

Abstract—The training method, one teacher teaches one

student to solve his programming mistakes by using one
computer, costs a little time. In this study, the low-cost and
effective modeling, which the teacher integrates the common
mistakes by students into the programming simulator, is
presented. In programming course, the basic and common
mistakes made by the students are first listed and then the
teacher takes these mistakes as the course objective of mastery
learning. For each course objective, the corresponding mistakes
are randomly generated by the programming simulator. Hence,
the students can generate the wrong source codes and then
finish the exercises to fix all mistakes by themselves. The wrong
source codes are quite different when the students perform the
programming simulator. Therefore, the students need to realize
the programming principle instead of memorize the answers.
Experimental results show that the students indeed master to
fix these mistakes which are corresponding to the objectives.

Index Terms—Programming simulator, mastery learning,
randomly generate, common mistakes.

I. INTRODUCTION
Programming skills are getting more and more important

today. Many researches focus on how to improve the
students’ performance in programming and industrial skills
[1]-[5]. The famous teacher provides the “master learning”
concept to the teacher to define the content and skills, which
the teachers wanted students to learn. When students learn
the content of one unit and the following unit goes later [6].
Bloom presented the concept of combination of the mastery
learning with other useful method may to help students to
learn better [7]. The study guided the teachers to think how to
search the good methods to train the students. Information of
the web site is the mastery learning approaches [8]. The
important paragraph illustrates that mastery programs are
effective to the students [9]. The authors provided the graphic
user interface-based system to select test items [10].

The contributions of this study are as follows. First, the
implementation of the programming simulator, which
considered the objectives and the corresponding common
mistakes, is presented to use in the programming course, such
as data structure. It means that the programming simulator
can be adjusted when the teachers modify the course
objectives according to the students’ demands. Second, the
programming skills of students are enhanced because the
students can try to fix the different wrong source codes,

Manuscript received October 16, 2015; revised December 23, 2015.
Hsin-Hsiung Huang, Juing-Huei Su, and Chyi-Shyong Lee are with the

Lunghwa University of Science and Technology, Taoyuan, 33306, Taiwan
(e-mail: pp022@mail.lhu.edu.tw).

which are randomly generated from the programming
simulator. For each exercise with wrong codes, students must
finish 100% mistakes until source code without mistakes can
pass the complier. Students can be confident to programming
skills after several practices.

The organization of this study is as follows. Section II
describes the motivation to involve the programming
simulator for mastery learning. Section III discussed mastery
learning method, which includes the course planning, the
programming simulator, and mastery learning. Section IV
illustrates results by utilizing the programming simulator into
the course. Finally, some conclusions are made in Section V.

II. MOTIVATION
The students of University of Science and Technology are

usually lack of motivation to actively learn the programming
skills. Some students cannot buy the expressive training tools
kits to enhance the programming skills. How can we develop
the programming simulator with low-cost and easy-to-use?

A. Integrate the Programming Simulator into Data
Structure
Mastery learning, which focuses on certain topics to train

students, is useful to the programming-related courses. The
programming skills, which should be developed for al long
time with many practices, are very important and basic to the
students of the electronic engineering departments. Therefore,
the course designer plans to integrate the mastery learning
into the programming-related courses, such as data structure.
For the exercises in data structure, some students cannot
finish the source code because there are some mistakes. The
teacher should spend a little time to help all students to finish
their exercises. Students do not learn very well because they
do not practice the source codes many times. By the
observation, the teacher first finds the common mistakes,
which many students may make. Then the programming
simulator, which integrates these mistakes, is developed by
the teacher. During the course, the teachers observe students’
outcomes and determine practice times to the programming
simulator. Summary, this programming simulator is low-cost
but effective because the simulator is designed by the
teachers according the programming mistakes in this course.

III. METHOD
In this section, course planning which the teacher observes

the common mistakes from the students, the learning sheet
which contains a little of operations of the programming
simulator by students in physical classroom, and mastery
learning to help the students, are as follows.

Low-Cost and Effective Student-Orientation Mastery
Learning Simulator for Programming Course

Hsin-Hsiung Huang, Juing-Huei Su, and Chyi-Shyong Lee

International Journal of Information and Education Technology, Vol. 7, No. 3, March 2017

179doi: 10.18178/ijiet.2017.7.3.862

A. Course Planning
Originally, the teacher first finds the learning objectives after
observing the students. Then the teacher implements the
programming simulator to train students. In the physical
course, students are merged into several groups. The students
generate the exercises with some mistakes and then the
students try to fix these mistakes. After several testing times,
students integrate these data into the recording file and
upload them to the school server.

(a) course without master learning (b) course with master learning

Fig. 1. Illustration of the programming simulator for mastery learning.

TABLE I: OBJECTIVES OF THE PROGRAMMING SIMULATOR

 Objectives to mastery learning

1 Know the operation of mastery learning.

2 Learn the use of symbols, such as double quotes, comma, and
semicolon, in the source codes.

3 Apply the use of sub-routine, for loops and variable definition.

B. Learning Sheet for Mastery Learning
B.S. Bloom [1] mentions that the individual differences in

learners should be considered in the physical course. In this
programming course, the practice time (defined as t) is set to
be 3. It means that the three (t=3) practice times are enough to
learn the course objective. Hence, the learning sheet used in
the exercise is shown in Fig. 2(a). In the first exercise,
students should copy the wrong code in the Exercise 1-1.
After passing the complier [11], students should copy the
right codes to Exercise 1-2. Besides, the successful screen
must be also listed the Exercise 1-3. The similar operations
are used from Exercise 2-1 to Exercise 3-3. Therefore, by
using the programming simulator containing the course
objectives, the students in each group can be mastery learning
for the objectives in Table I after fixing the all mistakes (like

Table II and Table III).

TABLE II: LIST OF THE MISTAKES GENERATING TO THE WRONG CODE FOR
EACH OBJECTIVE

 Description of mistakes Wrong examples

1 Mistakes of sub-routine, for
loops and variable definition.

ffor(innt i=200; i<+1000;
i=i+=100)

2 Mistake of double quotes. printf(\n\n);

3 Mistake of semicolon. total = total -now.

4 Mistakes of semicolon, colon,
and comma.

else if (computer = you);

else if (computer = you):

else if (computer = you).

5 Other errors. scanf(%f,@ans)

TABLE III: SUGGESTED ANSWERS TO THE WRONG CODE

 Wrong examples Suggested answers

1 ffor(innt i=200; i<+1000;
i=i+=100)

for(int i=200; i<+1000; i=i+100)

2 printf(\n\n); printf(“\n\n”);

3 total = total -now. total = total –now;

4 else if (computer = you);

else if (computer !- you):

else if (computer ^=you).

else if (computer == you)

else if (computer == you)

else if (computer == you)

5 scanf(%f,@ans) scanf(“%d”,&ans)

(a) original learning sheet assigned to students

(b) more descriptions for learning sheet

Fig. 2. Learning sheet for mastery learning.

International Journal of Information and Education Technology, Vol. 7, No. 3, March 2017

180

Practically, the objectives, which teachers want to train the
students, are first defined. In Table I, three objectives are
found to train the students in programming skills. In Table II,
the mistakes, which are corresponding to the objectives, are
briefly shown. The wrong examples are listed in the right
column. In Table III, the suggested answers are shown and
help students to finish the exercises (i.e. pass the complier)
[11]. Of course, the other answers, which can pass the
complier, are also allowed. For example of the mistake
which is labeled 2, the suggested answer is printf(“\n\n”);.
The other answers, such as printf(“\n”); or printf(“\n\n\n”);
are also right answers. The standard is that students could
pass the complier because students are asked to capture the
successful message and paste them in the learning sheet
which is shown in Fig. 2.

International Journal of Information and Education Technology, Vol. 7, No. 3, March 2017

181

Fig. 2(b) shows the more descriptions for learning sheet.
According to the above discussion, the practice time is set to
be three times. In each practice time, the tasks are to finish
three exercises. For example, the first time to practice (t=1) is
to finish Exercises 1-1, 1-2 and 1-3. Each practice contains
four steps, including 1) generate the wrong code by using the
programming simulator; 2) paste the wrong code on the free
complier Dev C++[11]; 3) fix all bugs which are randomly
generated in step (1) and the students can run the codes after
fixing these bugs; and (4) capture the successful screen when
the programming code performs without any bugs.
Moreover, the four dotted lines, which connect the operation
steps and the corresponding exercises, are used to show the
relationship between the students’ operations and the
learning sheet. For example, the dotted line, which is marked
(a), denotes the connection from step 1 to Exercise 3-1.
Similarly, the dotted line, which is marked (b), shows the
connection from step 2 to Exercise 3-1. Hence, the students
finish Exercise 3-1 after making the steps 1 and 2. Exercises
3-2 and 3-3 are finished after the students making the steps 3
and 4, respectively.

According to above descriptions, the learning sheet is
designed to guide the students how to make several practices,
see Fig. 2. In fact, the format of the learning sheet can be
adjusted according to the training objectives. Fig. 2(b) shows
that each practice (t=1, 2 or 3) has four steps and the students
can sequentially record their wrong code with mistakes, their
right code without mistakes and the successful screen results.
For the objectives that are made by the teachers, the students
can develop and speed up their programming skills after
many practice times.

C. Design and Implement the Programming Simulator
To enhance the programming skills, the programming

simulator, which is discussed in this section in detail,
provides the exercises to make students learn-by-doing [12].
The teaching concept is that much practice for the similar
exercises with wrong code makes the students learn the
programming skills better.

The outline of the programming simulation is shown in Fig.
3. First, the students’ demands are used to set the course
objectives, see TABLE II and Fig. 4. Second, for each
objective, the teachers’ defined mistakes to make students
learn the use of codes, see TABLE II. In TABLES II and III, the
mistakes are just taken for example. In fact the more mistakes
can be designed to help the students. Third, the pre-defined
mistakes are randomly generated and the mistakes are similar
but a little different. Finally, all mistakes are recorded and
integrated into a test file with the mistakes, see Fig. 5.

Fig. 3. Illustrate the programming simulator.

D. Mastery Learning Procedure
Before the course, the teaching activities of this course are

as following:
1) Teacher observes the students and finds the mistakes to

determine the learning g objectives, see Table I. In fact,
the number of g is suggested to be designed according to
the background and the learning motivations of the
students. Too many objectives makes the test files larger.
Therefore, the students should spend a little time to fix
these mistakes (g=3 in this study).

2) The programming simulator, which makes from g1 to g2
mistakes for each objective, is designed to train students,
where g1 and g2 are the lower and upper times for each
objective, respectively.

In the course, students are divided into a set of groups to
finish the programming exercises that are generated by the
programming simulator. This procedure is as follows:

(P.1) Students of each group should download the learning
sheets (Fig. 2) and the programming simulator (Fig. 3).

(P.2) In the first time, the exercise with wrong mistakes is
generated and is pasted on the C language complier [11].

(P.3) Students try to fix these mistakes by discussing with
the students and the teacher, see test file in Fig. 6.

(P.4) In the second time, run steps P.2 to P.3;
(P.5) In the third time, run steps P.2 to P.3;
(P.6) Students integrate the results into the learning sheet

(Fig. 2) and upload the learning sheet (Fig. 2) to the school
server.

Fig. 4. Illustrate the relationship between the objectives and mistakes.

Fig. 5. Illustration of the programming simulator randomly generates and

integrates mistakes into a test file for students.

Fig. 6. Illustration of the mastery learning procedure.

E. The Physical Course of Mastery Learning
A simple example is used to illustrate how the

programming simulator is used for mastery learning, see Fig.
7 and Fig. 8. First, the pre-defined three codes are generated
randomly because the function of the “rand()%3+1”
produces the numbers of 1,2, and 3, respectively. The wrong
code with mistakes is generated by using the programming
simulator, see Fig. 3, Fig. 4 and Fig. 5. Third, the students in
each group may fix the different wrong codes, see Fig. 6 and
Fig. 7. The students are not boring and know the
programming skills for different typos. The operation of the
physical course is illustrated in Fig. 8. Students 1 and 2,
which are group into a team, are discussed to each other (Step
1 in Fig. 8). When they meet the serious mistake, they can ask
the teacher for help (Step 2 in Fig. 8). Finally, they try to fix
all mistakes (Step 3 in Fig. 8).

IV. RESULTS
In this study, the course objective is set to be 3 (g=3, see

Table I) and makes students learn the following skills:
(Goal 1) Know the operation of mastery learning.
(Goal 2) Learn to use the symbols, such as double quotes,

comma, and semicolon, in the source codes.
(Goal 3) Apply the use of sub-routine, for loops and

variable definition.
In this course, there are 55 students to learn the data

structure. Students are divided into groups. The
questionnaires are from 53 students to summarize their
opinions about this programming simulator. The teacher
observes the content is small size programming exercise and
the practice time is set to 3(i.e. M=3) to achieve the mastery
learning. Actually, the practice time is determined according
to the number of objectives, the background of the students
and the difficulty of the programming exercises. According
to the computer equipments with the programming
simulators, at most P (P is set to 2 in the study) students are
merged into a group.

Table III is the questionnaire from the students. The results
of the questionnaire are most positive and most of them agree
that the programming simulator is effective to enhance the
programming skills. Item 1 denotes that students agree the
arrangement for the additional programming simulator. Fig. 9

illustrates the distribution of points 1,2,3,4 and 5. Item 2
show that students know mastery learning is to learn the one
topic iteratively. Items 3 explores if students like the
programming simulator of the simulator. The result is shown
in TABLE III and Fig. 10. The course objective is to train the
ability to place the comma. Item 5 shows the course objective
are good because the results of “I learn whether to place
symbol “comma” or not for the source codes” is 4.25 and the
result is quite positive. Summary, the questionnaire
distribution is shown in Fig. 11. For all items, students assign
the high points. It means that most responses from students
are quite positive.

Fig. 7. Illustration of master learning by using the programming simulator.

Fig. 8. Illustration of the mastery learning procedure discussing with group

members or the teacher.

Fig. 9. Illustration of distribution from 5 point to 1 point for Item 1 of the

questionnaires.

Fig. 10. Illustration of distribution from 5 point to 1 point for Item 1 and 2

with lower points.

International Journal of Information and Education Technology, Vol. 7, No. 3, March 2017

182

Fig. 11. Illustration of distribution from 5 point to 1 point for all Items 1 to 5.

TABLE III: QUESTIONNAIRE FROM THE STUDENTS

Item Questionnaire content Points
(1~5

points)

1 I agree that the arrangement for the additional
programming simulator. 4.28

2 I know that mastery learning is to learn the one topic
iteratively. 4.23

3 I like the programming simulator to enhance the
programming skills. 4.06

4 I develop the confidence with many practices. 4.06

5 I learn whether to place symbol “comma” or not for the
source codes. 4.25

V. CONCLUSION
The low-cost and effective learning modeling is developed

and utilized into the programming course. According to the
course objectives, the common mistakes of the programming
skills are considered and integrated into the programming
simulator. Each time, the wrong source codes are randomly
generated and the students try to fix these mistakes until all
mistakes are solved. The learning sheet is given to help the
students to record the wrong codes with mistakes, right codes
without mistakes and the successful results. When the
students finish these exercises, which are assigned by the
teachers, the students may fix the similar bugs more
efficiently. Experimental results show that the students like
to use the programming simulator because they learn to fix
the common mistakes by iteratively utilizing the
programming simulator.

ACKNOWLEDGEMENT
The authors would like to thank the financial support from

Lunghwa University of Science and Technology to develop
the new technical approaches to the students of the
department of Electronic Engineering of Lunghwa
University of Science and Technology.

REFERENCES
[1] L. Jing, Z. X. Cheng, J. B. Wang, and Y. H. Zhou, “A spiral step-by-step

educational method for cultivating competent embedded system

engineers to meet industry demands,” IEEE Transactions on Education,
pp.356-365, 2011.

[2] K. Belghith, R. Nkambou, F. Kabanza, and L. Hartman, “an intelligent
simulator for telerobotics training,” IEEE Transactions on Learning
Technologies, pp. 11-19, 2012.

[3] A. G. Ramos, M. P. Lopes, and P. S. Avila, “Development of a platform
for lean manufacturing simulation games,” IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje, pp. 184-190, 2013.

[4] L. S. Myneni, N. H. Narayanan, S. Rebello, A. Rouinfar, and S.
Pumtambekar, “an interactive and intelligent learning system for
physics education,” IEEE Transactions on Learning Technologies, pp.
228-239, 2013.

[5] D. W. Parent, “Improvements to an electrical engineering skill audit
exam to improve student mastery of core EE concepts,” IEEE
Transactions on Education, pp. 184-187, 2011.

[6] B. S. Bloom, “Learning for mastery,” Evaluation Comment
(UCLA-CSIEP), pp. 1-12, 1968.

[7] B. S. Bloom, “The search for methods of group instruction as effective
as one-to-one tutoring,”Educational Leadership, pp. 4–17, 1984.

[8] Mastery_learning. [Online]. Available:
https://en.wikipedia.org/wiki/Mastery_learning

[9] C. L. Kulik, J. A. Kulik, and J. Bangert-Drowns, “Effectiveness of
mastery learning programs: A meta-analysis,” Educational Research,
pp. 265-299, 1990.

[10] Y.-C. Lin, T.-M. Hsieh, H.-O. Hsieh, Y.-S. Hung, and W.-L. Chen,
“Test item selection system,” GCCCE2000, 2000.

[11] Devcpp. [Online]. Available:
http://www.math.ncu.edu.tw/~jovice/c++/boards/devcpp.htm

[12] Wiki. (2015). [Online]. Available:
https://zh.wikipedia.org/wiki/%E7%BA%A6%E7%BF%B0%C2%B7
%E6%9D%9C%E5%A8%81

Hsin-Hsiung Huang becomes an IEEE member since 2010 and was born in
Taiwan in Oct. 1974. He received the M.S. and Ph.D degrees in the
Department of Information Computer Engineering and Institute of Electronic
Engineering from Chung Yuan Christian University, Taoyuan, Taiwan, in
2000 and 2008, respectively. He is working toward the algorithm–related
fields, such the applications of line-following maze robot for the shortest
path problems and EDA algorithms for the VLSI, the floorplanner and
performance-driven routing with the obstacles.

He is currently an associate professor in the Department of Electronic
Engineering, Lunghwa University of Science and Technology in Taoyuan in
Taiwan. From 2000 to 2002, He is a hardware engineering to design the
Ethernet product at Accton Corporation, Hsin-Chu, Taiwan. From 2002 to
200, he serves as a research and development engineering and focus on the
chip design for the 10/100/1000 Mbps Ethernet MAC at TM-Technology
Corporation, Hsin-Chu, Taiwan.

Dr. Huang is also an oversea member of Institute of Electronics,
Information and Communication Engineers (IEICE for short) since 2009.
Some publications are listed in IEEE conferences, including ISCAS,
MWSCAS and ISIC, respectively.

Chyi-Shyong Lee received the B.S. from National Taipei University of
Technology, Taiwan, in 1979, and the master degree from the National Tsing
Hua University, Taiwan, in 1985, both in electrical engineering. From 1985
to 1988, he served as a lecturer with the Hwa Hsia Institute of Technology,
Taiwan. He was a lecturer with the Department of Electronic Engineering,
Lunghwa University of Science and Technology, Taiwan, from 1989 to 2007,
and is now an associate professor. Currently, his research interests include
digital control of power electronic systems and the applications of
microcontrollers and embedded systems.

International Journal of Information and Education Technology, Vol. 7, No. 3, March 2017

183

Juing-Huei Su was born in Tainan, Taiwan, in 1965. He received the B.S.,
M.S., and Ph.D. degrees in electrical engineering from the National Taiwan
University, Taipei, Taiwan, in 1987, 1989, 1993, respectively. From 1993 to
1995, he served as a military officer in the army. In 1995, he became a senior
engineer with the Taian Electric Co., Ltd.

Since 2007, he has been a professor with the Department of Electronic
Engineering, Lunghwa University of Science and Technology, Taoyuan,
Taiwan. He is now interested in developing his own learning platforms for
automatic control and robotic education.

His research interests also include robust control theory, power electronic
systems, and embedded control system implementations.

