaching programming

concepts,” in Proc. Information Systems Educators Conference,

Wilmington North Carolina, 2011, pp. 1-10.
[13] J. Helminen and L. Malmi, “Jype – A program visualization and

programming exercise tool for python categories and subject

descriptors,” in Proc. the 5th International Symposium on Software
Visualization, 2010, pp. 153–162.

[14] A. Pears, S. Seidman, L. Malmi et al., “A survey of literature on the

teaching of introductory programming,” in Proc. ITiCSE-WGR ‘07
Working Group Reports on ITiCSE on Innovation and Technology in

Computer Science Education, 2007, pp. 204-223.

[15] E. Fouh, M. Akbar, and C. A. Shaffer, “The role of visualization in
computer science education,” Computers in the Schools, vol. 29, no.

1-2, pp. 95-117, 2012.

[16] A. Gomes and A. J. Mendes, “An environment to improve
programming education,” in Proc. the 2007 International Conference

on Computer Systems and Technologies - CompSysTech ‘07, New

York, USA: ACM Press, 2007, p. 1.
[17] D. Gračanin, K. Matković, and M. Eltoweissy, “Software visualization,”

Innovations in Systems and Software Engineering, vol. 1, no. 2, pp.

221-230, 2005.
[18] R. Bednarik, A. Moreno, N. Myller, and E. Sutinen, “Smart program

visualization technologies: Planning a next step,” in Proc. Fifth IEEE
International Conference on Advanced Learning Technologies

(ICALT’05), 2005, pp. 717-721.

[19] T. Rajala, M. -J. Laaksi, E. Kaila, and T. Salakoski, “Effectiveness of
program visualization: A case study with the ViLLE tool,” Journal of

Information Technology Education: Innovatins in Practice, vol. 7, pp.

15-32, 2008.
[20] R. Oechsle and T. Schmitt, “Javavis: Automatic program visualization

with object and sequence diagrams using the java debug interface (jdi),”

Lecture Notes in Software Visualization, vol. 2269, pp. 176-190, 2002.
[21] P. Gestwicki and B. Jayaraman, “Interactive visualization of java

programs,” in Proc. IEEE Symposia on Human Centric Computing

Languages and Environments, 2002, pp. 226-235.
[22] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The BlueJ

system and its pedagogy,” Journal of Computer Science Education, vol.

13, no. 4, pp. 1-12, 2003.
[23] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing

programs with Jeliot 3,” in Proc. the Working Conference on Advanced

Visual Interfaces - AVI ‘04, 2004, p. 373.

[26] Affandy, N. Suryana et al., “3de - Synergetic program visualization: A

visual learning-aid tool for novice students,” in Proc. 2011

International Conference on e-Education, Entertainment and
e-Management (ICEEE), 2011, pp. 133-137.

[27] J. Katupitiya and K. Bentley, Interfacing with C++, Berlin, Heidelberg:

Springer, 2006.
[28] J. Axelson, Parallel Port Complete: Programming, Interfacing &

Using the PC’s Parallel Printer Port, Lakeview Research, 2000.

[29] H. Jamaluddin, A. Baharuddin, and T. Zaidatun, Pembangunan
Perisian Multimedia: Satu Pendekatan Sistematik (Multimedia

Development: A Systematic Approach), Kuala Lumpur: Venton

Publishing, 2001, pp. 29-31.
[30] S. Rio Sumarni, “Design of instructional materials for teaching and

learning purpses: Theory into practice,” Malaysian Education Deans’

Council Journal, vol. 1, pp. 97-110, 2007.

International Journal of Information and Education Technology, Vol. 6, No. 8, August 2016

650

[24] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski. (2008). VILLE - A

language-independent program visualization tool. [Online]. Available:

http://verkkoopetus.cs.utu.fi/koli/2008/ville/ViLLE_system.pdf
[25] T. Sondag, K. L. Pokorny, and H. Rajan, “FRANCES-A: A tool for

architecture level program visualization,” J. Comput. Small Coll., pp.

283-292, 2011.

[32] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann, 2005.

[33] J. Sweller, “Cognitive load during problem solving: Effects on

learning,” Cognitive Science, vol. 12, no. 2, pp. 257-285, 1998.
[34] R. C. Atkinson and R. M. Shiffrin, “The control of short term memory,”

Scientific American, vol. 225, issue 2, pp. 82-90, 1971.

[35] E. B. Goldstein, Cognitive Psychology: Connecting Mind, Research,
and Everyday Experience, 3rd Ed., Belmont, CA: Wadsworth Cengage

Learning, 2011.

[36] J. J. G. V. Merriënboer and P. Ayres, “Research on cognitive load
theory and its design implications for e-learning,” Educational

Technology Research and Development, vol. 53, no. 3, pp. 5-13, 2005.

[37] S. Khuri, “A user-centred approach for designing algorithm
visualizations,” Informatik/Informatique, Special Issue on

Visualization of Software, vol. 2, no. 2, pp. 12-16, 2001.

[38] T. L. Naps, G. Rößling, Almstrum et al., “Exploring the role of
visualization and engagement in computer science education,” in Proc.

ITiCSE-WGR ‘02 Working group reports from ITiCSE on Innovation

and Technology in Computer Science Education, 2002, pp. 131-152.
[39] J. Sweller, J. J. G. V. Merrienboer, and F. G. W. C. Paas, “Cognitive

architecture and instructional design,” Education Psychology Review,

vol. 10, no. 3, pp. 251-296, 1998.
[40] M. Caspersen and J. Bennedsen, “Instructional design of a

programming course: A learning theoretic approach,” in Proc. The

Third International Workshop on Computing Education Research,
2007, pp. 111-122.

[41] M. T. H. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser,

“How students study and use examples in learning to solve problems,”
Cognitive Science, vol. 13, pp. 145-182, 1989.

[42] S. S. A. Rahman and B. D. Boulay, “Schema aquisition: Implications

for the instructional design of examples,” in Proc. Conference on
Artificial Intelligence in Education, 2009, pp. 757-758.

[43] R. K. Atkinson, S. J. Derry, A. Renkl, and D. Wortham, “Learning

from examples: Instructional principles from the worked examples

research,” Review of Educational Research, vol. 70, pp. 181-214,
2000.

[44] M. D. S. Rosminah and M. A. A. Zamzuri, “Difficulties in learning

programming: Views of students,” in Proc. 1st International
Conference on Current Issues in Education, Yogyakarta: Yogyakarta

State University, 2012, pp. 74-78.

Siti Rosminah M. D. Derus is currently a PhD

student in the Faculty of Art, Computing and

Creative Industry, Universiti Pendidikan Sultan Idris,
Malaysia. She has a bachelor degree in electrical

engineering (computer technology) from Universiti

Teknologi Malaysia, and a master in education from
Universiti Teknologi Malaysia. Her research

interests are instructional technology and

programming visualization.

Ahmad Zamzuri Mohamad Ali is an associate

professor of multimedia in the Faculty of Art,
Computing and Creative Industry, Universiti

endidikan Sultan Idris, Malaysia. He has a bachelor

degree in electrical engineering from Universiti
Teknologi Malaysia, a master in education from

Universiti Teknologi Malaysia and a PhD in

multimedia design from Universiti Sains Malaysia.
He has taught both face-to-face and online classes in

higher education for over 15 years. His research and publication interests are

multimedia design, instructional technology, ICT in education and open
source in education.

International Journal of Information and Education Technology, Vol. 6, No. 8, August 2016

651

[31] G. R. Morrison, S. M. Ross, and J. E. Kemp, Designing Effective

Instruction, 4th ed., John Wiley & Sons, Inc, 2004, p. 32.

